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Yves Colin de Verdiére and Laure Saint-Raymond have recently
found a fascinating connection between internal waves in fluids and
spectral theory of Oth order pseudo-differential operators.

Semyon Dyatlov, Thibault de Poyferré and | ran a “groupe de

travaille” on this topic in February and March and | report on some
of the findings.

Except for a weakening of assumptions and conclusions the results
are due to Colin de Verdiere-Saint-Raymond arXiv:1801.05582.
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Other related models: rotating fluids Ralston '73
D2Au = 8)2qu, ulpa =0

ipu—Pu=0, P=+A"20,
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(i) (§)Hp has a finite number of fixed points all of which are
hyperbolic;

(i) (§)Hp has a finite number of hyperbolic limit cycles;

(iii) there are no separatrix connections between saddle fixed points
(iv) every trajectory different from (i) and (ii) has a unique
trajectory (i) or (ii) as its «, w-limit set.

If there are no fixed points % is a finite union of tori. This is why
we do not consider more general manifolds in this case.

(Some comments about fixed points at the end.)
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Main result

Let A, be the attractor of the flow of (¢) Hp on £ = p~Y(wo)/~.
Ay = {(x,8) : [(x,€)]~ € AL} € T*T?\ 0 is a conic Lagrangian

IM(AL) C H™™ 2
is the space of Lagrangian distributions of order > m.
Theorem Suppose that wo ¢ Spec,,,(P) and that u solves
iOiu — Pu=e “0tf  yl,_g=0, fe C>®(T?).
Then,
u(t) = e Oty + b(t) + €(t), s € I°(Ay)
Ib(t)lle < €, fle(®)l[ -3 =0, t =00
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An example

p =671 — 2cosx;

X §

N ={x1=7/2,6<0,&£=0}U{x1 = —7/2,& >0, =0}
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Another example

p=1¢7 6 — S cosx

S=2
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Ay ={xa=7/2,6<0,&=0U{xx = —7/2,& > 0,& =0}
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iOu—Pu=Ff, uli—g=0, fe C®(T?).

t
u(t) = / e P = ip71(1 — e tP)f
0

The operator P~1(e™*P — 1) is well defined for all t using the
spectral theorem (recall that P = P*).

We need to show that
» the limit (P —w — i0)~1f exists for w near 0

> P11 — e Py (P)f L (P —i0)~1x(P)f.

> (P —i0)"1f € I°(Ay)
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The radial estimates were introduced by Melrose '94 for the study
of asymptotically Euclidean scattering and have been developed
further in various settings.

Some relevant ones:
P scattering by Oth order potentials Hassell-Melrose—Vasy '04

» hyperbolic scattering Vasy '13, Datchev—Dyatlov '13

P general relativity Vasy, Hintz—Vasy '13..., Dyatlov '11-'14
P Lagrangian regularity Haber—Vasy '15

» Anosov flows Dyatlov—Zworski '16, '17

> Axiom A flows Dyatlov—Guillarmou '16, '18



Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example



Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

p=EN 6+ Max), &> &, € ~&, P=P* p=ad(P)



Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

p=EN 6+ Max), &> &, € ~&, P=P* p=ad(P)
§1Hp|p-1(0) = Ox +A (X105 —£10¢, )



Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

p=EN 6+ Max), &> &, € ~&, P=P* p=ad(P)
§1Hplp1(0) = O+ A (105 —610g ), N:={x1 =0, =0}, L:=A/~



Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

p=EN 6+ Max), &> &, € ~&, P=P* p=ad(P)
E1Hplp-1(0) = Do+ A (X105 —610z,), Ni={x1 =0,& =0}, L:=N\/~

oT" M L T M




Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

p=EN 6+ Max), &> &, € ~&, P=P* p=ad(P)
E1Hplp-1(0) = Do+ A (X105 —610z,), Ni={x1 =0,& =0}, L:=N\/~

oT" M L T M

A > 0, source/repeller A < 0, sink/attractor



Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

p=EN 6+ Max), &> &, € ~&, P=P* p=ad(P)
E1Hplp-1(0) = Do+ A (X105 —610z,), Ni={x1 =0,& =0}, L:=N\/~

oT" M L T M

A > 0, source/repeller A < 0, sink/attractor

|A_ulls S IB-(P — i€)ullss1 + lull—w, s>~} source



Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

p=EN 6+ Max), &> &, € ~&, P=P* p=ad(P)
E1Hplp-1(0) = Do+ A (X105 —610z,), Ni={x1 =0,& =0}, L:=N\/~

oT" M L T M

A > 0, source/repeller A < 0, sink/attractor
JA-ulls S IB-(P— ie)ullss1 + lull_w, s> -3, source

|Avulls S IB(P — ie)ullser + | Brulls + ullw, s <—3, sink
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Radial sources and sinks: definition by (a very special) example

p=EN 6+ Max), &> &, € ~&, P=P* p=ad(P)
E1Hplp-1(0) = Do+ A (X105 —610z,), Ni={x1 =0,& =0}, L:=N\/~

oT" M L T M

A > 0, source/repeller A < 0, sink/attractor
JA-ulls S IB-(P— ie)ullss1 + lull_w, s> -3, source

|Avulls S IB(P — ie)ullser + | Brulls + ullw, s <—3, sink

Uniform for € > 0.
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Regularity of eigenfunctions
For |w| < 6 < 1, dynamical assumptions on p shows that p has a
Lagrangian sink, Ay (w).

Suppose that (P —w)u =0, |w| < ¢ and that WF(u) C Ay (w). Is

ue L??

Lemma (Dyatlov—Zworski '17) Suppose that |w| < § < 1,
(P—w)ueC™, WF(u)CAi(w), Im((P—w)u,u)>0.

Then u e C*.

The analytic component of showing that the Ruelle zeta function,
C(s)=TI[,(1- e~"%), for a compact orientable negatively curved
Riemannian surface of genus g satisfies

C(s) ~ s%72,

Hence the length spectrum, {/,} (dynamics), determines the genus
g (topology).
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Radial estimates give
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Our lemma shows that
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(It replaces Rellich’s uniqueness theorem in scattering theory)

Standard arguments in scattering theory (cf. Melrose '94) show
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Lagrangian regularity of the final state
lull s < 1P —ie)ulls, + [lull-w

Ju=lim(P—w—i¢) 'f, fe C® = WF(u) C Ap(w).

ej—>0

(P—w)u=0, WF(u) cAy(w) = uvecC™.

Standard arguments in scattering theory (cf. Melrose '94) show

that the limit L L
(P—w—i0)"t:H2t - H 2~

exists except at finitely many eigenvalues.

Lemma (Dyatlov—Zworski '18; related to Haber—Vasy '15)
Suppose that

(P—w)ue C®, WF(u) CAL(w), ueH 2~

mMuengm.

Moreover, if u(w) = (P —w — i0)~Yf, f € C*, then
u(w) € C((~4,8)wi I°(As(w)))
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Geometry of attracting Lagrangians

The general set up:

1. M is a compact surface without boundary;

2. p(x,&): T*M\ 0 — R is smooth and homogeneous of order 0;

3. A, C pY(w) C T*M\ 0 is a family of conic embedded
Lagrangian submanifolds depending smoothly on w € /

4. H, is tangent to each A,,.

Lemma (Dyatlov—Zworski '18) Suppose that for all w € | and all
(x,€) € Ny, exp(tH,)(x, &) converges to infinity of the fibers at
linear rate as t — oo.

Suppose that, locally,

Ao ={(x,8) : x = 0cF(w, &)}

where £ — F(w, &) is a family of homogeneous functions of order
one. Then for some ¢ > 0,

8wF(w>§) < _C‘£|> 66 r0-
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Proof: From spectral theorem and Stone’s formula

ot) = 5 /t e (P —w—10)"1 — (P —w+i0)"L) fiw
T Jo
= 2i t g isw ((P —w—i0)t—(P-w+ iO)_l) fy(w)dw
T Jo
+ by(t), |b1(t)||;2 < C, x=1near0
215; ey () — u (@) + (1), () € (ML)

L loo + b(t) + €(t)

uso € I°(A+(0)), [Ib(t)l2 < €, fle(t)_3_ =0, t— 00



Proof continued...
1 t

o ), e (uy (W) — u_(w))dw + by(t), ux(w) € I°(AL(w))

£ 0 (0) + b(t) + e(t), uy(0):= (P —i0)71F,

u(0) € I°(A4(0)), [Ib(B)ll2 < C, fle(®)ll 1 =0, t— 00



Proof continued...
1 t

o ), e (uy (W) — u_(w))dw + by(t), ux(w) € I°(AL(w))

£ 0 (0) + b(t) + e(t), uy(0):= (P —i0)71F,

u(0) € I°(A4(0)), [Ib(B)ll2 < C, fle(®)ll 1 =0, t— 00

Lemma (Dyatlov—Zworski '18) Suppose that
w(w) € GO(Ry; I°(A)), Aw = {(8cF(w,€), )}

Suppose that £0,,F(0,£) < 0. Then for w(w) supported near 0,

t =
/ e w(w)dw = weo + b(t) + €(t), Wo = { 27TW0(0) i B +
0 = —.



Proof continued...
1 t

o ), e (uy (W) — u_(w))dw + by(t), ux(w) € I°(AL(w))

£ 0 (0) + b(t) + e(t), uy(0):= (P —i0)71F,

u(0) € I°(A4(0)), [Ib(B)ll2 < C, fle(®)ll 1 =0, t— 00

Lemma (Dyatlov—Zworski '18) Suppose that
w(w) € GO(Ry; I°(A)), Aw = {(8cF(w,€), )}

Suppose that £0,,F(0,£) < 0. Then for w(w) supported near 0,

t =
/ e w(w)dw = weo + b(t) + €(t), Wo = { 27TW0(0) i B +
0 = —.

The geometric lemma provides the sign condition! QED
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More general geometries
P=A+A* A:=(D) YDy cosx3 — 2Dy, cosx)

vy —Pu="Ff, f=xba—7/2,x—7r/2)



More general geometries
P=A+A* A:=(D) YDy cosx3 — 2Dy, cosx)

vy —Pu="Ff, f=xba—7/2,x—7r/2)
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More general geometries

p = |€]71(&1 cos xq + 23 cos xa)



More general geometries

p = [€]7 (&1 cos xq + 2& cos x2)
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More general geometries

p = [€]7 (&1 cos xq + 2& cos x2)

u(t) = uso + b(t) + €(t),

WF(u) C AL UT,
oo € H727, [[B(t)]l12 < C, [le(t)]],, - =0, t— 00
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More general geometries

p = [€]7 (&1 cos xq + 2& cos x2)

u(t) = tso + b(t) +e(t), WF(u) C Ay UTy,
oo € HT37, [[B(8)]li2 < €, Jle(e)],, 3= =0, ¢ =00

2
A4 and T4 described using estimates of Dyatlov—Guillarmou 16



More general geometries

p = [€]7 (&1 cos xq + 2& cos x2)

u(t) = us + b(t) +€(t), WF(u) C AL UT,,
oo € H2 Bz < € [le(®)], 3 =0, 00
A4 and 4 described using estimates of Dyatlov—Guillarmou '16

In the Morse-Smale case, Colin de Verdiere '18 used a hybrid of
Mourre and radial estimates to show that He(t)||H_

1_ — 0.
2
2 ~



More general geometries

oo € H™27, WF(u) C AL UT,,

m(Ay) = {x1=x = —3

—5mU{x1 = =5, x2 =

s =-I
(M) ={Pa=51U{e =3}

m]

DA
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