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Plan of the minicourse:

I General introduction to resonances (scattering poles).

http://math.berkeley.edu/∼zworski/ipw1.pdf/
I Computer Lab: MATLAB codes for computing resonances in

one dimension; examples of recent “experimental discoveries”.

http://www.cims.nyu.edu/∼dbindel/resonant1d/
I Mathematical theory in one dimension: meromorphic

continuation of the resolvent, properties of resonant states, a
simple inverse result.

I Mathematical theory in one dimension: counting of
resonances, trace formulæ, resonance expansions of scattered
waves.

http://math.berkeley.edu/∼zworski/tz1.pdf/
I Recent mathematical and experimental results in higher

dimensions, a survey.

http://math.berkeley.edu/∼zworski/ipw2.pdf/
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Simplest setting for resonances:

poles of the meromorphic
continuation of

(−∂2
x + V (x)− λ2)−1

for
V ∈ L∞(R) , V (x) = 0 , for |x | > R.
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Here is another example:
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Recently Klopp described the “curves” of resonances for truncated
periodic structures.

http://www.math.univ-paris13.fr/∼klopp/conf/
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All of this is very well, but what do this blue dots really mean?



Suppose we solve the wave equation

(−δ2
t + δ2

x − V (x))u(t, x) = 0 ,

u(0, x) = u0(x) ∈ H1([−R,R]) , ∂tu(0, x) = u1(x) ∈ L2([−R,R]) .

Then, for any A > 0, (assuming that resonances are simple),

u(t, x) =
∑

Imλj>−A

e−iλj tuj(x) + rA(t, x) ,

where, for any K ,

‖rA(t, •)‖H1([−K ,K ]) ≤ C (R,K )e−At(‖u0‖H1 + ‖u1‖L2) .

Lax-Phillips 1969

Li Bai 750 “In bells of frost I heard the resonance die”
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Resonances (quasinormal modes) for black holes.

”A typical event which might cause a detection event would be the
late stage inspiral and merger of two 10 solar mass black holes, not
necessarily located in the Milky Way galaxy, which is expected to
result in a very specific sequence of signals often summarized by
the slogan chirp, burst, quasi-normal mode ringing, exponential
decay.” http://en.wikipedia.org/wiki/LIGO
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Reality Check: the Eckhart barrier V (x) = sech2(x).

“Platonic” ±1− i( 1
2 + N) and numerical resonances:
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The ∗ resonances are generated by the unstable equilibrium points.
The numerical false resonances come from the trancation of the
support: the potential is approximated by a C 1 spline.
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How to extract resonances from the wave data?

But before... Why bother?

If one could, then, in principle, one could tell the mass of the
Schwartzschild black hole from the analysis of hypothetical
gravitational waves.

And there are more concrete examples (Lecture 5).



How to extract resonances from the wave data?

But before...

Why bother?

If one could, then, in principle, one could tell the mass of the
Schwartzschild black hole from the analysis of hypothetical
gravitational waves.

And there are more concrete examples (Lecture 5).



How to extract resonances from the wave data?

But before... Why bother?

If one could, then, in principle, one could tell the mass of the
Schwartzschild black hole from the analysis of hypothetical
gravitational waves.

And there are more concrete examples (Lecture 5).



How to extract resonances from the wave data?

But before... Why bother?

If one could, then, in principle, one could tell the mass of the
Schwartzschild black hole from the analysis of hypothetical
gravitational waves.

And there are more concrete examples (Lecture 5).



How to extract resonances from the wave data?

But before... Why bother?

If one could, then, in principle, one could tell the mass of the
Schwartzschild black hole from the analysis of hypothetical
gravitational waves.

And there are more concrete examples (Lecture 5).



The oldest solution to an inverse problem?

The Prony method 1796

Knowing

fk =
n∑

j=1

cjz
k
j

(for many values of k) find

zj , j = 1, · · · , n .



The oldest solution to an inverse problem?

The Prony method

1796

Knowing

fk =
n∑

j=1

cjz
k
j

(for many values of k) find

zj , j = 1, · · · , n .



The oldest solution to an inverse problem?

The Prony method 1796

Knowing

fk =
n∑

j=1

cjz
k
j

(for many values of k) find

zj , j = 1, · · · , n .



The oldest solution to an inverse problem?

The Prony method 1796

Knowing

fk =
n∑

j=1

cjz
k
j

(for many values of k) find

zj , j = 1, · · · , n .



The oldest solution to an inverse problem?

The Prony method 1796

Knowing

fk =
n∑

j=1

cjz
k
j

(for many values of k) find

zj , j = 1, · · · , n .



The oldest solution to an inverse problem?

The Prony method 1796

Knowing

fk =
n∑

j=1

cjz
k
j

(for many values of k) find

zj , j = 1, · · · , n .



The oldest solution to an inverse problem?

The Prony method 1796

Knowing

fk =
n∑

j=1

cjz
k
j

(for many values of k)

find

zj , j = 1, · · · , n .



The oldest solution to an inverse problem?

The Prony method 1796

Knowing

fk =
n∑

j=1

cjz
k
j

(for many values of k) find

zj , j = 1, · · · , n .



The oldest solution to an inverse problem?

The Prony method 1796

Knowing

fk =
n∑

j=1

cjz
k
j

(for many values of k) find

zj , j = 1, · · · , n .



A small digression on how it is done.

fk =
n∑

j=1

cjz
k
j , k = 0, · · · −→ zj , j = 1, · · · , n .

First solve the following overdetermined system:

n∑
k=0

fk+m αk = 0 , m = 0, · · · ,M , αn = 1 . (1)

Then look for roots of p(z) =
∑n

k=0 αkzk .

We note that plugging the definition of fk into (1) we obtain∑
j=1

cjz
m
j p(zj) = 0 ,

so if vm = [c1z
m
1 , · · · , cnz

m
n ] span Cn, zj ’s are the roots of p(z).
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fk =
n∑

j=1

cjz
k
j , k = 0, · · · −→ zj , j = 1, · · · , n .

For the wave equation we take

zj = e iλj ∆t ,

where ∆t is a time step,

and

cj = uj(x0) ,

where x0 is a fixed point (the antenna/radar location?).

Prony’s method has been refined and is part of various harmonic
inversion schemes. Google Prony resonances or Prony quantum
resonances for many hits.

Wei-Majda-Strauss 1988 used it to compute resonances for 1D
potentials by solving the wave equation numerically (Bindel’s
method, twenty years later, is direct and more efficient).
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But what is the meaning of the uj ’s in

u(t, x) =
∑

Imλj>−A

e−iλj tuj(x) +O(e−At) , |x | < K ?

Resonant states

(−∂2
x + V (x)− λ2)u(x) = 0 , u(x) ∝ e iλ|x | , |x | � 1 .

The condition for large |x | is called the outgoing condition.

A resonance at λ = 0 means that we have a bounded solution to

(−∂2
x + V (x))u = 0 .

Note that V (x) = 0 has a zero resonance (its only one).



But what is the meaning of the uj ’s in

u(t, x) =
∑

Imλj>−A

e−iλj tuj(x) +O(e−At) , |x | < K ?

Resonant states

(−∂2
x + V (x)− λ2)u(x) = 0 , u(x) ∝ e iλ|x | , |x | � 1 .

The condition for large |x | is called the outgoing condition.

A resonance at λ = 0 means that we have a bounded solution to

(−∂2
x + V (x))u = 0 .

Note that V (x) = 0 has a zero resonance (its only one).



But what is the meaning of the uj ’s in

u(t, x) =
∑

Imλj>−A

e−iλj tuj(x) +O(e−At) , |x | < K ?

Resonant states

(−∂2
x + V (x)− λ2)u(x) = 0 , u(x) ∝ e iλ|x | , |x | � 1 .

The condition for large |x | is called the outgoing condition.

A resonance at λ = 0 means that we have a bounded solution to

(−∂2
x + V (x))u = 0 .

Note that V (x) = 0 has a zero resonance (its only one).



But what is the meaning of the uj ’s in

u(t, x) =
∑

Imλj>−A

e−iλj tuj(x) +O(e−At) , |x | < K ?

Resonant states

(−∂2
x + V (x)− λ2)u(x) = 0 , u(x) ∝ e iλ|x | , |x | � 1 .

The condition for large |x | is called the outgoing condition.

A resonance at λ = 0 means that we have a bounded solution to

(−∂2
x + V (x))u = 0 .

Note that V (x) = 0 has a zero resonance (its only one).



But what is the meaning of the uj ’s in

u(t, x) =
∑

Imλj>−A

e−iλj tuj(x) +O(e−At) , |x | < K ?

Resonant states

(−∂2
x + V (x)− λ2)u(x) = 0 , u(x) ∝ e iλ|x | , |x | � 1 .

The condition for large |x | is called the outgoing condition.

A resonance at λ = 0 means that we have a bounded solution to

(−∂2
x + V (x))u = 0 .

Note that V (x) = 0 has a zero resonance (its only one).



But what is the meaning of the uj ’s in

u(t, x) =
∑

Imλj>−A

e−iλj tuj(x) +O(e−At) , |x | < K ?

Resonant states

(−∂2
x + V (x)− λ2)u(x) = 0 , u(x) ∝ e iλ|x | , |x | � 1 .

The condition for large |x | is called the outgoing condition.

A resonance at λ = 0 means that we have a bounded solution to

(−∂2
x + V (x))u = 0 .

Note that V (x) = 0 has a zero resonance (its only one).



But what is the meaning of the uj ’s in

u(t, x) =
∑

Imλj>−A

e−iλj tuj(x) +O(e−At) , |x | < K ?

Resonant states

(−∂2
x + V (x)− λ2)u(x) = 0 , u(x) ∝ e iλ|x | , |x | � 1 .

The condition for large |x | is called the outgoing condition.

A resonance at λ = 0 means that we have a bounded solution to

(−∂2
x + V (x))u = 0 .

Note that V (x) = 0 has a zero resonance

(its only one).



But what is the meaning of the uj ’s in

u(t, x) =
∑

Imλj>−A

e−iλj tuj(x) +O(e−At) , |x | < K ?

Resonant states

(−∂2
x + V (x)− λ2)u(x) = 0 , u(x) ∝ e iλ|x | , |x | � 1 .

The condition for large |x | is called the outgoing condition.

A resonance at λ = 0 means that we have a bounded solution to

(−∂2
x + V (x))u = 0 .

Note that V (x) = 0 has a zero resonance (its only one).



Resonant state for the Eckhart barrier: V (x) = sech2(x)

!6 !4 !2 0 2 4 6
!2

!1

0

1

2
Phase space picture of the Eckart barrier

Real and imaginary parts of the first resonant state

Density plot of the FBI transform of the first resonant state



Resonant state for the Eckhart barrier: V (x) = sech2(x)

!6 !4 !2 0 2 4 6
!2

!1

0

1

2
Phase space picture of the Eckart barrier

Real and imaginary parts of the first resonant state

Density plot of the FBI transform of the first resonant state



Significance of zero resonances: long time behaviour.

Let P = −∂2
x + V (x), V (x) ≥ 0.

If P has a zero resonance then the estimate

‖e−itP f ‖∞ ≤ Ct−
1
2 ‖f ‖1 ,

cannot be improved, even by localizing f and exp(−itP)f .

If P does not have a zero resonance then for any χ ∈ C∞0

‖χe−itPχf ‖∞ ≤ Ct−
3
2 ‖f ‖1 ,

A much improved version is due to Krieger-Schlag 2005.
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Dynamics of resonances:

splinepot((j/4)*[0,2,-4,4,0],[-2,-1,0,1,2])
1 ≤ j ≤ 100.

The leading asymptotics of the number of resonances depend only
on the support of V : Regge 1958, Zworski 1987, Froese 1997,
Simon 2000.
But the dynamics is far from understood even in dimension one.
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Dynamics of resonances:
splinepot((j/4)*[0,2,-4,4,0],[-2,-1,0,1,2])
1 ≤ j ≤ 100.

Magnified view near the imaginary axis: the coupling constant gets
larger so the well in the middle gets deeper generating more
resonances.
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A curious behaviour of zero resonances in nonlinear problems
Holmer-Zworski 2008:

i∂tu + 1
2∂

2
xu + qδ0u + |u|2u = 0

where |q| � 1.

Take q = 0 and consider the operator linearized around the
nonlinear ground state (soliton). Here is its spectrum:
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Now consider the case q > 0. Two of the elements of the kernel
split away to ±q1/2, and the two threshold resonances dissolve into
the continuum (become resonances on the nonphysical sheet).
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no threshold res
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evals at ±2q1/2
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Surprisingly for q < 0, that is in the repulsive case, the threshold
resonances become eigenvalues, approximately given by ±(1− q2),
with eigenfuntions bounded by

|q|1/2e−|q||x | very broad
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