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Yves Colin de Verdière and Laure Saint-Raymond have recently
found a fascinating connection between internal waves in fluids and
spectral theory of 0th order pseudo-differential operators.

Semyon Dyatlov, Thibault de Poyferré and I ran a “groupe de
travaille” on this topic in February and March and I report on some
of the findings.

Except for a weakening of assumptions and conclusions the results
are due to Colin de Verdière–Saint-Raymond arXiv:1801.05582.

http://arxiv.org/abs/1801.05582
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travaille” on this topic in February and March and I report on some
of the findings.

Except for a weakening of assumptions and conclusions the results
are due to Colin de Verdière–Saint-Raymond arXiv:1801.05582.

http://arxiv.org/abs/1801.05582


Yves Colin de Verdière and Laure Saint-Raymond have recently
found a fascinating connection between internal waves in fluids and
spectral theory of 0th order pseudo-differential operators.

Semyon Dyatlov, Thibault de Poyferré and I ran a “groupe de
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Motivation

Boussinesq approximation:{
∂tη + u · ∇ρ0 = 0, divu = 0,
ρ0∂tu = −ηge3 −∇P + Fe−iω0t ,

n · u = 0.

Formal diagonalization gives u = u+e+ + u−e−

i∂tu± − Pu± = e−iω0t f±

P = H±(x ,D), H±(x , ξ) = ±(−gρ′0(x)/ρ0(x))
1
2 ξ1/|ξ|
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Motivation

Boussinesq approximation:{
∂tη + u · ∇ρ0 = 0, divu = 0,
ρ0∂tu = −ηge3 −∇P + Fe−iω0t ,

n · u = 0.

Other related models: rotating fluids Ralston ’73

∂2
t ∆xu = ∂2

x1
u, u|∂Ω = 0

i∂tu − Pu = 0, P = ±∆−
1
2∂x1



Mathematical Model

(very much watered down...)

H±(x ,D) −→ P ∈ Ψ0(T2), P∗ = P

p := σ(P) homogeneous of degree 0 , dp|p−1(ω0) 6= 0,

the flow of 〈ξ〉Hp|p−1(ω0)/∼ is Morse–Smale with no fixed points

Hp = ∂ξp ·∂x−∂xp ·∂ξ, (x , ξ) ∼ (y , η) ⇔ x = y , ξ = tη, t > 0
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Mathematical Model

i∂tu−Pu = e−iω0t f , P ∈ Ψ0(T2), P∗ = P, u|t=0 = 0, f ∈ C∞(T2)

The surface Σ := p−1(ω0)/ ∼ lies on the boundary of T ∗T2 \ 0

〈ξ〉Hp is tangent to Σ.

Morse–Smale on Σ:

(i) 〈ξ〉Hp has a finite number of fixed points all of which are
hyperbolic;

(ii) 〈ξ〉Hp has a finite number of hyperbolic limit cycles;

(iii) there are no separatrix connections between saddle fixed points

(iv) every trajectory different from (i) and (ii) has a unique
trajectory (i) or (ii) as its α, ω-limit set.

If there are no fixed points Σ is a finite union of tori. This is why
we do not consider more general manifolds in this case.

(Some comments about fixed points at the end.)
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Main result

Let Λ̃+ be the attractor of the flow of 〈ξ〉Hp on Σ = p−1(ω0)/∼.

Λ+ := {(x , ξ) : [(x , ξ)]∼ ∈ Λ̃+} ⊂ T ∗T2 \ 0 is a conic Lagrangian

Im(Λ+) ⊂ H−m−
1
2
−

is the space of Lagrangian distributions of order m.

Example: Λ+ = {(x , ξ) : x1 = 0, ξ2 = 0, ξ1 > 0} ⊂ T ∗T2 \ 0

w ∈ Im(Λ+) ⇐⇒ w(x) =

∫
R
a(x2, ξ1)e ix1ξ1dξ1

|∂kx2
∂`ξ1

a(x2, ξ1)| =

{
O(ξm−`1 ) ξ1 → +∞
O(|ξ1|−∞) ξ1 → −∞.

For instance, w(x) = (x1 − i0)−1ϕ(x1, x2), ϕ ∈ C∞(T2).
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Main result

Let Λ̃+ be the attractor of the flow of 〈ξ〉Hp on Σ = p−1(ω0)/∼.

Λ+ := {(x , ξ) : [(x , ξ)]∼ ∈ Λ̃+} ⊂ T ∗T2 \ 0 is a conic Lagrangian

Im(Λ+) ⊂ H−m−
1
2
−

is the space of Lagrangian distributions of order > m.

Theorem Suppose that ω0 /∈ Specpp(P) and that u solves

i∂tu − Pu = e−iω0t f , u|t=0 = 0, f ∈ C∞(T2).

Then,

u(t) = e−iω0tu∞ + b(t) + ε(t), u∞ ∈ I 0(Λ+)

‖b(t)‖L2 ≤ C , ‖ε(t)‖− 1
2
− → 0, t →∞



An example

P =:= 〈D〉−1Dx2 − 2 cos x1

iut − Pu = f , f = χ(x1 − π/2, x2)
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An example

p = |ξ|−1ξ2 − 2 cos x1

Λ+ = {x1 = π/2, ξ1 < 0, ξ2 = 0} ∪ {x1 = −π/2, ξ1 > 0, ξ2 = 0}
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An example

p = |ξ|−1ξ2 − 2 cos x1

x ξ

Λ+ = {x1 = π/2, ξ1 < 0, ξ2 = 0} ∪ {x1 = −π/2, ξ1 > 0, ξ2 = 0}
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Another example

p = |ξ|−1ξ2 − 1
2 cos x1

Λ+ = {x1 = π/2, ξ1 < 0, ξ2 = 0} ∪ {x1 = −π/2, ξ1 > 0, ξ2 = 0}



Main Tool: spectral theory

i∂tu − Pu = f , u|t=0 = 0, f ∈ C∞(T2).

u(t) =

∫ t

0
e−isP f

= iP−1(1− e−itP)f

The operator P−1(e−itP − 1) is well defined for all t using the
spectral theorem (recall that P = P∗).

We need to show that

I the limit (P − ω − i0)−1f exists for ω near 0

I P−1(1− e−itP)χ(P)f
in H− 1

2
−

−−−−−→ (P − i0)−1χ(P)f .

I (P − i0)−1f ∈ I 0(Λ+)
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Main Tool: radial estimates

The radial estimates were introduced by Melrose ’94 for the study
of asymptotically Euclidean scattering and have been developed
further in various settings.

Some relevant ones:

I scattering by 0th order potentials Hassell–Melrose–Vasy ’04

I hyperbolic scattering Vasy ’13, Datchev–Dyatlov ’13

I general relativity Vasy, Hintz–Vasy ’13..., Dyatlov ’11–’14

I Lagrangian regularity Haber–Vasy ’15

I Anosov flows Dyatlov–Zworski ’16, ’17

I Axiom A flows Dyatlov–Guillarmou ’16, ’18
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Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

p = ξ−1
1 (ξ2 + λξ1x1), ξ1 > |ξ2|, 〈ξ〉 ∼ ξ1, P = P∗, p = σ(P)

ξ1Hp|p−1(0) = ∂x2+λ(x1∂x1−ξ1∂ξ1), Λ := {x1 = 0, ξ2 = 0}, L := Λ/∼

λ > 0, source/repeller λ < 0, sink/attractor

‖A−u‖s . ‖B̃−(P − iε)u‖s+1 + ‖u‖−N , s > −1
2 , source

‖A+u‖s . ‖B̃+(P − iε)u‖s+1 + ‖B+u‖s + ‖u‖−N , s < −1
2 , sink

Uniform for ε > 0.
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λ > 0, source/repeller λ < 0, sink/attractor

‖A−u‖s . ‖B̃−(P − iε)u‖s+1 + ‖u‖−N , s > −1
2 , source

‖A+u‖s . ‖B̃+(P − iε)u‖s+1 + ‖B+u‖s + ‖u‖−N , s < −1
2 , sink

Uniform for ε > 0.
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Regularity of eigenfunctions

For |ω| < δ � 1, dynamical assumptions on p shows that p has a
Lagrangian sink, Λ+(ω).

Suppose that (P − ω)u = 0, |ω| < δ and that WF(u) ⊂ Λ+(ω). Is
u ∈ L2?

Lemma (Dyatlov–Zworski ’17) Suppose that |ω| < δ � 1,

(P − ω)u ∈ C∞, WF(u) ⊂ Λ+(ω), Im〈(P − ω)u, u〉 ≥ 0.

Then u ∈ C∞.

The analytic component of showing that the Ruelle zeta function,
ζ(s) =

∏
γ(1− e−`γs), for a compact orientable negatively curved

Riemannian surface of genus g satisfies

ζ(s) ∼ s2g−2.

Hence the length spectrum, {`γ} (dynamics), determines the genus
g (topology).
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Limiting absorption principle

Radial estimates give

‖u‖− 1
2
− . ‖(P − iε)u‖ 1

2
+ + ‖u‖−N

∃ u = lim
εj→0

(P − ω − iεj)
−1f , f ∈ C∞ =⇒ WF(u) ⊂ Λ+(ω).

Our lemma shows that

(P − ω)u = 0, WF(u) ⊂ Λ+(ω) =⇒ u ∈ C∞.

(It replaces Rellich’s uniqueness theorem in scattering theory)

Standard arguments in scattering theory (cf. Melrose ’94) show
that the limit

(P − ω − i0)−1f ∈ H−
1
2
−, f ∈ C∞

exists except at finitely many eigenvalues.
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Lagrangian regularity of the final state
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Lemma (Dyatlov–Zworski ’18; related to Haber–Vasy ’15)
Suppose that

(P − ω)u ∈ C∞, WF(u) ⊂ Λ+(ω), u ∈ H−
1
2
−.

Then u ∈ I 0(Λ+(ω)).
Moreover, if u(ω) = (P − ω − i0)−1f , f ∈ C∞, then

u(ω) ∈ C∞((−δ, δ)ω; I 0(Λ+(ω)))
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Geometry of attracting Lagrangians

The general set up:

1. M is a compact surface without boundary;

2. p(x , ξ) : T ∗M \ 0→ R is smooth and homogeneous of order 0;

3. Λω ⊂ p−1(ω) ⊂ T ∗M \ 0 is a family of conic embedded
Lagrangian submanifolds depending smoothly on ω ∈ I

4. Hp is tangent to each Λω.

Lemma (Dyatlov–Zworski ’18) Suppose that for all ω ∈ I and all
(x , ξ) ∈ Λω, exp(tHp)(x , ξ) converges to infinity of the fibers at
linear rate as t →∞.
Suppose that, locally,

Λω = {(x , ξ) : x = ∂ξF (ω, ξ)}

where ξ 7→ F (ω, ξ) is a family of homogeneous functions of order
one. Then for some c > 0,

∂ωF (ω, ξ) < −c|ξ|, ξ ∈ Γ0.
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Theorem Suppose that 0 /∈ Specpp(P) and that u solves

i∂tu − Pu = f , u|t=0 = 0, f ∈ C∞(T2).

Then, u(t) = u∞ + b(t) + ε(t), where u∞ ∈ I 0(Λ+), ‖b(t)‖L2 ≤ C
and ‖ε(t)‖− 1

2
− → 0, as t →∞.

Proof: From spectral theorem and Stone’s formula

u(t) =
1

2π

∫ t

0
e−isω

(
(P − ω − i0)−1 − (P − ω + i0)−1

)
fdω

=
1

2π

∫ t

0
e−isω

(
(P − ω − i0)−1 − (P − ω + i0)−1

)
f χ(ω)dω

+ b1(t), ‖b1(t)‖L2 ≤ C , χ = 1 near 0

=
1

2π

∫ t

0
e−isω(u+(ω)− u−(ω))dω + b1(t), u±(ω) ∈ I 0(Λ±(ω))

?
= u∞ + b(t) + ε(t)

u∞ ∈ I 0(Λ+(0)), ‖b(t)‖L2 ≤ C , ‖ε(t)‖− 1
2
− → 0, t →∞



Theorem Suppose that 0 /∈ Specpp(P) and that u solves

i∂tu − Pu = f , u|t=0 = 0, f ∈ C∞(T2).

Then, u(t) = u∞ + b(t) + ε(t), where u∞ ∈ I 0(Λ+), ‖b(t)‖L2 ≤ C
and ‖ε(t)‖− 1

2
− → 0, as t →∞.

Proof: From spectral theorem and Stone’s formula

u(t) =
1

2π

∫ t

0
e−isω

(
(P − ω − i0)−1 − (P − ω + i0)−1

)
fdω

=
1

2π

∫ t

0
e−isω

(
(P − ω − i0)−1 − (P − ω + i0)−1

)
f χ(ω)dω

+ b1(t), ‖b1(t)‖L2 ≤ C , χ = 1 near 0

=
1

2π

∫ t

0
e−isω(u+(ω)− u−(ω))dω + b1(t), u±(ω) ∈ I 0(Λ±(ω))

?
= u∞ + b(t) + ε(t)

u∞ ∈ I 0(Λ+(0)), ‖b(t)‖L2 ≤ C , ‖ε(t)‖− 1
2
− → 0, t →∞



Theorem Suppose that 0 /∈ Specpp(P) and that u solves

i∂tu − Pu = f , u|t=0 = 0, f ∈ C∞(T2).

Then, u(t) = u∞ + b(t) + ε(t), where u∞ ∈ I 0(Λ+), ‖b(t)‖L2 ≤ C
and ‖ε(t)‖− 1

2
− → 0, as t →∞.

Proof: From spectral theorem and Stone’s formula

u(t) =
1

2π

∫ t

0
e−isω

(
(P − ω − i0)−1 − (P − ω + i0)−1

)
fdω

=
1

2π

∫ t

0
e−isω

(
(P − ω − i0)−1 − (P − ω + i0)−1

)
f χ(ω)dω

+ b1(t), ‖b1(t)‖L2 ≤ C , χ = 1 near 0

=
1

2π

∫ t

0
e−isω(u+(ω)− u−(ω))dω + b1(t), u±(ω) ∈ I 0(Λ±(ω))

?
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2
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0
e isωw(ω)dω = w∞ + b(t) + ε(t), w∞ =

{
2πw(0) ε = +,

0 ε = −.

The geometric lemma provides the sign condition! QED
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More general geometries

P = A + A∗, A := 〈D〉−1(Dx1 cos x1 − 2Dx2 cos x2)

iut − Pu = f , f = χ(x1 − π/2, x2 − π/2)
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More general geometries

p = |ξ|−1(ξ1 cos x1 + 2ξ2 cos x2)

u(t) = u∞ + b(t) + ε(t), WF(u) ⊂ Λ+ ∪ Γ+,

u∞ ∈ H−
1
2
−, ‖b(t)‖L2 ≤ C , ‖ε(t)‖

H− 3
2 − → 0, t →∞

Λ+ and Γ+ described using estimates of Dyatlov–Guillarmou ’16

In the Morse–Smale case, Colin de Verdière ’18 used a hybrid of
Mourre and radial estimates to show that ‖ε(t)‖

H− 1
2 − → 0.
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More general geometries

u∞ ∈ H−
1
2
−, WF(u) ⊂ Λ+ ∪ Γ+,

π(Λ+) = {x1 = x2 = −1
2π}∪{x1 = −π

2 , x2 = π
2 }∪{x1 = π

2 , x2 = −π
2 }

π(Γ+) = {x1 = π
2 } ∪ {x2 = π

2 }
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