I.Scattering Resonances and Inverse Problems?

Workshop on Inverse Problem MSRI

Maciej Zworski
UC Berkeley
July 27, 2009

Plan of the minicourse:

Plan of the minicourse:

- General introduction to resonances (scattering poles).
http://math.berkeley.edu/~zworski/ipw1.pdf/

Plan of the minicourse:

- General introduction to resonances (scattering poles).
http://math.berkeley.edu/~zworski/ipw1.pdf/
- Computer Lab: MATLAB codes for computing resonances in one dimension; examples of recent "experimental discoveries".

Plan of the minicourse:

- General introduction to resonances (scattering poles).
http://math.berkeley.edu/~zworski/ipw1.pdf/
- Computer Lab: MATLAB codes for computing resonances in one dimension; examples of recent "experimental discoveries".
http://www.cims.nyu.edu/~dbindel/resonant1d/

Plan of the minicourse:

- General introduction to resonances (scattering poles).
http://math.berkeley.edu/~zworski/ipw1.pdf/
- Computer Lab: MATLAB codes for computing resonances in one dimension; examples of recent "experimental discoveries".
http://www.cims.nyu.edu/~dbindel/resonant1d/
- Mathematical theory in one dimension: meromorphic continuation of the resolvent, properties of resonant states, a simple inverse result.

Plan of the minicourse:

- General introduction to resonances (scattering poles).
http://math.berkeley.edu/~zworski/ipw1.pdf/
- Computer Lab: MATLAB codes for computing resonances in one dimension; examples of recent "experimental discoveries".
http://www.cims.nyu.edu/~dbindel/resonant1d/
- Mathematical theory in one dimension: meromorphic continuation of the resolvent, properties of resonant states, a simple inverse result.
- Mathematical theory in one dimension: counting of resonances, trace formulæ, resonance expansions of scattered waves.

Plan of the minicourse:

- General introduction to resonances (scattering poles).
http://math.berkeley.edu/~zworski/ipw1.pdf/
- Computer Lab: MATLAB codes for computing resonances in one dimension; examples of recent "experimental discoveries".

```
http://www.cims.nyu.edu/~dbindel/resonant1d/
```

- Mathematical theory in one dimension: meromorphic continuation of the resolvent, properties of resonant states, a simple inverse result.
- Mathematical theory in one dimension: counting of resonances, trace formulæ, resonance expansions of scattered waves.
http://math.berkeley.edu/~zworski/tz1.pdf/

Plan of the minicourse:

- General introduction to resonances (scattering poles).
http://math.berkeley.edu/~zworski/ipw1.pdf/
- Computer Lab: MATLAB codes for computing resonances in one dimension; examples of recent "experimental discoveries".

```
http://www.cims.nyu.edu/~dbindel/resonant1d/
```

- Mathematical theory in one dimension: meromorphic continuation of the resolvent, properties of resonant states, a simple inverse result.
- Mathematical theory in one dimension: counting of resonances, trace formulæ, resonance expansions of scattered waves.
http://math.berkeley.edu/~zworski/tz1.pdf/
- Recent mathematical and experimental results in higher dimensions, a survey.
http://math.berkeley.edu/~zworski/ipw2.pdf/

Simplest setting for resonances:

Simplest setting for resonances: poles of the meromorphic continuation of

$$
\left(-\partial_{x}^{2}+V(x)-\lambda^{2}\right)^{-1}
$$

for

$$
V \in L^{\infty}(\mathbf{R}), \quad V(x)=0, \quad \text { for }|x|>R .
$$

Simplest setting for resonances: poles of the meromorphic continuation of

$$
\left(-\partial_{x}^{2}+V(x)-\lambda^{2}\right)^{-1}
$$

for

$$
V \in L^{\infty}(\mathbf{R}), \quad V(x)=0, \quad \text { for }|x|>R
$$

Simplest setting for resonances: poles of the meromorphic continuation of

$$
\left(-\partial_{x}^{2}+V(x)-\lambda^{2}\right)^{-1}
$$

for

$$
V \in L^{\infty}(\mathbf{R}), \quad V(x)=0, \quad \text { for }|x|>R
$$

Codes by David Bindel

Here is another example:

Here is another example:

Potential

Pole locations

Here is another example:

Potential

Pole locations

Recently Klopp described the "curves" of resonances for truncated periodic structures.

Here is another example:

Potential

Pole locations

Recently Klopp described the "curves" of resonances for truncated periodic structures.
http://www.math.univ-paris13.fr/~klopp/conf/

All of this is very well, but what do this blue dots really mean?

Suppose we solve the wave equation

Suppose we solve the wave equation

$$
\begin{gathered}
\left(-\delta_{t}^{2}+\delta_{x}^{2}-V(x)\right) u(t, x)=0 \\
u(0, x)=u_{0}(x) \in H^{1}([-R, R]), \partial_{t} u(0, x)=u_{1}(x) \in L^{2}([-R, R])
\end{gathered}
$$

Suppose we solve the wave equation

$$
\left(-\delta_{t}^{2}+\delta_{x}^{2}-V(x)\right) u(t, x)=0
$$

$u(0, x)=u_{0}(x) \in H^{1}([-R, R]), \partial_{t} u(0, x)=u_{1}(x) \in L^{2}([-R, R])$.
Then, for any $A>0$, (assuming that resonances are simple),

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+r_{A}(t, x)
$$

Suppose we solve the wave equation

$$
\left(-\delta_{t}^{2}+\delta_{x}^{2}-V(x)\right) u(t, x)=0
$$

$u(0, x)=u_{0}(x) \in H^{1}([-R, R]), \partial_{t} u(0, x)=u_{1}(x) \in L^{2}([-R, R])$.
Then, for any $A>0$, (assuming that resonances are simple),

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+r_{A}(t, x)
$$

where, for any K,

Suppose we solve the wave equation

$$
\left(-\delta_{t}^{2}+\delta_{x}^{2}-V(x)\right) u(t, x)=0
$$

$u(0, x)=u_{0}(x) \in H^{1}([-R, R]), \partial_{t} u(0, x)=u_{1}(x) \in L^{2}([-R, R])$.
Then, for any $A>0$, (assuming that resonances are simple),

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+r_{A}(t, x),
$$

where, for any K,

$$
\left\|r_{A}(t, \bullet)\right\|_{H^{1}([-K, K])} \leq C(R, K) e^{-A t}\left(\left\|u_{0}\right\|_{H^{1}}+\left\|u_{1}\right\|_{L^{2}}\right) .
$$

Suppose we solve the wave equation

$$
\left(-\delta_{t}^{2}+\delta_{x}^{2}-V(x)\right) u(t, x)=0
$$

$u(0, x)=u_{0}(x) \in H^{1}([-R, R]), \partial_{t} u(0, x)=u_{1}(x) \in L^{2}([-R, R])$.
Then, for any $A>0$, (assuming that resonances are simple),

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+r_{A}(t, x),
$$

where, for any K,

$$
\left\|r_{A}(t, \bullet)\right\|_{H^{1}([-K, K])} \leq C(R, K) e^{-A t}\left(\left\|u_{0}\right\|_{H^{1}}+\left\|u_{1}\right\|_{L^{2}}\right) .
$$

Lax-Phillips 1969

Suppose we solve the wave equation

$$
\left(-\delta_{t}^{2}+\delta_{x}^{2}-V(x)\right) u(t, x)=0
$$

$u(0, x)=u_{0}(x) \in H^{1}([-R, R]), \partial_{t} u(0, x)=u_{1}(x) \in L^{2}([-R, R])$.
Then, for any $A>0$, (assuming that resonances are simple),

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+r_{A}(t, x),
$$

where, for any K,

$$
\left\|r_{A}(t, \bullet)\right\|_{H^{1}([-K, K])} \leq C(R, K) e^{-A t}\left(\left\|u_{0}\right\|_{H^{1}}+\left\|u_{1}\right\|_{L^{2}}\right) .
$$

Lax-Phillips 1969
Li Bai 750

Suppose we solve the wave equation

$$
\left(-\delta_{t}^{2}+\delta_{x}^{2}-V(x)\right) u(t, x)=0
$$

$u(0, x)=u_{0}(x) \in H^{1}([-R, R]), \partial_{t} u(0, x)=u_{1}(x) \in L^{2}([-R, R])$.
Then，for any $A>0$ ，（assuming that resonances are simple），

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+r_{A}(t, x),
$$

where，for any K ，

$$
\left\|r_{A}(t, \bullet)\right\|_{H^{1}([-K, K])} \leq C(R, K) e^{-A t}\left(\left\|u_{0}\right\|_{H^{1}}+\left\|u_{1}\right\|_{L^{2}}\right) .
$$

Lax－Phillips 1969
Li Bai 750 ＂In bells of frost I heard the resonance 余响（餘響）die＂

Resonances (quasinormal modes) for black holes.

Resonances (quasinormal modes) for black holes.

"A typical event which might cause a detection event would be the late stage inspiral and merger of two 10 solar mass black holes, not necessarily located in the Milky Way galaxy, which is expected to result in a very specific sequence of signals often summarized by the slogan chirp, burst, quasi-normal mode ringing, exponential decay."

Resonances (quasinormal modes) for black holes.

"A typical event which might cause a detection event would be the late stage inspiral and merger of two 10 solar mass black holes, not necessarily located in the Milky Way galaxy, which is expected to result in a very specific sequence of signals often summarized by the slogan chirp, burst, quasi-normal mode ringing, exponential decay." http://en.wikipedia.org/wiki/LIGO

Resonances (quasinormal modes) for black holes.

"A typical event which might cause a detection event would be the late stage inspiral and merger of two 10 solar mass black holes, not necessarily located in the Milky Way galaxy, which is expected to result in a very specific sequence of signals often summarized by the slogan chirp, burst, quasi-normal mode ringing, exponential decay." http://en.wikipedia.org/wiki/LIGO

Picture Credit: Kip Thorne

Resonances (quasinormal modes) for black holes.

"A typical event which might cause a detection event would be the late stage inspiral and merger of two 10 solar mass black holes, not necessarily located in the Milky Way galaxy, which is expected to result in a very specific sequence of signals often summarized by the slogan chirp, burst, quasi-normal mode ringing, exponential decay." http://en.wikipedia.org/wiki/LIGO

Figure 1. The lattice, $3^{-\frac{3}{2}} m\left(1-9 \Lambda m^{2}\right)^{\frac{1}{2}}\left(\pm \mathbb{N} \pm \frac{1}{2}-\frac{i}{2}\left(\mathbb{N}_{0}+\right.\right.$ $1 / 2)$), of pseudo-poles approximating resonances (dark dots) in a conic neighbourhood of the continuous spectrum.

Resonances (quasinormal modes) for black holes.

"A typical event which might cause a detection event would be the late stage inspiral and merger of two 10 solar mass black holes, not necessarily located in the Milky Way galaxy, which is expected to result in a very specific sequence of signals often summarized by the slogan chirp, burst, quasi-normal mode ringing, exponential decay." http://en.wikipedia.org/wiki/LIGO

Figure 1. The lattice, $3^{-\frac{3}{2}} m\left(1-9 \Lambda m^{2}\right)^{\frac{1}{2}}\left(\pm \mathbb{N} \pm \frac{1}{2}-\frac{i}{2}\left(\mathbb{N}_{0}+\right.\right.$ $1 / 2)$), of pseudo-poles approximating resonances (dark dots) in a conic neighbourhood of the continuous spectrum.

Resonances (quasinormal modes) for black holes.

"A typical event which might cause a detection event would be the late stage inspiral and merger of two 10 solar mass black holes, not necessarily located in the Milky Way galaxy, which is expected to result in a very specific sequence of signals often summarized by the slogan chirp, burst, quasi-normal mode ringing, exponential decay." http://en.wikipedia.org/wiki/LIGO

Figure 1. The lattice, $3^{-\frac{3}{2}} m\left(1-9 \Lambda m^{2}\right)^{\frac{1}{2}}\left(\pm \mathbb{N} \pm \frac{1}{2}-\frac{i}{2}\left(\mathbb{N}_{0}+\right.\right.$ $1 / 2)$), of pseudo-poles approximating resonances (dark dots) in a conic neighbourhood of the continuous spectrum.

Sá Barreto-Zworski 1996 (long earlier tradition in the physics literature)

Reality Check: the Eckhart barrier $V(x)=\operatorname{sech}^{2}(x)$.

Reality Check: the Eckhart barrier $V(x)=\operatorname{sech}^{2}(x)$.
"Platonic" $\pm 1-i\left(\frac{1}{2}+\mathbb{N}\right)$

Reality Check: the Eckhart barrier $V(x)=\operatorname{sech}^{2}(x)$.
"Platonic" $\pm 1-i\left(\frac{1}{2}+\mathbb{N}\right)$ and numerical resonances:

Reality Check: the Eckhart barrier $V(x)=\operatorname{sech}^{2}(x)$.
"Platonic" $\pm 1-i\left(\frac{1}{2}+\mathbb{N}\right)$ and numerical resonances:

"Platonic" $\pm 1-i\left(\frac{1}{2}+\mathbb{N}\right)$ and numerical resonances:

The $*$ resonances are generated by the unstable equilibrium points. The numerical false resonances come from the trancation of the support: the potential is approximated by a C^{1} spline.

How to extract resonances from the wave data?

How to extract resonances from the wave data?

But before...

How to extract resonances from the wave data?

> But before... Why bother?

How to extract resonances from the wave data?

But before... Why bother?

If one could, then, in principle, one could tell the mass of the Schwartzschild black hole from the analysis of hypothetical gravitational waves.

How to extract resonances from the wave data?

But before... Why bother?

If one could, then, in principle, one could tell the mass of the Schwartzschild black hole from the analysis of hypothetical gravitational waves.

And there are more concrete examples (Lecture 5).

The oldest solution to an inverse problem?

The oldest solution to an inverse problem?

The Prony method

The oldest solution to an inverse problem?

The Prony method 1796

The oldest solution to an inverse problem?

The Prony method 1796

The oldest solution to an inverse problem?

The Prony method 1796
Knowing

The oldest solution to an inverse problem?

The Prony method 1796
Knowing

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}
$$

The oldest solution to an inverse problem?

The Prony method 1796
Knowing

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}
$$

(for many values of k)

The oldest solution to an inverse problem?

The Prony method 1796
Knowing

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}
$$

(for many values of k) find

The oldest solution to an inverse problem?

The Prony method 1796
Knowing

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}
$$

(for many values of k) find

$$
z_{j}, \quad j=1, \cdots, n .
$$

A small digression on how it is done.

A small digression on how it is done.

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

A small digression on how it is done.

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

First solve the following overdetermined system:

A small digression on how it is done.

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

First solve the following overdetermined system:

$$
\begin{equation*}
\sum_{k=0}^{n} f_{k+m} \alpha_{k}=0, \quad m=0, \cdots, M, \quad \alpha_{n}=1 \tag{1}
\end{equation*}
$$

A small digression on how it is done.

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

First solve the following overdetermined system:

$$
\begin{equation*}
\sum_{k=0}^{n} f_{k+m} \alpha_{k}=0, \quad m=0, \cdots, M, \quad \alpha_{n}=1 \tag{1}
\end{equation*}
$$

Then look for roots of $p(z)=\sum_{k=0}^{n} \alpha_{k} z^{k}$.

A small digression on how it is done.

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

First solve the following overdetermined system:

$$
\begin{equation*}
\sum_{k=0}^{n} f_{k+m} \alpha_{k}=0, \quad m=0, \cdots, M, \quad \alpha_{n}=1 \tag{1}
\end{equation*}
$$

Then look for roots of $p(z)=\sum_{k=0}^{n} \alpha_{k} z^{k}$.
We note that plugging the definition of f_{k} into (1) we obtain

A small digression on how it is done.

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

First solve the following overdetermined system:

$$
\begin{equation*}
\sum_{k=0}^{n} f_{k+m} \alpha_{k}=0, \quad m=0, \cdots, M, \quad \alpha_{n}=1 \tag{1}
\end{equation*}
$$

Then look for roots of $p(z)=\sum_{k=0}^{n} \alpha_{k} z^{k}$.
We note that plugging the definition of f_{k} into (1) we obtain

$$
\sum_{j=1} c_{j} z_{j}^{m} p\left(z_{j}\right)=0
$$

so if $v_{m}=\left[c_{1} z_{1}^{m}, \cdots, c_{n} z_{n}^{m}\right]$ span \mathbb{C}^{n}, z_{j} 's are the roots of $p(z)$.

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

For the wave equation we take

$$
z_{j}=e^{i \lambda_{j} \Delta t}
$$

where Δt is a time step,

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

For the wave equation we take

$$
z_{j}=e^{i \lambda_{j} \Delta t}
$$

where Δt is a time step, and

$$
c_{j}=u_{j}\left(x_{0}\right),
$$

where x_{0} is a fixed point (the antenna/radar location?).

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

For the wave equation we take

$$
z_{j}=e^{i \lambda_{j} \Delta t}
$$

where Δt is a time step, and

$$
c_{j}=u_{j}\left(x_{0}\right),
$$

where x_{0} is a fixed point (the antenna/radar location?).
Prony's method has been refined and is part of various harmonic inversion schemes.

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

For the wave equation we take

$$
z_{j}=e^{i \lambda_{j} \Delta t}
$$

where Δt is a time step, and

$$
c_{j}=u_{j}\left(x_{0}\right),
$$

where x_{0} is a fixed point (the antenna/radar location?).
Prony's method has been refined and is part of various harmonic inversion schemes. Google Prony resonances or Prony quantum resonances for many hits.

$$
f_{k}=\sum_{j=1}^{n} c_{j} z_{j}^{k}, \quad k=0, \cdots \quad \longrightarrow \quad z_{j}, \quad j=1, \cdots, n .
$$

For the wave equation we take

$$
z_{j}=e^{i \lambda_{j} \Delta t}
$$

where Δt is a time step, and

$$
c_{j}=u_{j}\left(x_{0}\right),
$$

where x_{0} is a fixed point (the antenna/radar location?).
Prony's method has been refined and is part of various harmonic inversion schemes. Google Prony resonances or Prony quantum resonances for many hits.

Wei-Majda-Strauss 1988 used it to compute resonances for 1D potentials by solving the wave equation numerically (Bindel's method, twenty years later, is direct and more efficient).

But what is the meaning of the u_{j} 's in

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+\mathcal{O}\left(e^{-A t}\right), \quad|x|<K ?
$$

But what is the meaning of the u_{j} 's in

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+\mathcal{O}\left(e^{-A t}\right), \quad|x|<K ?
$$

Resonant states

But what is the meaning of the u_{j} 's in

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+\mathcal{O}\left(e^{-A t}\right), \quad|x|<K ?
$$

Resonant states

$$
\left(-\partial_{x}^{2}+V(x)-\lambda^{2}\right) u(x)=0, \quad u(x) \propto e^{i \lambda|x|}, \quad|x| \gg 1 .
$$

But what is the meaning of the u_{j} 's in

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+\mathcal{O}\left(e^{-A t}\right), \quad|x|<K ?
$$

Resonant states

$$
\left(-\partial_{x}^{2}+V(x)-\lambda^{2}\right) u(x)=0, \quad u(x) \propto e^{i \lambda|x|}, \quad|x| \gg 1 .
$$

But what is the meaning of the u_{j} 's in

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+\mathcal{O}\left(e^{-A t}\right), \quad|x|<K ?
$$

Resonant states

$$
\left(-\partial_{x}^{2}+V(x)-\lambda^{2}\right) u(x)=0, \quad u(x) \propto e^{i \lambda|x|}, \quad|x| \gg 1
$$

The condition for large $|x|$ is called the outgoing condition.

But what is the meaning of the u_{j} 's in

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+\mathcal{O}\left(e^{-A t}\right), \quad|x|<K ?
$$

Resonant states

$$
\left(-\partial_{x}^{2}+V(x)-\lambda^{2}\right) u(x)=0, \quad u(x) \propto e^{i \lambda|x|}, \quad|x| \gg 1
$$

The condition for large $|x|$ is called the outgoing condition.
A resonance at $\lambda=0$ means that we have a bounded solution to

$$
\left(-\partial_{x}^{2}+V(x)\right) u=0 .
$$

But what is the meaning of the u_{j} 's in

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+\mathcal{O}\left(e^{-A t}\right), \quad|x|<K ?
$$

Resonant states

$$
\left(-\partial_{x}^{2}+V(x)-\lambda^{2}\right) u(x)=0, \quad u(x) \propto e^{i \lambda|x|}, \quad|x| \gg 1
$$

The condition for large $|x|$ is called the outgoing condition.
A resonance at $\lambda=0$ means that we have a bounded solution to

$$
\left(-\partial_{x}^{2}+V(x)\right) u=0 .
$$

Note that $V(x)=0$ has a zero resonance

But what is the meaning of the u_{j} 's in

$$
u(t, x)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i \lambda_{j} t} u_{j}(x)+\mathcal{O}\left(e^{-A t}\right), \quad|x|<K ?
$$

Resonant states

$$
\left(-\partial_{x}^{2}+V(x)-\lambda^{2}\right) u(x)=0, \quad u(x) \propto e^{i \lambda|x|}, \quad|x| \gg 1
$$

The condition for large $|x|$ is called the outgoing condition.
A resonance at $\lambda=0$ means that we have a bounded solution to

$$
\left(-\partial_{x}^{2}+V(x)\right) u=0 .
$$

Note that $V(x)=0$ has a zero resonance (its only one).

Resonant state for the Eckhart barrier: $V(x)=\operatorname{sech}^{2}(x)$

Resonant state for the Eckhart barrier: $V(x)=\operatorname{sech}^{2}(x)$

Phase space picture of the Eckart barrier

Density plot of the FBI transform of the first resonant state

Significance of zero resonances: long time behaviour.

Significance of zero resonances: long time behaviour.

$$
\text { Let } P=-\partial_{x}^{2}+V(x), V(x) \geq 0
$$

Significance of zero resonances: long time behaviour.
Let $P=-\partial_{x}^{2}+V(x), V(x) \geq 0$.
If P has a zero resonance then the estimate

$$
\left\|e^{-i t P} f\right\|_{\infty} \leq C t^{-\frac{1}{2}}\|f\|_{1}
$$

cannot be improved, even by localizing f and $\exp (-i t P) f$.

Significance of zero resonances: long time behaviour.
Let $P=-\partial_{x}^{2}+V(x), V(x) \geq 0$.
If P has a zero resonance then the estimate

$$
\left\|e^{-i t P} f\right\|_{\infty} \leq C t^{-\frac{1}{2}}\|f\|_{1}
$$

cannot be improved, even by localizing f and $\exp (-i t P) f$.
If P does not have a zero resonance then for any $\chi \in C_{0}^{\infty}$

$$
\left\|\chi e^{-i t P} \chi f\right\|_{\infty} \leq C t^{-\frac{3}{2}}\|f\|_{1}
$$

Significance of zero resonances: long time behaviour.
Let $P=-\partial_{x}^{2}+V(x), V(x) \geq 0$.
If P has a zero resonance then the estimate

$$
\left\|e^{-i t P} f\right\|_{\infty} \leq C t^{-\frac{1}{2}}\|f\|_{1}
$$

cannot be improved, even by localizing f and $\exp (-i t P) f$.
If P does not have a zero resonance then for any $\chi \in C_{0}^{\infty}$

$$
\left\|\chi e^{-i t P} \chi f\right\|_{\infty} \leq C t^{-\frac{3}{2}}\|f\|_{1}
$$

A much improved version is due to Krieger-Schlag 2005.

Dynamics of resonances:

Dynamics of resonances:
splinepot ((j/4)*[0, 2, -4, 4, 0], $[-2,-1,0,1,2])$
$1 \leq j \leq 100$.

Dynamics of resonances:
splinepot ((j/4)*[0, $2,-4,4,0],[-2,-1,0,1,2])$
$1 \leq j \leq 100$.

The leading asymptotics of the number of resonances depend only on the support of V : Regge 1958, Zworski 1987, Froese 1997, Simon 2000.
But the dynamics is far from understood even in dimension one.

Dynamics of resonances:
splinepot ((j/4)*[0, 2, -4, 4, 0], [-2, -1, 0, 1, 2])
$1 \leq j \leq 100$.

Magnified view near the imaginary axis: the coupling constant gets larger so the well in the middle gets deeper generating more resonances.

Summary

Summary

A curious behaviour of zero resonances in nonlinear problems Holmer-Zworski 2008:

A curious behaviour of zero resonances in nonlinear problems Holmer-Zworski 2008:

$$
i \partial_{t} u+\frac{1}{2} \partial_{x}^{2} u+q \delta_{0} u+|u|^{2} u=0
$$

where $|q| \ll 1$.

A curious behaviour of zero resonances in nonlinear problems Holmer-Zworski 2008:

$$
i \partial_{t} u+\frac{1}{2} \partial_{x}^{2} u+q \delta_{0} u+|u|^{2} u=0
$$

where $|q| \ll 1$.
Take $q=0$ and consider the operator linearized around the nonlinear ground state (soliton).

A curious behaviour of zero resonances in nonlinear problems Holmer-Zworski 2008:

$$
i \partial_{t} u+\frac{1}{2} \partial_{x}^{2} u+q \delta_{0} u+|u|^{2} u=0
$$

where $|q| \ll 1$.
Take $q=0$ and consider the operator linearized around the nonlinear ground state (soliton). Here is its spectrum:

Now consider the case $q>0$. Two of the elements of the kernel split away to $\pm q^{1 / 2}$, and the two threshold resonances dissolve into the continuum (become resonances on the nonphysical sheet).

Now consider the case $q>0$. Two of the elements of the kernel split away to $\pm q^{1 / 2}$, and the two threshold resonances dissolve into the continuum (become resonances on the nonphysical sheet).

Surprisingly for $q<0$, that is in the repulsive case, the threshold resonances become eigenvalues, approximately given by $\pm\left(1-q^{2}\right)$, with eigenfuntions bounded by

$$
|q|^{1 / 2} e^{-|q||x|} \quad \text { very broad }
$$

Surprisingly for $q<0$, that is in the repulsive case, the threshold resonances become eigenvalues, approximately given by $\pm\left(1-q^{2}\right)$, with eigenfuntions bounded by

$$
|q|^{1 / 2} e^{-|q||x|} \quad \text { very broad }
$$

