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Abstract. We consider Keldysh-type operators, P = x1D
2
x1

+a(x)Dx1 +Q(x,Dx′),

x = (x1, x
′) with analytic coefficients, and with Q(x,Dx′) second order, principally

real and elliptic in Dx′ for x near zero. We show that if Pu = f , u ∈ C∞, and f is

analytic in a neighbourhood of 0 then u is analytic in a neighbourhood of 0. This is

a consequence of a microlocal result valid for operators of any order with Lagrangian

radial sets. That result proves a generalized version of a conjecture made in [Zw17],

[LeZw19] and has applications to scattering theory.

1. Introduction

We consider analytic regularity for generalizations of the Keldysh operator [Ke51],

P := x1D
2
x1

+D2
x2
. (1.1)

The operator P has the feature of changing from an elliptic to a hyperbolic operator

at x1 = 0. It appears in various places including the study of transsonic flows – see for

instance Čanić–Keyfitz [CaKe96]. Our interest in such operators comes from the work

of Vasy [Va13] where the transition at x1 = 0 corresponds to the boundary at infinity

for asymptotically hyperbolic manifolds (see [Zw16]), crossing the event horizons of

Schwartzschild black holes (see [DyZw19a, §5.7]) or the cosmological horizon for de

Sitter spaces. The Vasy operator in the asymptotically hyperbolic setting is given by

P (λ) = 4(x1D
2
x1
− (λ+ i)Dx1)−∆h(x1) + iγ(x)

(
2x1Dx1 − λ− in−1

2

)
, (1.2)

where h(x1) is a smooth family of Riemannian metrics in x′, x = (x1, x
′) ∈ Rn and

γ ∈ C∞(Rn). The resonant states at resonant frequencies λ (see [DyZw19a, Chapter

5]) are the smooth solutions of P (λ)u = 0.

For various reasons reviewed in §1.3 it is interesting to ask if in the case of analytic

coefficients the resonant states are real analytic across x1 = 0. That lead to [Zw17,

Conjecture 2] which asked if P (λ)u = f with u smooth and f analytic near x1 = 0

implies that u is analytic near x1 = 0. For γ(x) ≡ 0 and h independent of x1, this was

shown by Lebeau–Zworski [LeZw19] under the assumption that λ /∈ −N∗.
The general case was proved by Zuily [Zu17] under the same restriction on λ. His

proof was an elegant adaptation of the work of Baouendi–Goulaouic [BoGu81], Bolley–

Camus [BoCa73] and Bolley–Camus–Hanouzet [BCH74].
1
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Figure 1. A comparison of the Keldysh operator (1.1) and the Tricomi

operator (1.5). The figures show the cylinder Rx1 × S1
θ where (ξ1, ξ2) =

|ξ|(cos θ, sin θ) (this is the boundary of the fiber compactified cotangent

bundle T
∗Rn – see [DyZw19a, §E.1.3] – with the x2 variable omitted).

The characteristic varieties, x1 cos2 θ+ sin2 θ = 0 and cos2 θ+x1 sin2 θ =

0, respectively, are shown with the direction of the Hamiltonian flow

indicated. In the the Keldysh case, the two radial Lagrangians, Λ±,

correspond to θ = π and θ = 0 respectively.

In this paper we prove this result for generalized Keldysh operators with analytic

coefficients (1.3). In particular, we do not make any assumptions on lower order terms:

Theorem 1. Suppose that U ⊂ Rn is a neighbourhood of 0,

P := x1D
2
x1

+ a(x)Dx1 +Q(x,Dx′), x = (x1, x
′) ∈ U, (1.3)

has analytic coefficients, Q(x,Dx′) is a second order elliptic operator in Dx′ with a real

valued principal symbol. Then there exists U ′ ⊂ U , U ∩ {x1 = 0} ⊂ U ′, such that

Pu ∈ Cω(U), u ∈ C∞(U) =⇒ u ∈ Cω(U ′). (1.4)

We will show in §1.1 that this result follows from a more general microlocal result

valid for operators of all orders satisfying a natural geometric condition.

Remarks: 1. In the statement of the theorem U ′ can be replaced by U provided

we include a bicharacteristic convexity condition. That follows from propagation of

analytic singularities – see [Ma02, Theorem 4.3.7] or [HiSj18, Theorem 2.9.1]: since

there are no singularities near x1 = 0 there will be no singularities on trajectories

hitting x1 = 0 – see Figure 1.

2. The result is false for the Tricomi operator

P := D2
x1

+ x1D
2
x2
. (1.5)
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This can be seen using results about propagation of analytic singularities (unlike (1.3)

this operator can be microlocally conjugated to Dy1 – see Figure 1) but is also easily

demonstrated by the following example:

u(x) :=

∫ ∞
0

Ai(τ 4/3x1)eiτ
2x2e−τdτ, Pu = 0, u ∈ C∞(R2). (1.6)

Here, Ai is the Airy function which satisfies

Ai′′(t) + tAi(t) = 0, |∂`tAi(t)| ≤ C`〈t〉
`
2
− 1

4 , t ∈ R, ` ∈ N, Ai(0) > 0.

We then have

Dk
x2
u(0) = Ai(0)

∫ ∞
0

τ 2ke−τdτ = Ai(0)(2k)!

and u is not analytic at 0.

3. Results similar to (1.4) have been obtained in the setting of other operators. In ad-

dition to the works [BoCa73],[BCH74] cited above, we mention the work of Baouendi–

Sjöstrand [BaSj76] who considered a class of Fuchsian operators generalizing

P = |x|2∆ + µ〈x,Dx〉+ λ (1.7)

In the case of (1.7), (1.4) holds for any λ, µ ∈ C and [BaSj76] established (1.4) for

more general operators satisfying appropriate conditions.

4. The operators (1.3), (1.5) and (1.7) are not C∞ hypoelliptic, that is, Pu ∈ C∞ 6⇒
u ∈ C∞. The study of operators which are C∞ hypoelliptic but not analytic hy-

poelliptic has a long tradition with a simple example [HöI, §8.6, Example 2] given

by

P = D2
x1

+ x2
1D

2
x2

+D3
x3
.

For more complicated cases, references, and connections to several complex vari-

ables, see Christ [Ch96] and for some recent progress and additional references, Bove–

Mughetti [BoMu17].

1.1. A microlocal result. We make the following general assumptions. Let P be a

differential operator of order m with analytic coefficients:

P :=
∑
|α|≤m

aα(x)Dα
x , aα ∈ Cω(U), p(x, ξ) :=

∑
|α|=m

aα(x)ξα, (1.8)

where U is an open neighbourhood of x0 ∈ Rn. We make the following assumptions

valid in a conic neighbourhood of (x0, ξ0) ∈ T ∗Rn \ 0: p is real valued and there exists

a conic Lagrangian submanifold Λ, such that

(x0, ξ0) ∈ Λ ⊂ p−1(0), dp|Λ 6= 0, Hp|Λ ‖ ξ · ∂ξ|Λ. (1.9)

Here ‖ means that the two vector fields are positively proportional, that is the La-

grangian is radial (the positivity assumptions can be achieved by multiplying P by
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±1). Except for the analyticity assumption in (1.8) these are the assumptions made

in Haber [Ha14] and Haber–Vasy [HaVa15].

Theorem 1 follows from the following microlocal result. We denote by WF the C∞-

wave front set and by WFa the analytic wave front set – see [HöI, §8.1] and [HöI,

§8.5,9.3], respectively.

Theorem 2. Suppose that P and (x0, ξ0) ∈ T ∗Rn \0 satisfy the assumptions (1.8) and

(1.9). Then for u ∈ D ′(Rn),

(x0, ξ0) /∈WF(u), (x0, ξ0) /∈WFa(Pu) =⇒ (x0, ξ0) /∈WFa(u). (1.10)

The proof is based on the theory of microlocal symbolic weights developed by

Galkowski–Zworski [GaZw19b] and based on the work of Sjöstrand – see [Sj96, §2]

(and also [HeSj86] and [Ma02, §3.5]). With this theory in place we can use escape

functions, G, HpG ≥ 0, which are logarithmically bounded in ξ (hence the C∞ wave

front set assumption on u allows the use of such weights) and which tend to 〈ξ〉 in

a neighbourhood of (x0, ξ0). The normal form for p constructed in [Ha14] (follow-

ing much earlier work of Guillemin–Schaeffer [GuSc77] which was based in turn on

Sternberg’s linearization theorem [St57]) was helpful in the construction of the specific

weights needed here. We indicate the method of the proof in §1.2.

Proof of Theorem 1. Under the assumptions of Theorem 1 the characteristic set of P

over x1 = 0 is given by (in T ∗Rn \ 0)

p−1(0) ∩ {x1 = 0} = {(0, x2, ξ1, 0) : ξ1 ∈ R \ 0;x2 ∈ neighRn−1(0)} = Λ+ t Λ−,

where ±ξ1 > 0 on Λ±. These two components are Lagrangian and conic and Hp|Λ± =

−ξ2
1∂ξ1|Λ± is radial. Since Pu ∈ Cω(U) we have WFa(Pu) ∩ {x ∈ U : x1 = 0} = ∅ and

hence Theorem 2 shows that WFa(u) ∩ Λ± = ∅. On the other hand, ([HöI, Theorem

8.6.1]), WFa(u) ∩ {x1 = 0} ⊂ p−1(0) ∩ {x1 = 0} = Λ+ t Λ−. Hence WFa(u) ∩ {x1 =

0} = ∅ and, since singsuppa u = πWFa(u), u is analytic near x1 = 0. �

1.2. A proof in a special case. To indicate the ideas behind the proof we consider

P given by

P = x1D
2
x1

+D2
x2

+ aDx1 , a ∈ C,

and a very special u:

u = eiτx2v(x1), v ∈ S (R), Pu = eiτx2f(x1), e|ξ1|f̂ ∈ L2(R). (1.11)

This assumption is a stronger version of the assumption that f is analytic. We consider

a family of smooth functions Gε(ξ1) satisfying

0 ≤ Gε(ξ1) ≤ min(1
ε

log(1 + |ξ1|), |ξ1|) (1.12)
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In view of (1.11),

‖vε‖L2(R) ≤ Cε, ‖fε‖L2(R) ≤ C0 vε := eGε(Dx)v, fε := eGε(Dx)f.

where C0 is independent of ε. We then consider

Pε := eGε(Dx)(x1D
2
x1

+ aDx1 + τ 2)e−Gε(Dx) = x1D
2
x1

+ iG′ε(Dx1)D2
x1

+ aDx1 + τ 2.

We have Pεvε = fε, and

Im〈Pεvε, vε〉L2(R) = 〈G′ε(Dx1)D2
x1
vε, vε〉L2(R) + 〈(Im a+ 1)Dx1vε, vε〉L2(R)

= 〈(ξ2
1G
′
ε(ξ1) + (Im a+ 1)ξ1)v̂ε, v̂ε〉L2(Rξ1 ),

where we took dξ1/(2π) as the measure on L2(Rξ1). Let χ ∈ C∞(R; [0, 1]) satisfy

χ|t≤1 = 1, χ|t≥2 = 0 and χ′ ≤ 0. We define

Gε(ξ1) = (1− χ(ξ1))

∫ ξ1

0

(χ(εt) + (1− χ(εt))(εt)−1)dt,

which satisfies (1.12) and G′ε ≥ 0. Moreover, for ξ1 ≥M ≥ 2 and ε < 1/M ,

ξ2
1G
′
ε(ξ1) ≥ ξ2

1χ(εξ1) + ε−1ξ1(1− χ(εξ1)) ≥Mξ1.

Hence, by taking M = max(− Im a+ 1, 2), and ε < 1/M ,

‖fε‖‖v̂ε‖ ≥ Im〈Pεvε, vε〉 = 〈(ξ2
1G
′
ε(ξ1) + (Im a+ 1)ξ1)v̂ε, v̂ε〉

≥ ‖v̂ε‖2 − ‖(1 + |ξ1|(| Im a|+ 1))v̂ε|ξ1≤M‖‖v̂ε‖ ≥ ‖v̂ε‖2 − C1‖v̂ε‖,

where C1 := (| Im a|+ 1)eM‖v‖H1 is independent of ε. This implies that

‖v̂ε‖ ≤ ‖fε‖+ C1 ≤ C0 + C1.

Letting ε → 0 gives ‖eξ1 v̂|ξ1≥0‖ ≤ C. A similar argument applies to ξ1 ≤ 0 which

shows that

e|ξ1|v̂ ∈ L2,

and consequently that u(x) = eix2τv(x1) is analytic.

In the actual proof, the Fourier transform is replaced by the FBI transform (2.1) and

its deformation (2.5) defined using a suitably chosen Gε satisfying (1.12) (see Lemma

3.1 which is the heart of the argument). One difficulty not present in the simple one

dimensional case is the localization in other variables. It is here that the C∞ normal

forms of [St57],[GuSc77] and [Ha14] are particularly useful. It is essential that no

analyticity is needed in the construction of Gε.
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1.3. Applications to scattering theory. As already indicated in [Zu17] analyticity

of smooth solution to the Vasy operator (1.2) implies analyticity of resonant states and

of their radiation patterns. We review this here and, in Theorem 3, present a slightly

stronger result.

For a detailed presentation of scattering on asymptotically hyperbolic manifolds

we refer to [DyZw19a, Chapter 5]. To state Theorem 3, let M be a compact n + 1

dimensional manifold with boundary ∂M 6= ∅ and let M := M \ ∂M . We assume

that M is a real analytic manifold near ∂M . A metric g on M is called asymptotically

hyperbolic and analytic near infinity if there exist functions y′ ∈ C∞(M ; ∂M) and

y1 ∈ C∞(M ; (0, 2)), y1|∂M = 0, dy1|∂M 6= 0, such that

M ⊃ y−1
1 ([0, 1)) 3 m 7→ (y1(m), y′(m)) ∈ [0, 1)× ∂M (1.13)

is a real analytic diffeomorphism, and near ∂M the metric has the form,

g|y1≤ε =
dy2

1 + h(y1)

y2
1

, (1.14)

where [0, 1) 3 t 7→ h(t), is an analytic family of real analytic Riemannian metrics on

∂M .

Let

Rg(λ) = (−∆g − λ2 − (n/2)2)−1 : L2(M,d volg)→ H2(M,d volg), Imλ > 0.

Mazzeo–Melrose [MM87] and Guillarmou [Gu05] proved that

Rg(λ) : C∞c (M)→ C∞(M), (1.15)

continues to a meromorphic family of operators for λ ∈ C \ i(−1
2
−N). In addition,

Guillarmou [Gu05] showed that if the metric is even, that is,

g|y1≤ε =
dy2

1 + h(y2
1)

y2
1

, (1.16)

(see [DyZw19a, Theorem 5.6] for an invariant formulation), then Rg(λ) is meromorphic

in C. In particular, for λ 6= 0 we have the following Laurent expansion

Rg(ζ) =

J(λ)∑
j=1

(−∆g − λ2 − (n/2)2)j−1Π(λ)

(ζ2 − λ2)j
+ A(ζ, λ), Π(λ) :=

1

2πi

∮
λ

Rg(ζ)2ζdζ,

where ζ 7→ A(ζ, λ) is holomorphic near λ. For λ = 0 we have a Laurent expansions in

powers of ζ−j.

The operator Π(λ) has finite rank and its range consists of generalized resonant

states. We then have
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Theorem 3. Suppose that (M, g) is an even asymptotically hyperbolic manifold (in

the sense of (1.16)) analytic near conformal infinity ∂M . Then for λ ∈ C \ 0,

u ∈ Π(λ)C∞c (M) =⇒ u = y
−iλ+n

2
1 F, F |∂M ∈ Cω(∂M). (1.17)

Moreover, in coordinates of (1.16), F (y) = f(y2
1, y
′), y′ ∈ ∂M where f ∈ Cω((−δ, δ)×

∂M).

Proof. The metric (1.14) (in the coordinates valid near the boundary) gives the fol-

lowing Laplace operator:

−∆g = (y1Dy1)2 + i(n+ y1γ0(y2
1, y
′))y1Dy1 − y2

1∆h(y1),

γ0(t, y′) := −1
2
∂th̄(t)/h̄(t), h̄(t) := deth(t), D := 1

i
∂.

(1.18)

Following Vasy [Va13] we change the variables to x1 = y2
1, x′ = y′ so that

y
iλ−n

2
1 (−∆g − λ2 − (n

2
)2)y

−iλ+n
2

1 = x1P (λ), (1.19)

where, near ∂M , P (λ) is given by (1.2). This operator is considered on X :=

((−δ, 0]x1 × ∂M) t M . The key fact is that P (λ) is a Fredholm family operators

on suitable spaces, P (λ)−1 is meromorphic and its poles can be studied using mi-

crolocal methods – see [Va13], [DyZw19a, Chapter 5] and also [Zw16, §2] for a short

self-contained presentation.

From meromorphy of P (λ)−1 we obtain meromorphy of (1.15) using (1.19):

Rg(λ)f := y
n
2
−iλ

1

(
P (λ)−1y

iλ−n+2
2

1 f
)∣∣
M
∈ C∞(M). (1.20)

Here we make y
iλ−n+2

2
1 f into an element of C∞c (X) by extending it by zero outside of

M . Near any λ, P (ζ)−1 =
∑K(λ)

k=1 Qj(λ)(ζ − λ)−j + Q0(ζ, λ), with Qj(λ) operators of

finite rank and ζ 7→ Q0(ζ, λ) is analytic near λ. We then have

Π(λ) = 1
2λ
y
n
2
−iλ

1 Q1(λ)y
iλ−n+2

2
1 .

Hence, the claim about the range of Π(λ) follows from analyticity of functions in the

range of Q1(λ). This follows from Theorem 1. In fact, P (ζ) = P (λ) + (ζ − λ)V ,

V := −4Dx1 + iγ(x), and hence

P (λ)Qk(λ) = −V Qk+1(λ), QK+1(λ) := 0.

Since we already know that the ranges of Qk’s are in C∞ (see [DyZw19a, (5.6.10)]) we

inductively conclude that the ranges are in Cω. �

Remark. Vasy’s adaptation of Melrose’s radial estimates [Me94] shows that to con-

clude that u ∈ C∞ when P (λ)u ∈ C∞ (see (1.2)), we only need to assume that

u ∈ Hs+1 near m0, where s+ 1
2
> − Imλ, see [Zw16, §4, Remark 3].
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2. Preliminaries on FBI transforms and their deformations

We will use the FBI transform defined in [GaZw19b] in its Rn (rather than Tn)

version. Since the weights we use will be compactly supported in x the same theory

applies. The constructions there are inspired by the works of Boutet de Monvel–

Sjöstrand [BoSj76], Boutet de Monvel–Guillemin [BoGu81], Helffer–Sjöstrand [HeSj86]

and Sjöstrand [Sj96]. An alternative approach to using the classes of weights we need

here was developed independently and in greater generality by Guedes Bonthonneau–

Jézéquel [GuJe20].

2.1. Deformed FBI transforms. We define

Tu(x, ξ) := h−
3n
4

∫
Rn
e
i
h

(〈x−y,ξ〉+ i
2
〈ξ〉(x−y)2)〈ξ〉

n
4 u(y)dy, u ∈ C∞c (Rn), (2.1)

recalling that the left inverse of T is given by

Sv(y) =
2
n
2 h−

3n
4

(2π)
3n
2

∫
R2n

e−
i
h

(〈x−y,ξ〉− i
2
〈ξ〉(x−y)2)〈ξ〉

n
4 (1 + i

2
〈x− y, ξ/〈ξ〉〉)v(x, ξ)dxdξ, (2.2)

see [GaZw19b, Proposition 2.2].

The first fact we need is the characterization of Sobolev spaces and of the C∞ wave

front set using the FBI transform (2.1). To formulate it we use semiclassical Sobolev

spaces Hs
h (see for instance [Zw12, §7.1] or [DyZw19a, Definition E.18]) but we should

in general think of h as being fixed.

Proposition 2.1. There exists a constant C such that for u ∈ S ′(Rn),

‖u‖Hs
h
≤ C‖〈ξ〉sTu‖L2(T ∗Rn) ≤ C2‖u‖Hs

h
. (2.3)

Moreover,

(x0, ξ0) /∈WF(u) ⇔
{
∃χ ∈ S0(T ∗Rn), χ ≡ 1 in a conic neighbourhood of (x0, ξ0),

∀N ∃CN ‖〈ξ〉NχTu‖L2(T ∗Rn) ≤ CN .

Proof. This follows from the characterization of the Hs based wave front sets in Gérard

[Gé90] as stated in [De, Theorem 1.2]. Since the arguments are similar to the more

involved analytic case presented in Proposition 2.3 we omit the details. �

As in [Sj96, §2] and [GaZw19b, §3] we introduce a geometric deformation of R2n,

Λ = ΛG:

Λ := {(x− iGξ(x, ξ), ξ + iGx(x, ξ)) | (x, ξ) ∈ R2n} ⊂ C2n,

suppG ⊂ K × Rn, K b Rn,

sup
|α|+|β|≤2

〈ξ〉−1+|β||∂αx∂
β
ξG(x, ξ)| ≤ ε0, |∂αx∂

β
ξG(x, ξ)| ≤ Cαβ〈ξ〉1−|β|,

(2.4)
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where ε0 is small and fixed (so that the constructions below remain valid as in [GaZw19b]).

For convenience, we change here the convention from [GaZw19b]: it amounts to to re-

placing G by −G everywhere.

This provides us with the following new objects: the deformed FBI transform (see

[GaZw19b, §4]),

TΛu(x, ξ) := Tu(x− iGξ(x, ξ), ξ + iGx(x, ξ)), u ∈ Bδ,

Bδ := {u ∈ S (Rn) :

∫
Rn
|Û(ξ)|2e4δ|ξ|dξ <∞},

(2.5)

the the spaces Hs
Λ, defined as in [GaZw19b, §4],

Hs
Λ := Bδ0

‖•‖Hs
Λ , ‖u‖2

Hs
Λ

:=

∫
Λ

〈Reαξ〉2s|TΛu(α)|2e−2H(α)/hdα, (2.6)

and the orthogonal projector

ΠΛ : LΛ := L2(Λ, e−2H(α)/hdα)→ TΛHΛ, HΛ := H0
Λ,

described asymptotically (as h → 0 and as ξ → ∞) in [GaZw19b, §5]. The weight H

appears naturally in this subject and is given by [GaZw19b, (3.3),(3.4)] i.e. H(x, ξ) =

ξ · Gξ(x, ξ) − G(x, ξ). The deformed FBI transform TΛ has an exact left inverse SΛ

obtained by deforming S in (2.2).

We now prove a slightly modified version of [GaZw19b, Proposition 6.2]:

Proposition 2.2. Suppose that P =
∑
|α|≤m aαD

α is a differential operator with aα ∈
C∞c (Rn) satisfying,

aα ∈ Cω(U), K b U,

for an open set U and K as in (2.4). Then

ΠΛTΛh
mPSΛ = ΠΛbPΠΛ +O(h∞)H−NΛ →HN

Λ
,

where

bP (x, ξ) ∼
∞∑
j=0

hjbj(x, ξ), bj ∈ Sm−j(R2n),

b0 = p|Λ := p(x− iGξ(x, ξ), ξ + iGx(x, ξ)).

(2.7)

We remark that the expansion remains valid when h is fixed. We can use smallness

of h to dominate the lower order terms and then keep it fixed.

Proof. The result follows from the analogue of [GaZw19b, Lemma 6.1] where the oper-

ator TΛh
mPSΛ is described in the case where the coefficients of P are globally analytic.

Here we point out that the analyticity of the coefficients is only needed in the neigh-

bourhood U of K b Rn such that in (2.4) suppG ⊂ K × Rn and ε0 is small enough

depending on the size of the complex neighbourhood to which the coefficients extend

holomorphically.
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In fact, arguing as in the proof of [GaZw19b, Proposition 6.2] all we need is that for

a ∈ C∞c (Rn) and a ∈ Cω(U), the Schwartz kernel of TΛMaSΛ, Maf(x) := a(x)f(x), is

given by

Ka(α, β) = c0h
−ne

i
h

Ψ(α,β)A(α, β) + r(α, β), α, β ∈ Λ = ΛG,

r(α, β) is the kernel of an operator R = O(h∞) : H−NΛ → HN
Λ .

(2.8)

The phase in (2.8) is given by

Ψ(α, β) =
i

2

(αξ − βξ)2

〈αξ〉+ 〈βξ〉
+
i

2

〈βξ〉〈αξ〉(αx − βx)2

〈αξ〉+ 〈βξ〉
+
〈βξ〉αξ + 〈αξ〉βξ
〈αξ〉+ 〈βξ〉

· (αx − βx), (2.9)

and the amplitude satisfies

A ∼
∞∑
j=0

hj〈αξ〉−jAj, A0(α, α) = a|Λ(α),

and Aj are supported in a small conic neighbourhood of the diagonal in Λ × Λ. We

note that if ε0 is small enough, a extends to some neighbourhood of K in Cn and hence

a|Λ = a(x− iGξ(x, ξ)) is well defined.

To see (2.8) we use the definitions of TΛ and SΛ to write

Ka(α, β) = cn〈βξ〉
n
4 〈αξ〉

n
4 h−

3n
2

∫
e
i
h

(ϕG(α,y)+ϕ∗G(β,y))a(y) (1 + 〈βx − y, βξ/〈βξ〉) dy,
(2.10)

where

ϕG(α, y) = Φ(z, ζ, y)|z=αx,ζ=αξ , ϕ∗G(α, y) = −Φ̄(z, ζ, y)|z=αx,ζ=αξ ,
αx = x− iGξ(x, ξ), αξ = ξ + iGx(x, ξ),

Φ(z, ζ, y) = 〈z − y, ζ〉+ i
2
〈ζ〉(z − y)2, Φ̄(z, ζ, y) := Φ(z̄, ζ̄, y).

(2.11)

Let V, V1 open such that K ⊂ V1 b V b U . We start by showing that the contribu-

tion to Ka away from the diagonal is negligible. For that let χ ∈ C∞c (R) with χ ≡ 1

near 0. Then for all δ > 0 small enough, the operator R1 with kernel

R1(α, β) = Ka(α, β)χ̃δ(α, β),

χ̃δ(α, β) := (1− χ(δ−1|αx − βx|))
(

1− χ
( |αξ − βξ|
δ〈|αξ − βξ|〉

))
satisfies R1 = OH−NΛ →HN

Λ
(h∞). This amounts to showing that the operator with kernel

R1(α, β)e
1
h

(H(β)−H(α))〈αξ〉N〈βξ〉N is bounded on L2(R2n) with O(h∞) norm.

To see this, we first integrate by parts K times in y, using that

|∂yΨ| = |βξ − αξ + i(〈αξ〉(y − αx) + 〈βξ〉(y − βx))| ≥ c(1 + |αξ|+ |βξ|)

on supp χ̃δ. This reduces the analysis to the case of (2.10) with a is replaced by

b(·, α, β) ∈ Cω(U) ∩ C∞c (Rn) with |b| ≤ hK(〈|αξ|〉+ 〈|βξ|〉)−K .
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Next, we choose ψ ∈ C∞c (Rn; [0, 1]) with ψ ≡ 1 on V and suppψ ⊂ U , and ψ1 ∈
C∞c (Rn; [0, 1]) with ψ1 ≡ 1 on V1 and suppψ1 ⊂ V . We then deform the contour

y 7→ y + iεψ(y)
βξ − αξ
〈|βξ − αξ|〉

.

This contour deformation is justified since a ∈ Cω(U). The phase in the integrand

of (2.10) becomes

Ψ =〈αx − y, αξ〉+ 〈y − βx, βξ〉+
i〈αξ〉

2
(αx − y)2 +

i〈βξ〉
2

(βx − y)2

+ iεψ(y)
|βξ − αξ|2

〈|βξ − αξ|〉
+
i〈αξ〉

2

[
2εψ(y)〈αx − y,

αξ − βξ
〈|βξ − αξ|〉

〉 − ε2ψ2(y)
|βξ − αξ|2

〈|βξ − αξ|〉2
]

i〈βξ〉
2

[
2εψ(y)〈βx − y,

αξ − βξ
〈|βξ − αξ|〉

〉 − ε2ψ2(y)
|βξ − αξ|2

〈|βξ − αξ|〉2
]

In particular, for y ∈ V , and (α, β) ∈ supp χ̃δ, the integrand is bounded by

e−c(〈αξ〉+〈βξ〉)〈αx−βx〉/h

which is negligible (even after multiplication by e
1
h

(H(β)−H(α))〈αξ〉N〈βξ〉N).

For the integral over y /∈ V , we consider three cases. First, if both Reαx ∈ K and

Re βx ∈ K, then it is easy to see that the integrand is bounded by

e−c(〈αξ〉+〈βξ〉)(〈αx−βx〉+|y|)/h

and hence produces a negligible contribution. Next, if Reαx /∈ K and Re βx /∈ K,

then H(α) = H(β) = 0, α, β are real, and integration by parts in y shows that the

contribution is negligible.

Finally, we consider the case Reαx ∈ K, Re βx /∈ K, (the case Re βx ∈ K and

Reαx /∈ K being similar). In this case, we have H(β) = 0 and β real. Since y /∈ V , we

have that the integrand is bounded by e−c〈αξ〉〈αx−y〉/hhK〈βξ〉−K and hence this term is

also negligible.

Since R is negligible, we may assume from now on that

|αx − βx| � 1 and |αξ − βξ| � 〈|αξ|〉+ 〈|βξ|〉.

In particular, there are three cases: Reαx ∈ K and Re βx ∈ V1, Re βx ∈ K and

Reαx ∈ V1, or Reαx /∈ K and Re βx /∈ K.

The first two cases are similar, so we consider only one of them. Since Reαx ∈ K
and Re βx ∈ V1, the contribution from y /∈ V is negligible. Therefore, we may deform

the contour to

y 7→ y + ψ(y)yc(α, β), yc(α, β) =
i(βξ − αξ) + 〈αξ〉αx + 〈βξ〉βx

〈αξ〉+ 〈βξ〉
.

The proof in this case then follows from the method of complex stationary phase.
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When, both Reαx /∈ K and Re βx /∈ K, α = Reα, β = Re β, and H(α) = H(β) = 0.

In order to handle this situation, we will Taylor expand a(y) around y = αx. For that

we first consider (2.10) with a = O(|y − αx|2N). In that case, we consider the integral

KN(α, β) := h−
3n
2

∫
e
i
h

(〈αx−y,αξ〉+ i
2

(〈αξ〉(αx−y)2+〈βξ〉(βx−y)2))

O(|y − αx|2N)〈αξ〉
n
4 〈βξ〉

n
4 (1− χ̃δ(α, β))dy.

(2.12)

Changing variables y 7→ y + αx,

|KN(α, β)| ≤
∫
〈αξ〉

n
4 〈βξ〉

n
4
hN−

3n
2

〈αξ〉N
e−
〈βξ〉
2h

(βx−αx−y)2

(1− χ̃δ)dy

≤ C
hN−n

(〈αξ〉+ 〈βξ〉)N
e−c

〈αξ〉+〈βξ〉
h

(αx−βx)2

(1− χ̃δ(α, β)).

Therefore, using the Schur test for boundedness, the operator KN with kernel KN(α, β)

satisfies

KN = O(hN−
n
2 ) : H

−N+n
4

+0

Λ → H
N−n

4
−0

Λ

Now, observe that for any N > 0,

a(y) = aN(y) +O(|y − αx|2N)

where aN(y) is a polynomial of order 2N − 1 in (y − αx). In particular,

Ka(α, β) = KaN (α, β) +KN(α, β)

Since aN is analytic and the integrand is exponentially decaying in y, we may deform

the contour with y 7→ y+ yc(α, β) in the integral forming the kernel of KaN and apply

complex stationary phase as in the case where Reαx ∈ K or Re βx ∈ K. This finishes

the proof of the proposition after taking N large enough. �

2.2. Analytic wave front set. We now relate weighted estimates to analyticity.

Proposition 2.3. Let T be the FBI transform defined in (2.1) for some fixed h, and

let ψ ∈ S1(T ∗Rn) satisfy

|ψ(x, ξ)| ≥ |ξ|/C, (x, ξ) ∈ U × Γ, (2.13)

where U ⊂ Tn and Γ ⊂ Rn \ 0 is an open cone. Then, for u ∈ H−N(Rn),

eψ〈ξ〉−NTu ∈ L2(T ∗Rn) =⇒ WFa(u) ∩ (U × Γ) = ∅. (2.14)

Conversely, suppose u ∈ H−N(Rn), Γ0 ⊂ Rn is a conic open set such that Γ0 ∩ Sn−1 b
Γ ∩ Sn−1, U0 b U . Then for any ψ ∈ S1(Rn × Rn) with suppψ ⊂ U0 × V0,

WFa(u) ∩ (U × Γ) = ∅ =⇒ ∃ θ > 0 〈ξ〉−NeθψTu ∈ L2(T ∗Rn). (2.15)
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Remark: Here we do not consider uniformity in h in the L2 bounds. If we demanded

that, than we would only need ψ ∈ C∞c (T ∗Rn), ψ > 0 on U × (Γ ∩ Sn−1).

The proof is based on the following

Lemma 2.4. Let T and S be given by (2.1) and (2.2), respectively, with h fixed.

Suppose that χ, χ̃ ∈ S0(Rn × Rn) and suppχ, suppχ1 ⊂ K × Rn, K b Rn. Then for

any a > 0 there exists b > 0 such that

χeb〈ξ〉TSχ1e
−a〈ξ〉 = ON(1) : L2(R2n)→ HN(R2n), (2.16)

for any N .

If in addition χ1 ≡ 1 on a a conic neighbourhood of the support of χ, then there

exists b > 0 such that

χeb〈ξ〉TS(1− χ1)〈ξ〉M = ON,M(1) : L2(R2n)→ HN(R2n), (2.17)

for any N .

Proof. We analyse the Schwartz kernel of the operator in (2.16), K(x, ξ, y, η). As in

the proofs of [GaZw19b, Lemma 2.1, Proposition 4.5] (the phase of resulting operator

can be computed by completion of squares and is given by [GaZw19b, (4.10)] with

Λ = T ∗Rn) we see that

|(hD)αx,ξK(x, ξ, y, η)| ≤ Cαe
b〈ξ〉−a〈η〉−ψ(x,ξ,y,η),

ψ := c(〈ξ〉+ 〈η〉)−1
(
|ξ − η|2 + 〈ξ〉〈η〉|x− y|2

)
.

(2.18)

We have

b < 1
8

min(a, c) ⇒ b〈ξ〉 − a〈η〉 − c(〈ξ〉+ 〈η〉)−1|ξ − η|2 ≤ −1
2
(b〈ξ〉+ a〈η〉),

if b is sufficiently small. (By taking b < a/8 we can assume that |η| ≤ |ξ|/2. But

then |ξ − η| ≥ 1
2
|ξ| and 〈ξ〉+ 〈η〉 ≤ 2〈η〉.) This proves (2.16) as we can use the Schur

criterion.

To see (2.17) we note that we can now assume that |ξ/〈ξ〉−η/〈η〉| > δ or |x−y| > δ.

But then if the kernel of the operator in (2.17) is given by KM(x, ξ, y, η) where

|(hDx,ξ)
αKN(x, ξ, y, η)| ≤ Cα,Ne

b〈ξ〉−M log〈η〉−ψ(x,ξ,y,η).

Now, fix 0 < δ < 1 small. Then, when |ξ/〈ξ〉 − η/〈η〉| > δ or |x− y| > δ,

|ξ − η|2 + 〈ξ〉〈η〉|x− y|2 ≥ δ2

16
(〈ξ〉+ 〈η〉)2. (2.19)

To see this, observe that on ∣∣∣〈ξ〉 − 〈η〉〈ξ〉+ 〈η〉

∣∣∣ ≥ δ

4
,
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we have
δ

4
≤
∣∣∣ 〈ξ〉2 − 〈η〉2
(〈ξ〉+ 〈η〉)2

∣∣∣ ≤ |ξ − η|
〈ξ〉+ 〈η〉

.

On the other hand, when ∣∣∣〈ξ〉 − 〈η〉〈ξ〉+ 〈η〉

∣∣∣ ≤ δ

4
,

we have
2〈ξ〉〈η〉
〈ξ〉+ 〈η〉

=
〈ξ〉+ 〈η〉

2

(
1−

[〈η〉 − 〈ξ〉
〈ξ〉+ 〈η〉

]2)
≥ 1

4
(〈ξ〉+ 〈η〉)

Therefore, if |x− y| ≥ δ, (2.19) follows. If instead, |ξ/〈ξ〉 − η/〈η〉| ≥ δ, then

|ξ − η|
〈ξ〉+ 〈η〉

≥ 1

2

[∣∣∣ ξ〈ξ〉 − η

〈η〉

∣∣∣− ( |ξ|〈ξ〉 +
|η|
〈η〉

)∣∣∣〈ξ〉 − 〈η〉〈ξ〉+ 〈η〉

∣∣∣] ≥ δ

4

and (2.19) follows.

From (2.19), we have that there is CM,δ > 0 such that if |ξ/〈ξ〉 − η/〈η〉| > δ or

|x− y| > δ,

b〈ξ〉−c(〈ξ〉+ 〈η〉)−1
(
|ξ − η|2 + 〈ξ〉〈η〉|x− y|2

)
+M log〈η〉

≤ b〈ξ〉 − 1
64
cδ2(〈ξ〉+ 〈η〉)− 1

2
c(〈ξ〉+ 〈η〉)−1

(
|ξ − η|2 + 〈ξ〉〈η〉|x− y|2

)
+ CM,δ,

and the Schur criterion and gives (2.17) for b ≤ cδ2

64
. �

Proof of Proposition 2.3. We start by recalling the characterization of the analytic

wave front set using the standard FBI/Bargmann–Segal transform:

T u(x, ξ;h) := cnh
− 3n

4

∫
Rn
e
i
h

(〈x−y,ξ〉+ i
2

(x−y)2)u(y)dy, u ∈ S ′(Rn).

Then

(x0, ξ0) /∈WFa(u) ⇐⇒
{
∃ δ, U = neigh((x0, ξ0))

|T u(x, ξ, h)| ≤ Ce−δ/h, (x, ξ) ∈ U, 0 < h < h0.
(2.20)

see [HöI, Theorem 9.6.3] for a textbook presentation; note the somewhat different

convention: T u(x, ξ;h) = e−
1

2h
ξ2
T1/hu(x− iξ).

We first prove (2.14). Hence suppose that (x0, ξ0) ∈ U×Γ. Let χ ∈ S0 be supported

in a small conic neighbourhood, U0 × Γ0, of (x0, ξ0) and choose χ1 ∈ S0 which is

supported in U×Γ and is equal to 1 on a conic neighbourhood of the support of χ and

χ2 ∈ S0 supported in U × Γ and equal to 1 on a conic neighborhood of the support of

χ1. Our assumptions then show that ea〈ξ〉/hχ2Tu ∈ L2(R2n) for some a > 0. We now

write

χeb〈ξ〉Tu = χeb〈ξ〉TS
(
χ1e

−a〈ξ〉ea〈ξ〉χ2Tu+ (1− χ1)〈ξ〉N〈ξ〉−NTu
)
.
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Since u ∈ H−N , 〈ξ〉−NTu ∈ L2(R2n) and (2.16), (2.17), now show that eb〈ξ〉χTu ∈ HK

for some b > 0 and any K. By taking K > n and applying [HöI, Corollary 7.9.4] we

obtain a uniform bound

|Tu(x, ξ)| ≤ Ce−b〈ξ〉, (x, ξ) ∈ U0 × Γ0, (x0, ξ0) ∈ U0 × Γ0.

Let h1 be the fixed h in the definition of T . Then,

T (x, ξ/〈ξ〉;h1/〈ξ〉) = Tu(x, ξ) = O(e−b〈ξ〉), (x, ξ) ∈ U0 × Γ0. (2.21)

Putting ω0 := ξ0/〈ξ0〉, it follows that T (x, ω, h) = O(e−δ/h) for (x, ω) in a small

neighbourhood of (x0, ω0). But then (2.20) shows that (x0, ω0) /∈ WFa(u). Since

WFa(u) is a closed conic set, we conclude that (x0, ξ0) /∈WFa(u).

Now suppose that WFa(u)∩(U×Γ) = ∅. Then for (x, ω) near U0×(Γ0∩Sn−1) (with

U0 and Γ0, as in the statement of the theorem), T (x, ω, h) = O(e−δ/h). Reversing the

argument in (2.21) we see that

|Tu(x, ξ)| ≤ Ce−b〈ξ〉, (x, ξ) ∈ U0 × Γ0.

Now, since u ∈ H−N(Rn), 〈ξ〉−NTu ∈ L2(R2n). In particular, since |ψ| ≤ C〈ξ〉 and

the support of ψ is contained in U0 × Γ0, (2.15) follows. �

The next proposition relates weighted estimates to deformed FBI transform:

Proposition 2.5. Suppose that HΛ, Λ = ΛG, is defined in [GaZw19b, (4.7)] with G

satisfying (2.4) with ε0 chosen as in the definition of HΛ.

Then there exists ψ ∈ S1(T ∗Rn) such that T : Bδ → L2(T ∗Rn, eδ〈ξ〉/Chdxdξ) extends

to

T = O(1) : HΛ → L2(T ∗Rn, e2ψ(x,ξ)/hdxdξ), (2.22)

and S : L2(T ∗Rn, e−Cδ〈ξ〉/hdxdξ)→ Bδ, extends to

S = O(1) : L2(T ∗Rn, e2ψ(x,ξ)/hdxdξ)→ HΛ. (2.23)

In addition,

ψ(x, ξ) = G(x, ξ) +O(ε20)S1(T ∗Rn). (2.24)

For a simpler version of this result in the case of compactly supported weights see

[GaZw19a, §8].

Proof. The statement (2.22) is equivalent to

TSΛ = O(1) : L2(Λ, e−2H(α)/hdα)→ L2(T ∗Rn, e2ψ(β)dβ)

and hence we analyse the kernel of the operator TSΛ which is given by

K(α, β) = cnh
− 3n

2

∫
Rn
e
i
h

(ϕ0(α,y)+ϕ∗G(β,y))〈βξ〉
n
4 〈αx〉

n
4 (1 + i

2
〈αx − y〉)dy,



16 JEFFREY GALKOWSKI AND MACIEJ ZWORSKI

where the notation (and also notation for Φ below) comes from (2.11). The integral

in y converges and can be evaluated by a completion of squares as in [GaZw19b,

Proposition 4.4]. That gives the phase (2.9) with α ∈ T ∗Rn and β ∈ Λ. The critical

point in y is given by

yc(α, β) =
1

〈αξ〉+ 〈βξ〉
(〈αξ〉αx + 〈βξ〉βx + i(βξ − αξ)) . (2.25)

We then have (2.22) with

ψ(α) := max
β∈Λ

(− Im Ψ(α, β) +H(β)) . (2.26)

We have (see [GaZw19b, (3.3),(3.4)])

dβ(− Im Ψ(α, β) +H(β)) = Im(−∂z,ζΨ(α, (z, ζ))− ζdz|Λ)|(z,ζ)=β∈Λ.

Now, if yc(α, (z, ζ)) is the critical point in y, then

∂z,ζΨ(α, z) = ∂z,ζ(Φ(α, yc(α, (z, ζ)))− Φ̄((z, ζ), yc(α, (z, ζ)))) = −∂z,ζΦ̄
∣∣
y=yc(z,ζ)

(z, ζ)

= −ζ · dz + (yc − z) · dζ + i〈ζ〉(z − yc) · dz + i
2
(z − yc)2ζ · dζ/〈ζ〉.

For G = 0 the critical point (see (2.25)) is given by α = β. Hence

βc = βc(α) = (αx +O(ε0)S0 , αξ +O(ε0)S1) , (2.27)

with ε0 as in (2.4).

Hence we obtain ψ by inserting the critical point βc into the right hand side of (2.26)

ψ(α) = − Im Ψ(α, βc(α)) +H(βc(α)) ∈ S1(T ∗Rn). (2.28)

(We note that for G = 0 the maximum in (2.26) is non-degenerate and unique and it

remains such under small symbolic perturbations.) From (2.9) we see that

Im Ψ(α, βc(α)) = Im Ψ(α, α +O(ε0)S0×S1) = αξ ·Gξ(α) +O(ε20)S1 .

Inserting this into (2.28) and recalling that H = ξGξ −G we obtain (2.24).

To obtain (2.23) we apply the same analysis to TΛS and we need to show that two

weights coincide. That is done as in [GaZw19a, §8]. �

3. Proof of Theorem 2

As already indicated in §1.2, to prove the theorem we construct a family of weights

Gε ∈ S1, uniformly bounded in S1, supported in a conic neighbourhood of Γ =

{(0, 0, ξ1, 0) : ξ1 > M}, M � 1, and satisfying 0 ≤ Gε ≤ Cε log〈ξ〉. In addition,

HpGε ≥ 0, Gε → ξ1 on Γ (in S1+), (3.1)

with HpGε � ξm−1
1 in a suitable sense (see (3.4)) for ε� 1.



ANALYTIC HYPOELLIPTICITY OF KELDYSH OPERATORS 17

We will then put Λε := ΛGε so that the assumption u ∈ C∞ will give u ∈ HΛε . On

the other hand the assumption that Γ ∩WFa(Pu) shows that ‖Pu‖HΛε
≤ C with the

constant C independent of ε. But then [GaZw19b, Proposition 6.2] and the properties

of Gε show that ‖u‖HΛε
is bounded independently of ε. Propositions 2.3 and 2.5 then

show that WFa(u) ∩ Γ0 = ∅.

3.1. Construction of the weight. We now construct a family of weights, Gε, satis-

fying (3.1). In fact, we need more precise conditions on Gε given in the following

Lemma 3.1. Suppose that p satisfies (1.9) at ρ0 = (x0, ξ0) ∈ T ∗Rn \ 0 and Γ is an

open conic neighbourhood of ρ0. Then, there exists Gε ∈ S1(T ∗Rn), suppGε ⊂ Γ, such

that

|∂αx∂
β
ξGε| ≤ Cαβ〈ξ〉1−|β|, 0 ≤ Gε ≤ Cε−1 log〈ξ〉,

Gε(x, ξ)|1≤|ξ|≤1/ε = Φ(x, ξ)|ξ|, Φ ∈ S0
phg(T ∗Rn), Φ(x0, tξ0) = 1, t� 1,

(3.2)

HpGε(x, ξ) ≥ c0

(
〈ξ〉m|∂ξGε(x, ξ)|2 + 〈ξ〉m−2|∂xGε(x, ξ)|2

)
, (3.3)

∀M1, γ ≥ 0 ∃M2, K, ε0 ∀ 0 < ε < ε0, HpGεe
γGε +M2〈ξ〉K ≥M1〈ξ〉m−1eγGε . (3.4)

We stress that the constants Cαβ and c0 are independent of ε and M1.

Proof. We use the normal form for p constructed in [Ha14, §3]. That means that we

take x0 = 0 and ξ0 = e1 := (1, 0, · · · , 0) and can assume that p(x, ξ) = −ξm1 x1 in a

conic neighbourhood of ρ = (0, e1). For simplicity we can assume that m = 1 as the

argument is the same otherwise.

Let χ ∈ C∞c (R; [0, 1]) satisfy

suppχ ⊂ [−2, 2], χ|t|≤1 = 1, tχ′(t) ≤ 0. (3.5)

and put ϕ(t) := χ(t/δ). Here δ will be fixed depending on Γ. Using this function we

define Φ = Φ(x, ξ) := ϕ1ϕ2ϕ3ψ where

ϕ1 := ϕ(x1), ϕ2 := ϕ(|ξ′|/ξ1) ϕ3 = ϕ(|x′|), ψ := (1− ϕ((ξ1)+)). (3.6)

We choose δ small enough so that supp Φ ⊂ Γ.

We define Gε as follows

Gε(x, ξ) = Φ(x, ξ)qε(ξ1), qε(t) :=

∫ t

0

(
χ(εs) + (1− χ(εs))(sε)−1

)
ds. (3.7)

We check that

ξ1∂ξ1qε ≥ min(ξ1, ε
−1),

ξ1 1lξ1≤1/ε +ε−1(1 + log(εξ1)) 1lξ≥1/ε ≤ qε ≤ ξ1 1lξ1≤1/ε +ε−1(2 + log(εξ1)) 1lξ≥1/ε .
(3.8)
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Uniform boundedness of Gε in S1 means that qε in (3.7) satisfies |∂kξ1qε| ≤ Ckξ
1−k
1

with Ck’s independent of ε. But this is immediate from the definition. We also easily

see that Gε converges to G := Φ(x, ξ)ξ1 in S1+ as ε→ 0. This proves (3.2).

To see (3.3), we first note that, since Φ ≥ 0, Φ ∈ S0, the standard estimate f(z) ≥
0 =⇒ |df(z)|2 ≤ Cf(z) gives,

Φ(x, ξ) ≥ c1

(
ξ2

1 |∂ξΦ(x, ξ)|2 + |∂xΦ(x, ξ)|2
)
. (3.9)

Note also that we have Hp = ξ1∂ξ1 − x1∂x1 and therefore

HpΦ = −x1ϕ
′(x1)ϕ2ϕ3ψ − (|ξ′|/ξ1)ϕ′(|ξ′|/ξ1)ϕ1ϕ3ψ − ϕ1ϕ2ϕ3ξ1ϕ

′((ξ1)+) ≥ 0. (3.10)

Since qε ∈ S1, ξ1∂ξ1qε(ξ1) ≥ c2ξ1(∂ξ1qε(ξ1))2. We also claim that

ξ1∂ξ1qε(ξ1) ≥ c2ξ
−1
1 qε(ξ1)2. (3.11)

In fact, using (3.8) we see that to prove (3.11) it is enough to have

min(t, ε−1) ≥ c2t
−1
(
t 1lt≤1/ε(t) + ε−1(2 + log(tε)) 1lt≥1/ε(t)

)2
.

This clearly holds (with c2 = 1) for t ≤ 1/ε and for t ≥ ε is equivalent to c2(2+log s)2 ≤
s, s = tε ≥ 1, which holds with c2 = 1

4
. It follows that

ξ1∂ξ1qε(ξ1) ≥ c2

(
ξ−1

1 qε(ξ1)2 + ξ1(∂ξ1qε(ξ1))2
)
,

which combined with (3.9) and (3.10) gives

HpGε = Φ(ξ1∂ξ1qε) + (HpΦ)qε

≥ Φ(ξ1∂ξ1qε) ≥ c2ξ1Φ(∂ξ1qε)
2 + c3

(
ξ2

1 |∂ξΦ|2 + |∂xΦ|2
)
ξ−1

1 q2
ε

≥ c0

(
ξ1|∂ξGε|2 + ξ−1

1 |∂xGε|2
)
.

Since 〈ξ〉 ∼ ξ1 on the support of Gε, we obtain (3.3).

Finally we prove (3.4). Since by (3.10) we have HpGε ≥ ΦHpqε, we see that (3.4)

follows from proving that for any M1 we can find K, M2 and ε0 such that for ξ1 ≥ 1,

ΦHpqεe
γΦqε +M2ξ

K
1 ≥M1e

γΦqε . (3.12)

Using (3.8), we see that for ξ1 ≤ 1/ε we need Gεe
γGε + M2ξ

K
1 ≥ M1e

γGε . This holds

for

K = 0, M2 = 2γ−1eγM1−1

since for γ > 0 and a ≥ 0, aeγa −M1e
γa ≥ −2γ−1eγM1−1.

For ξ1 ≥ 1/ε, we need to find K and M2 for which

ε−1ΦeγΦqε +M2ξ
K
1 ≥M1e

γΦqε . (3.13)

Using aeab +M1e
M1b ≥M1e

ab with a := ε−1Φ and

b := γεqε ≤ γ(2 + log(εξ1)) ≤ γ(2 + log ξ1),
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we obtain (3.13) with M2 = M1e
2γM1 and K = γM1. Hence we obtain (3.12) proving

(3.4). �

3.2. Microlocal analytic hypoelliticity. We will have bounds which are uniform

in ε but not in h. We start with the following

Lemma 3.2. Suppose that P is of the form (1.8) with real valued principal symbol p

and suppose that Γ ⊂ U × Rn\ is an open cone, Γ ∩ Sn−1 b U × Sn−1 and

G ∈ S1(Γ;R), |G| ≤ C log〈ξ〉,
HpG(x, ξ) ≥ c0

(
〈ξ〉m|∂ξG(x, ξ)|2 + 〈ξ〉m−2|∂xG(x, ξ)|2

)
.

(3.14)

Then for TΛ, HΛ, Λ = ΛθG defined in (2.4) and (2.6), h and θ sufficiently small, and

u ∈ H−N+m
Λ ,

Im〈hmPu, u〉H−NΛ
≥ 1

2
θ〈HpG 〈ξ〉−NTΛu, 〈ξ〉−NTΛu〉L2

Λ
−Mh‖u‖2

H
m−1

2 −N
Λ

, (3.15)

where M depends only on P and the semi-norms of G in S1.

Proof. We use Proposition 2.2 and [GaZw19b, Proposition 6.3] to see that for any

K > 0,

Im〈hmPu, u〉H−NΛ
= Im〈〈ξ〉−2NTΛh

mPSΛTΛu, TΛu〉L2
Λ

= Im〈ΠΛ〈ξ〉−2NΠΛh
mPSΛΠΛTΛu, TΛu〉L2

Λ

= 〈(Im bP,N)TΛu, TΛu〉L2
Λ

+O(h∞)‖u‖H−KΛ

≥ 〈(Im p|Λ) 〈ξ〉−NTΛu, 〈ξ〉−NTΛu〉L2
Λ
−Mh‖u‖

H
m−1

2 −N
Λ

.

(3.16)

From (2.7) and (3.14) we obtain

Im p|Λ = Im p(x− iθ∂ξG(x, ξ), ξ + iθ∂xG(x, ξ))

= θHpG(x, ξ) + θ2O
(
〈ξ〉m|∂ξG(x, ξ)|2 + 〈ξ〉m−2|∂xG(x, ξ)|2

)
≥ 1

2
θHpG(x, ξ),

if θ is small enough. �

The next lemma allows us to use smoothness of u to obtain weaker weighted esti-

mates:

Lemma 3.3. Suppose U ⊂ Rn is an open set,

G ∈ S1(T ∗Rn), G ≥ 0, suppG ⊂ K × Rn, K b U,

and TΛ, HΛ, Λ = ΛθG are defined in (2.4) and (2.6). Then, there exists a > 0 such that

for every χ, χ̃ ∈ S1 with χ̃ ≡ 1 in a conic neighborhood of suppχ and every K,N > 0,

there exists c, C > 0 such that for all u ∈ H−N(Rn),

‖〈ξ〉Ke−aG/hχTΛu‖L2
Λ
≤ C(‖〈ξ〉Kχ̃Tu‖L2(T ∗Rn) + e−c/h‖〈ξ〉−NTu‖L2(T ∗Rn)). (3.17)
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In particular, if χ ≡ 1 on suppG, then

‖(〈ξ〉Ke−a/hχ+ 〈ξ〉−N(1− χ))TΛu‖L2
Λ

≤ C(‖〈ξ〉N χ̃Tu‖L2(T ∗Rn) + e−C/h‖〈ξ〉−NTu‖L2(T ∗Rn)).
(3.18)

Proof. First, observe that by [GaZw19b, Lemma 4.5], for any δ > 0,

TΛS = Kδ +ON,δ(e
−cδ/h)〈ξ〉NL2(T ∗Rn)→〈ξ〉−NL2

Λ
,

and Kδ has kernel, Kδ(α, β), given by

h−ne
i
h

Ψ(α,β)k(α, β)ψ(δ−1|Reαx − βx|))ψ(δ−1 min(〈Reαξ〉, 〈βξ〉)−1|Reαξ − βξ|),

where (α, β) ∈ Λ× T ∗Rn and Ψ is as in (2.9), and ψ ∈ C∞c (R) is identically 1 near 0.

Therefore, we need only consider Kδ(α, β).

To do this, let χ̃ ∈ S0 be identically 1 on a conic neighborhood of suppχ. Then, for

δ > 0 small enough,

χ(Reα)Kδ(α, β)(1− χ̃)(β) ≡ 0.

Therefore,

χe−aG/h〈ξ〉KTΛS(1− χ̃) = ON(e−c/h)〈ξ〉NL2(T ∗Rn)→〈ξ〉−NL2
Λ
.

For the mapping properties

χe−aG/hTΛSχ̃ : 〈ξ〉−KL2(T ∗Rn)→ 〈ξ〉−KL2
Λ,

we consider the operator

χe−aG/he−H/h〈ξ〉KTΛSχ̃〈ξ〉−K : L2(T ∗Rn)→ L2(Λ; dxdξ).

Modulo negligible terms, the kernel of this operator is given by

h−ne
i
h

(ϕ((x,ξ),(y,η)))k̃((x, ξ), (y, η))

where k̃ ∈ S0 has

supp k̃ ⊂ {|ξ − η| ≤ Cδ〈ξ〉} ∩ {|x− y| ≤ Cδ}. (3.19)

and

ϕ = iH(x, ξ) + iaθG(x, ξ) + Ψ((x− iθGξ, ξ + iθGx(x, ξ)), (y, η)),

with H(x, ξ) = θ〈ξ,Gξ(x, ξ)〉 − θG(x, ξ). Using (3.19), we have

Imϕ = aG+ θξ ·Gξ − θG+
〈η〉〈ξ〉

2(〈η〉+ 〈ξ〉)
(
(x− y)2 − (θGξ)

2
)

+
(ξ − η)2 − (θGξ)

2

2(〈η〉+ 〈ξ〉)
+ θξ ·Gξ +O(θ(|x− y||Gx|+ 〈ξ〉−1|ξ − η||Gξ|))

+O(θ2(〈ξ〉−1|Gx|2 + 〈ξ〉|Gξ|2))

≥ (a− θ)G− Cθ2(〈ξ〉−1(Gx)
2 + 〈ξ〉|Gξ|2) + c〈ξ〉(x− y)2 + c〈ξ〉−1(ξ − η)2.
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In particular, taking a large enough and using that G ≥ 0, G ∈ S1, (see the argument

for (3.9)), we have

Imϕ ≥ a

2
G(x, ξ) + c〈ξ〉(x− y)2 + c〈ξ〉−1(ξ − η)2.

Therefore, applying the Schur test for L2 boundedness completes the proof that

χ〈ξ〉Ke−aG/hTΛS〈ξ〉−K = O(1) : L2(T ∗Rn)→ L2
Λ

and the lemma follows. �

With these two lemmas in place we can prove the main result:

Proof of Theorem 2. By multiplying u by a C∞c -function which is 1 in a neighbourhood

of x0, we can assume that u ∈ H−N+m, for some N , is compactly supported in U and

ρ0 := (x0, ξ0) /∈WF(u). By Proposition 2.1, there exists χ̃ ∈ S0 with χ̃ ≡ 1 in an open

conic neighborhood, Γ, of ρ0 such that for any K > 0,

‖〈ξ〉Kχ̃Tu‖L2 ≤ CK . (3.20)

Also, since u ∈ H−N+m,

‖〈ξ〉−N+mTu‖L2 ≤ C. (3.21)

Let Γ1 b Γ be an open conic neighborhood of ρ0 and χ ∈ S1 with χ ≡ 1 on Γ1 and

suppχ ⊂ Γ.

We choose θ small enough so that (2.4) and (3.16) hold. We then fix 0 < h ≤ 1

small enough so that (3.16) holds. From now we neglect the dependence on h which is

considered to be a fixed parameter. We choose for G = Gε constructed in Lemma 3.1

and supported in Γ1. We recall that the estimates depend only on the S1 seminorms

of G and these are uniform in ε. We now claim that

u ∈ H−N+m
Λε

, Λε := ΛθGε .

In fact, we can use (3.18) together with (3.20) and (3.21), observing that exp(aGε/h) =

Oε(〈ξ〉Ca/(hε)) and taking K = Ca/(hε).

Next, note that Pu ∈ H−N is supported in U and ρ0 /∈ WFa(Pu) .Propositions

2.3 and 2.5 (see (2.15) and (2.23) respectively) then show that for Gε satisfying the

assumptions of Lemma 3.2 and θ sufficiently small ‖Pu‖H−NΛε
≤ C0, where C0 depends

only on Pu and S1-seminorms of θGε.

We now apply (3.15) to obtain with Λε as above,

1
2
‖u‖2

H−NΛε

+ 2C2
0 ≥ 〈(θHpGε −M〈ξ〉m−1)〈ξ〉−N−mTΛεu, 〈ξ〉−NTΛεu〉L2

Λε
, (3.22)

Let a be given by Lemma 3.3 (so that (3.17) holds). Then by (3.4), there exist M2

and K such that

θHpGε +M2〈ξ〉2Ke−2aGε/h ≥ (M + 1)〈ξ〉m−1.
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From (3.17) we have

‖M2χ〈ξ〉Ke−aGε/h〈ξ〉−NTΛu‖2
L2

Λε

≤ C(‖〈ξ〉K−N χ̃Tu‖2
L2(T ∗Rn) + ‖〈ξ〉−NTu‖2

L2(T ∗Rn)) ≤ C2
1

(3.23)

Therefore, adding (3.23) to (3.22), and using that suppGε ⊂ χ ≡ 1, we have

1
2
‖u‖2

H−NΛε

+ C2
1 + 2C2

0

≥ 〈χ2〈ξ〉m−1〈ξ〉−NTΛεu, 〈ξ〉−NTΛεu〉L2
Λε

− 〈M(1− χ2)〈ξ〉m−1〈ξ〉−NTΛεu, 〈ξ〉−NTΛεu〉L2
Λε

≥ 〈〈ξ〉m−1〈ξ〉−NTΛεu, 〈ξ〉−NTΛεu〉L2
Λε
− (M + 1)‖u‖

H−N+m−1
2
,

(3.24)

where in the last line we use that χ ≡ 1 on suppGε.

Using m ≥ 1 and rearranging, this yields

‖u‖2
H−NΛε

≤ 2C2
1 + 4C2

0 + 2(M + 1)‖u‖
H−N+m−1

2
.

where C1, C0 and M are constants independent of ε.

Since Λε ∩ {|ξ| < 1/ε} = Λ0 ∩ {|ξ| < 1/ε} where G0 := Φ|ξ|, we have that

Hε||ξ|<1/ε = H0||ξ|<1/ε, where Hε = θξ∂ξGε+θG is the corresponding weight. Therefore,

the monotone convergence theorem implies that u ∈ HΛ0 . Since Φ(x0, tξ0) = 1, t� 1,

Proposition 2.3 shows that (x0, ξ0) /∈WFa(u). �
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