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Abstract. We present a Fermi golden rule giving rates of decay of states obtained

by perturbing embedded eigenvalues of a quantum graph. To illustrate the procedure

in a notationally simpler setting we first describe a Fermi golden rule for boundary

value problems on surfaces with constant curvature cusps. We also provide a reso-

nance existence result which is uniform on compact sets of energies and metric graphs.

The results are illustrated by numerical experiments.

1. Introduction and statement of results

Quantum graphs are a useful model for spectral properties of complex systems. The

complexity is captured by the graph but analytic aspects remain one dimensional and

hence relatively simple. We refer to the monograph by Berkolaiko–Kuchment [1] for

references to the rich literature on the subject.

In this note we are interested in graphs with infinite leads and consequently with

continuous spectra. We study dissolution of embedded eigenvalues into the contin-

uum and existence of resonances close to the continuum. Our motivation comes from

a recent Physical Review Letter [11] by Gnutzmann–Schanz–Smilansky and from a

mathematical study by Exner–Lipovský [10].

We consider an oriented graph with vertices {vj}Jj=1, infinite leads {ek}Kk=1, K > 0,

and M finite edges {em}M+K
m=K+1. We assume that each finite edge, em, has two distinct

vertices as its boundary (a non-restrictive no-loop condition) and we write v ∈ em for

these two vertices v. An infinite lead has one vertex. The set of (at most two) common

vertices of em and e` is denoted by em ∩ e` and we we denote by em 3 v the set of all

edges having v as a vertex.

The finite edges are assigned length `m, K + 1 ≤ m ≤ M +K and we put `k =∞,

1 ≤ k ≤ K, for the infinite edges. To obtain a quantum graph we define a Hilbert

space, is given by

L2 :=
K+M⊕
m=1

L2([0, `m]), L2 3 u = (u1, · · ·uM+K), um ∈ L2([0, `m]). (1.1)
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Figure 1. A graph given by a cycle

{ek}2Kk=K+1 connected to K infinite leads

{ek}Kk=1 atK vertices: vk, eK+k∩eK+k−1 =

vk, e2K ∩ eK+1 = v1, ek ∩ eK+k = vk.

The lengths of finite edges are given by

`k(t) = e−2ak(t)`k, K + 1 ≤ k ≤ 2K. If

`k(0)’s are rationally related then P (0) has

eigenvalues, λ(0), embedded in the con-

tinuous spectrum. If λ(0) is simple then

λ(0) belongs to a smooth family of reso-

nances, λ(t), Imλ(t) ≤ 0. Theorem 1 and

Example 1 in §3 show that in this case

Im λ̈ = λ2
∑K

k=1 |〈ȧu, ek(λ)〉|2, where u is

the normalized eigenfunction correspond-

ing to u and ek(λ) is the generalized eigen-

function normalized in the kth lead – see

(1.2).
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We then consider the simplest quantum graph Hamiltonian which is unbounded

operator P on L2 defined by (Pu)m = −∂2
xum with

D(P ) = {u : um ∈ H2([0, `m]), um(v) = u`(v), v ∈ em ∩ e`,
∑
em3v

∂νum(v) = 0}.

Here ∂ν denotes the outward pointing normal at boundary of ev:

um ∈ H2([0, `m]), ∂νum(0) = −u′m(0), ∂νum(`m) = u′m(`m).

The space Dloc(P ) is defined by replacing H2 by H2
loc when `m =∞.

Quantum graphs with infinite leads fit neatly into the general abstract framework

of black box scattering [15] and hence we can quote general results [8, Chapter 4] in

spectral and scattering theory.

When K > 0 then the projection on the continuous spectrum of P is given in

terms of generalized eigenfunctions ek(λ), 1 ≤ k ≤ K, which for λ /∈ Specpp(P ) are

characterized as follows:

ek(λ) ∈ Dloc(P ), (P − λ2)ek(λ) = 0,

ekm(λ, x) = δmke
−iλx + smk(λ)eiλx, 1 ≤ m ≤ K.

(1.2)

The family λ 7→ ek(λ) ∈ Dloc(P ) extends holomorphically to a neighbourhood of R
and that defines ek(λ) for all λ. We will in fact be interested in λ ∈ Specpp(P ). The

functions ek parametrize the continuous spectrum of P – see [8, §4.4] and (3.13) below.
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We now consider a family of quantum graphs obtained by varying the lengths `m,

K + 1 ≤ m ≤M +K:

`m(t) = e−am(t)`m, am(0) = 0, (1.3)

and the corresponding family of operators, P (t). We consider a(t) as a function which

is constant on the edges and denote

ȧ := ∂ta(0), (ȧu)m(x) = ȧmum(x).

The works [10] and [11] considered the case in which P (0) has embedded eigenval-

ues and investigated the resonances of the deformed family P (t) converging to these

eigenvalues as t → 0. Here we present a Fermi golden rule type formula (see §2 for

references to related mathematical work) which gives an infinitesimal condition for

the disappearance of an embedded eigenvalue. It becomes a resonance of P and one

can calculate the infinitesimal rate of decay. Resonances are defined as poles of the

meromorphic continuation of λ 7→ (P − λ2)−1 to C as an operator L2
comp → L2

loc (see

[9],[8, §4.2] and for a self-contained general argument Proposition 4.1). We denote the

set of resonances of P by Res(P ).

Theorem 1. Suppose that λ2 > 0 is a simple eigenvalue of P = P (0) and u is

the corresponding normalized eigenfunction. Then for |t| ≤ t0 there exists a smooth

function t 7→ λ(t) such that λ(t) ∈ Res(P (t)) and

Im λ̈ = −
K∑
k=1

|Fk|2,

Fk := λ〈ȧu, ek(λ)〉+ λ−1
∑
v

∑
em3v

1
4
ȧm(3∂νum(v)ek(λ, v)− u(v)∂νekm(λ, v)),

(1.4)

where 〈•, •〉 denotes the inner product on (1.1).

The proof is given in §3 and that section is concluded with two examples: the first

gives graphs and eigenvalues for which Fk = λ〈ȧu, ek(λ)〉 – see Figures 1 and 2. The

second example gives a graph and an eigenvalue for which the boundary terms in the

formula for Fk are needed – see Fig. 4.

Let us compare (1.4) to the Fermi golden rule in more standard settings of mathe-

matical physics as presented in Reed–Simon [14, §XII.6, Notes to Chapter XII]†. In that

case the we have a Hamitonian H(t) = H + tV such that H has a simple eigenvalue at

E0 embedded in the continuous spectrum of H(0) with the normalized eigenfunction

u. Let P(E) = 1(−∞,E)\{E0}(H) be a modified spectral projection. Then for small t the

operator H(t) has a family of resonances with imaginary parts given by Γ(t)/2 where

†For references to more recent advances see Cornean–Jensen–Nenciu [5].
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Figure 2. A simple graph with embedded eigenvalues, M = K = 2. Solid

lines and dashed lines indicate the trajectory of λ(t) and of the second order

approximation λ̃(t) = λ + tλ̇ + i
2 t

2 Im λ̈, respectively. (The colour coding

indicates the parameter t shown in the colour bar.) We approximate the real

part linearly using (3.11) and the imaginary quadratically using (1.4). The

four cases are (a): `3(t) = 1 − t, `4(t) = 1 − t, (b): `3(t) = 1 − t, `4(t) = 1,

(c): `3(t) = 1− t, `4(t) = 1 + t, (d): `3(t) = 1− t, `4(t) = 1 + 2t.

the width Γ(t) function satisfies

∂2

∂t2
Γ(0) = π

∂

∂E
〈u, V P(E0)V u〉.

If the continuous spectrum has a nice parametrization by generalized eigenfunctions,

∂EP(E) =
∫

A
e(E, a)⊗ e(E, a)∗dµ(a), a ∈ A, this expression becomes

∂2
t Γ(0) = π

∫
A
|〈V u, e(E, a)〉|2dµ(a).

In the case of quantum graphs A is a discrete set – see (3.13) below – and the formula

is close to our formula (1.4). In [8, Theorem 4.22] a general formula for black box

perturbations is given and it applies verbatim to perturbations of quantum graph

Hamiltonians when the domain of the perturbation does not change. The difference

here lies in the fact that the domain changes and that produces additional boundary

terms. (We present the results in the simplest case of Kirchhoff boundary conditions.)

To explain the method in a similar but notationally simpler setting we first prove the

Fermi golden rule in scattering on surfaces with cusp ends and boundaries.

The formula (1.4) gives a condition for the existence a resonance with a nontrivial

imaginary part (decay rate) near an embedded eigenvalue of the unperturbed operator:

D(λ0, ct) ∩ Res(P (t)) 6= ∅‡ for some c and for |t| ≤ t0, where the constants c and t0
depend on λ0 and P (t). However, it is difficult to estimate the speed with which the

‡Here and below D(λ0, r) = {λ ∈ C : |λ− λ0| < r}.
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resonance λ(t) moves – that is already visible in comparing Fig. 2 with Fig. 4. (A

striking example is given by P (t) = −∂2
x + tV (x) where V ∈ C∞c (R) and t → 0;

infinitely many resonances for t 6= 0 [22] disappear and P (0) has only one resonance

at 0.) Also, the result is not uniform if we vary λ0 or the lengths of the edges.

The next theorem adapts the method of Tang–Zworski [20] and Stefanov [17] (see

also [8, §7.3]) to obtain existence of resonances near any approximate eigenvalue and

in particular near an embedded eigenvalue – see the example following the statement.

In particular this applies to the resonances studied in [10] and [11]. The method

applies however to very general Hamiltonians – for semiclassical operators on graphs

the general black box results of [20] and [17] apply verbatim. The point here is that

the constants are uniform even though the dependence on t is slightly weaker.

To formulate the result we define

HR :=
K⊕
m=1

L2([0, R])⊕
K+M⊕
m=K+1

L2([0, `m]). (1.5)

Theorem 2. Suppose that P is defined above and the lengths, `m, have the property

that `m ∈ L, K + 1 ≤ m ≤ M + K where L is a fixed compact subset of the the open

half-line.

Then for any L b (0,∞), I b (0,∞), R > 0 and γ < 1 there exists ε0 > 0 such that

∃u ∈ HR ∩ D(P ), λ0 ∈ I such that ‖u‖L2 = 1, ‖(P − λ2
0)u‖ = ε < ε0 (1.6)

implies

Res(P ) ∩D(λ0, ε
γ) 6= ∅. (1.7)

As a simple application of Theorem 1 related to Theorem 2 we present the following

Example. Suppose that P (t) is the family of operators defined by choosing `j =

`j(t) ∈ C1(R), and that λ0 > 0 is an eigenvalue of P (0). Then for any γ < 1 there

exists t0 such that for |t| ≤ t0

Res(P (t)) ∩D(λ0, t
γ) 6= ∅. (1.8)

Proof. To apply Theorem 2 we need to construct an approximate mode of P (t) using

the eigenfunction of P (0). Thus, let u0 be a normalized eigenfunction of P (0) with

eigenvalue λ0; in particular u0
k ≡ 0, 1 ≤ k ≤ K. Choose χj ∈ C∞(R), j = 1, 2, such

that χj ≥ 0, χ0+χ1 = 1, χj(s) = 1 near |j−s| < 1
3

and define u−m(x) := χ0(x/`m)u0
m(x)

and u+
m(x) := χ1(x/`m)u0

m(x), u0 = u+ + u−.

We now define a quasimode for P (t), u = u(t) needed in (1.6):

um(t) = u−m(x) + u+
m(x− δm(t)), δm(t) := `m(t)− `m(0).

For t small enough suppu−m ⊂ [0, 2
3
)`m(0) ⊂ [0, `m(t)) and suppu+

m ⊂ (2
3
, 1]`m(0) ⊂

(|δm(t)|, 1]`m(0). Hence the values of um(t) and ∂νum(t) at the vertices are the same
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as those of u0
m and um(t) ∈ D(P (t)). Also, since (−∂2

x − λ2
0)u0

m = 0 and χ
(k)
0 = −χ(k)

1 ,

(and putting `m = `m(0))

[(P (t)− λ2
0)u(t)]m = `−2

m (χ′′0((x− δm(t))/`m)u0
m(x− δm(t))− χ′′0(x/`m)u0

m(x))

+ 2`−1
m (χ′0((x− δm(t))/`m)∂xu

0
m(x− δm(t))− χ′0(x/`m)∂xu

0
m(x)).

We note that all the terms are supported in (1
3
−|δm(t)|, 2

3
+|δm(t)|)`m(0) and elementary

estimates show that ‖(P (t)− λ2
0)u(t)‖ ≤ Ct. For instance,

‖χ′′0(x)(u0
m(x− δm(t))− u0

m(x))‖ ≤ C ′|δm(t)| max
|x− 1

2
|`m(0)≤ 1

6
+|δm(t)

|∂xu0
m(x)|

≤ C ′|δm(t)|(‖ − ∂2
xu

m
0 ‖L2(( 1

4
, 3
4

)`m(0)) + ‖um0 ‖L2(( 1
4
, 3
4

)`m(0)))

≤ C ′′(λ2
0 + 1)t.

From (1.7) we conclude (after decreasing γ and t0) that (1.8) holds. �

Remarks. 1. A slightly sharper statement than (1.7) can already be obtained from

the proof in §4. It is possible that in fact Res(P ) ∩D(λ0, C0ε) where C0 depends on

L, R and δ. That is suggested by the fact that the converse to this stronger conclusion

is valid – see Proposition 4.5. This improvement would require finer complex analytic

arguments. It is interesting to ask if methods more specific to quantum graphs, in

place of our general methods, could produce this improvement.

2. By adapting Stefanov’s methods [17] one can strengthen the conclusion by adding

a statement about multiplicities (see also [8, Exercise 7.1]) but again we opted for a

simple presentation.

Acknowledgements. We are grateful for the support of National Science Foundation

under the grant DMS-1500852. We would also like to thank Semyon Dyatlov for

helpful discussions and assistance with figures and the two anonymous referees whose

comments and careful reading led to many improvements.

2. A Fermi golden rule for boundary value problems: surfaces with

cusps

To illustrate the Fermi golden rule in the setting of boundary value problems we

consider surfaces, X, with cusps of constant negative curvature. The key point is

that the domain of the operator changes and the general results such as [14, Theorem

XII.24] or [8, Theorem 4.22] do not apply.

Thus we assume that (X, g) is a Riemannian surface with a smooth boundary and

a decomposition (see Fig. 3)

X = X1 ∪X0, ∂X0 = ∂X1 ∪ ∂X, ∂X ∩ ∂X0 = ∅,
(X1, g|X1) ' ([a,∞)r × (R/`Z)θ, dr

2 + e−2rdθ2).
(2.1)
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X0
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X = X0 ∪X1

∂X0 = ∂X1 ∪ ∂X

Figure 3. A surface with one cusp end

and a boundary. Suppose we consider

a family of boundary conditions for the

Laplacian −∆: ∂νw = γ(t)w at ∂X.

The Laplacian has continuous spectrum

with a family of generalized eigenfunc-

tions e(λ) ∈ C∞(X) – see (2.3). Sup-

pose that for t = 0, λ2 is a simple embed-

ded eigenvalue of −∆ with the boundary

condition ∂νw = γ(0)w, with the nor-

malized eigenfunction given by u. Then

λ = λ(0) belongs to a smooth family

of resonances of Laplacians with bound-

ary condition ∂νw = γ(t)w, and Im λ̈ =

− 1
4λ2
|〈γ̇u, e(λ)〉L2(∂X)|2 – see Theorem

3.

We consider the following family of unbounded operators on L2(X):

P (t) = −∆g − 1
4
, D(P (t)) = {u ∈ H2(X) : ∂νu|∂X = γ(t)u|∂X}. (2.2)

where t 7→ γ(t) ∈ C∞(∂X) is a smooth family of functions on ∂X and ∂ν is the

outward pointing normal derivative. The spectrum of the operator P has the following

well known decomposition:

Spec(P ) = Specpp(P ) ∪ Specac(P ), Specac(P ) = [0,∞),

Specpp(P ) = {Ej}Jj=0, −1
4
≤ E0 < E1 ≤ E2 · · · , 0 ≤ J ≤ +∞.

(When J = +∞ then Ej →∞.) The eigenvalues Ej > 0 are embedded in the continu-

ous spectrum. In addition the resolvent R(λ) := (P − λ2)−1 : L2 → L2, Imλ > 0, has

a meromorphic continuation to λ ∈ C as an operator R(λ) : C∞c (X) → C∞(X). Its

poles are called scattering resonances. Under generic perturbation of the metric in X0

all embedded eigenvalues become resonances. For proofs of these well known facts see

[4] and also [8, §4.1 (Example 3), §4.2 (Example 3), §4.4.2] for a presentation from the

point of view of black box scattering [15].

The generalized eigenfunctions, e(λ, x), describing the projection onto the continuous

spectrum have the following properties:

(P − λ2)e(λ, x) = 0,
1

`

∫ `

0

e(λ, x)|X1dθ = e
r
2

(
e−iλr + s(λ)eiλr

)
,

(R(λ)−R(−λ))f = i
2λ
e(λ, x)〈f, e(λ, •)〉, λ ∈ R, f ∈ C∞c (X),

(2.3)

see [8, Theorem 4.20]. With these preliminaries in place we can now prove
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Theorem 3. Suppose that the operators P (t) are defined by (2.2) and that λ > 0 is a

simple eigenvalue of P (0) and (P (0)− λ2)u = 0, ‖u‖L2 = 1.

Then there exists a smooth function t 7→ λ(t), |t| < t0, such that λ(0) = λ, λ(t) is a

scattering resonance of P (t) and

Im λ̈ = − 1

4λ2

∣∣〈γ̇u, e〉L2(∂X)

∣∣2 , e(x) = e(λ, x), (2.4)

where e(λ, x) is given in (2.3), ḟ := ∂tf |t=0 and L2(∂X) is defined using the metric

induced by g.

1. In the case of scattering on constant curvature surfaces with cusps the Fermi golden

rule was explicitly stated by Phillips–Sarnak – see [13] and for a recent discussion [12].

For a presentation from the black box point of view see [8, §4.4.2].

2. The proof generalizes immediately to the case of several cusps (which is analogous

to a quantum graph with several leads), (Xk, g|Xk
) ' ([ak,∞)×R/`kZ, dr2 + e−2rdθ2,

1 ≤ k ≤ K. In that case the generalized eigenfunction are normalized using

1

`m

∫ `m

0

ek(λ, x)|Xmdθ = e
r
2

(
δkme

−iλr + skm(λ)eiλr
)
.

The Fermi golden rule for the boundary value problem (2.2) is given by

Im λ̈ = − 1

4λ2

K∑
k=1

∣∣〈γ̇u, ek〉L2(∂X)

∣∣2 , ek(x) = ek(λ, x). (2.5)

Proof. For notational simplicity we assume that γ(0) ≡ 0, that is that P (0) is the

Neumann Laplacian on X. We will also omit the parameter t when that is not likely

to cause confusion. It is also convenient to use z = λ2 and to write 〈•, •〉 for the

L2(X, d volg) inner product and 〈•, •〉L2(∂X) for the inner product on L2(∂) with the

measure induced by the metric g.

We first define the following orthogonal projection:

1lr≥R u :=
1

`

∫ `

0

u|X1∩{r≥R} dθ, 1lr≥R : L2(X)→ L2([R,∞), e−rdr), R > a,

1lr≤R := I − 1lr≥R, HR := 1lr≤R L
2(X).

(2.6)

The smoothness of scattering resonances arising from a smooth perturbation of a simple

resonance follows from smooth dependence of the continuation of (P (t) − λ2)−1 (see

Proposition 4.3 below for a general argument). Let t 7→ u(t), u(0) = u denote a smooth

family of resonant states:

(P (t)− z(t))u(t) = 0,
1

`

∫ `

0

u(t)|X1dθ = a(t)e
r
2 eiλ(t)r,

a(0) = 0, Imλ(t) ≤ 0, λ(0)2 = z(0).

(2.7)
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The second equation in (2.7) means that u(t) is outgoing – see [8, §4.4].

The self-adjointness of P (t) and integration by parts for the zero mode in the cusp

show that for u = u(t) and P = P (t),

0 = Im〈(P − z)u, 1lr≤R u〉

= − Im ∂r(1lr≥R u)(R)1lr≥R u(R)− Im z‖ 1lr≤R u‖2
L2(X).

(2.8)

(See [8, (4.4.17)] for a detailed presentation in the general black box setting.) Since

Im ż = 0 (as Im z(t) ≤ 0, see also (2.12) below) and since 1lr≥R u(0) = 0, we have, at

t = 0, Im z̈ = −2 Im ∂r(1lr≥R u̇)(R)1lr≥R u̇. We would like to argue as in (2.8) but in

reverse. However, as u̇ will not typically be in D(P ) we now obtain boundary terms:

Im z̈ = 2 Im〈(P − z)u̇, 1lr≤R u̇〉+ 2 Im〈∂ν u̇, u̇〉L2(∂X). (2.9)

We now need an expression for u̇. Since (P (t) − z(t))u(t) = 0, ∂νu|∂X = γu|∂X , we

have (at t = 0),

(P − z)u̇ = żu, ∂ν u̇|∂X = γ̇u|∂X . (2.10)

In addition, differentiation of the second condition in (2.7) shows that u̇ is outgoing.

Without loss of generality we can assume that u = u(0) is real valued. Choose

g ∈ C̄∞(X,R) (real valued, compactly supported and smooth up to the boundary)

such that ∂νg|∂X = γ̇u|∂X . We claim that

〈żu− (P − z)g, u〉 = 0. (2.11)

In fact, Green’s formula shows that the left hand side of (2.11) is equal to ż+
∫
∂X
γ̇u2.

On the other hand, using the fact that 1lr≤R u(0) = u(0),

0 = − d

dt
〈(P (t)− z(t))u(t), 1lr≤R u(t)〉|t=0 = 〈żu− (P − z)u̇, u〉

= ż +

∫
∂X

∂ν u̇u = ż +

∫
∂X

γ̇u2.
(2.12)

In view of (2.11), v := g + R(λ)(żu − (P − z)g), λ2 = z, λ > 0, is well defined,

outgoing (see (2.7)) and solves the boundary value problem (2.10) satisfied by u̇. Since

the eigenvalue at z is simple that means that u̇− v is a multiple of u (see [8, Theorem

4.18] though in this one dimensional case this is particularly simple). Hence

u̇ = αu+ g +R(λ)(żu− (P − z)g). (2.13)

With this formula in place we return to (2.9). First we note that the first term on the

right hand side vanishes:

Im〈(P − z)u̇, 1lr≤R u̇〉 = Im〈żu, u̇〉 = ż Im〈u, αu+ g +R(λ)(żu− (P − z)g)〉
= ż Imα + ż Im〈u,R(λ)(żu− (P − z)g)〉
= ż Imα.

(2.14)
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Here we used the fact that u and g were chosen to be real. The last identity followed

from (2.11). To analyse the second term on the right hand side of (2.9) we recall some

properties of the Schwartz kernel of the resolvent:

R(λ)(x, y) = R(λ)(y, x) = R(−λ)(x, y), λ ∈ C. (2.15)

(The first property follows from considering λ = ik, k � 1, and using the fact that

Pu = Pū, and the second from considering Imλ � 1, z = λ2, and noting that

((P − z)−1)∗ = (P − z̄)−1.) Using (2.9),(2.10),(2.14),(2.13),(2.15),(2.12) and the fact

that u and g are real, we now see that (with λ =
√
z > 0)

Im z̈ = 2ż Imα + 2 Im〈γ̇u, u̇〉L2(∂X)

= 2ż Imα + 2 Imα〈γ̇u, u〉+ 2 Im〈γ̇u, [R(λ)(żu− (P − z)g)]|∂X〉L2(∂X)

= 1
i
〈γ̇u, [(R(λ)−R(−λ))(żu− (P − z)g)]|∂X〉L2(∂X).

(2.16)

Since (R(λ)−R(−λ))u = 0 we have now use (2.3) to see that

[(R(λ)−R(−λ))(żu− (P − z)g)]|∂X = − i
2λ
e(λ)|∂X

∫
X

e(λ)(P − z)g

= − i
2λ
e(λ)|∂X

∫
∂X

(∂νe(λ)g − ∂νge(λ))

= i
2λ
e(λ)|∂X〈γ̇u, e〉L2(∂X).

Inserting this into (2.16) gives (2.4) completing the proof. �

3. Proof of Theorem 1

We follow the same strategy as in the proof of Theorem 3 but with some notational

complexity due to the graph structure.

Let H2 :=
⊕M+K

m=1 H2([0, `m]). Then for u, v ∈ H2, (∂kxu)m := ∂kxum,

−〈∂2
xf, g〉L2 = 〈∂xf, ∂xg〉L2 −

∑
v

∑
em3v

∂νfm(v)ḡm(v)

= −〈f, ∂2
xg〉L2 +

∑
v

∑
em3v

(
fm(v)∂ν ḡm(v)− ∂νfm(v)ḡm(v)

)
.

(3.1)

We note here that the sum over vertices can be written as a sum over edges:

∑
v

∑
em3v

∂νfm(v)ḡm(v) =
M+K∑
m=1

∑
v∈∂em

∂νfm(v)ḡm(v). (3.2)

Just as in §2 the domain of the deformed operators will change but we make a

modification which will keep the Hilbert space on which P̃ (t) (we change the notation
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from §1 and will use P (t) for a unitarily equivalent operator) acts fixed by changing

the lengths in (1.3). For that let

L2
t :=

M+K⊕
m=1

L2([0, e−am(t)`m]), L2 := L2
0, U(t) : L2

t → L2,

[U(t)u]m(y) := e−am(t)/2um(e−am(t)y), U(t)−1 = U(t)∗.

Let P̃ (t) be defined in L2
t by (P̃ (t)u)m = −∂2

xum,

D(P̃ (t)) = {u : um ∈ H2([0, e−aj(t)`m]), um(v) = u`(v), v ∈ em∩e`,
∑
em3v

∂νum(v) = 0}.

That is just the family of Neumann Laplace operators on the graph with the lengths

e−aj(t)`j.

On L2 we define a new family of operators: P (t) := U(t)P̃ (t)U(t)∗. It is explicitly

given by [P (t)u]m = −e2am(t)∂2
xum,

D(P (t)) = {u ∈ H2 : eam(t)/2um(v) = ea`(t)/2u`(v), v ∈ em ∩ e`,∑
em3v

e3am(t)/2∂νum(v) = 0}. (3.3)

Using Proposition 4.3 from the next section we see that for small t there exists a

smooth family t 7→ u(t) ∈ H2
loc such that

(P (t)− z(t))u(t) = 0, uk(t, x) = a(t)eiλ(t)x, 1 ≤ k ≤ K,

Imλ(t) ≤ 0, λ(0)2 = z, λ(0) > 0.
(3.4)

We defined HR by (1.5) and denote by 1lx≤R the orthogonal projection L2 → HR.

Writing P = P (t), u = u(t), z = z(t) we see, as in (2.8), that

0 = Im〈(P − z)u, 1lx≤R u〉 = − Im
K∑
m=1

∂xum(R)ūm(R)− Im z‖u‖2
HR
. (3.5)

We recall that em, 1 ≤ m ≤ K are the infinite edges with unique boundaries. Hence,

using (3.1), at t = 0,

Im z̈ = 2 Im
K∑
m=1

∂xu̇m(R)u̇m(R)

= 2 Im〈(P − z)u̇, 1lx≤R u̇〉+ 2 Im
∑
v

∑
em3v

∂ν u̇m(v)u̇m(v).

(3.6)

We now look at the equation satisfied by u̇ at t = 0:

d

dt
(P (t)− z(t))u(t) = 2ȧ(−∂2

xu)− żu+ (P − z)u̇ = (2ȧz − ż)u+ (P − z)u̇. (3.7)
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Hence,

(−∂2
x − z)u̇m = (ż − 2zȧm)um,

∑
em3v

∂ν u̇m(v) = −3
2

∑
em3v

ȧm∂νum(v),

u̇m(v)− u̇`(v) = 1
2
(ȧ` − ȧm)u(v), v ∈ em ∩ e`.

(3.8)

We used here the fact that u(v) := um(v) does not depend on m. The second condition

can be formulated as u̇m(v) = w(v) − 1
2
ȧm(v)u(v), where w := ∂t(e

a(t)/2u(t))|t=0 is

continuous on the graph.

To find an expression for u̇ (similar to (2.13)) we first find

g ∈
K⊕
m=1

C∞c ([0,∞))⊕
M+K⊕
m=K+1

C∞([0, `m]),

such that∑
em3v

∂νgm(v) = −3
2

∑
em3v

ȧm∂νum(v), gm(v)− g`(v) = 1
2
(ȧ` − ȧm)u(v). (3.9)

We can assume without loss of generality that both g and u are real valued.

In analogy to (2.11) we claim that

〈(ż − 2zȧ)u− (P − z)g, u〉 = 0. (3.10)

In fact, using (3.1), (3.7) and (3.8) we obtain

0 = − d

dt
〈(P (t)− z(t))u(t), 1lx≤R u(t)〉|t=0 = 〈żu− 2zȧu− (P − z)u̇, u〉

= ż − 2z〈ȧu, u〉+
∑
v

∑
em3v

(∂ν u̇m(v)u(v)− u̇m(v)∂νum(v))

= ż − 2z〈ȧu, u〉+
∑
v

∑
em3v

(−3
2
ȧm∂νum(v)u(v)− (w(v)− 1

2
ȧmu(v))∂νum(v))

= ż − 2z〈ȧu, u〉 −
∑
v

∑
em3v

ȧm∂νum(v)u(v).

(3.11)

(We used the continuity of u and the Neumann condition
∑

em3v ∂νum(v) = 0.) Since g

and u satisfy the same boundary conditions (3.8) and (3.9) (3.10) follows from (3.11).

As in the derivation of (2.13) we now see that for some α ∈ C we have

u̇ = αu+ g +R(λ)(żu− 2zȧu− (P − z)g). (3.12)

With this in place we return to (3.6). The first term on the right hand side is

2 Im〈(P − z)u̇, 1lx≤R u̇〉 = 2 Im〈żu− 2zȧu, u̇〉
= 2 Im〈żu− 2zȧu, αu+ g +R(λ)(żu− 2zȧu− (P − z)g)〉
= 2 Imα(ż − 2z〈ȧu, u〉)

− 4z Im〈ȧu, R(λ)(żu− 2zȧu− (P − z)g)〉.
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(We used here the simplifying assumption that g and u are real valued.)

As in (2.16) we conclude that

4z Im〈ȧu, R(λ)(−żu+ 2zȧu+ (P − z)g)〉 = 2z
i
〈ȧu, [(R(λ)−R(−λ)](2zȧu+ (P − z)g)〉

Now, as in (2.3), [8, Theorem 4.20] shows that

(R(λ)−R(−λ))f =
i

2λ

K∑
k=1

ek(λ, x)〈f, ek(λ, •)〉, λ ∈ R, f ∈ HR, (3.13)

which means that (with z = λ2 and ek = ek(λ))
2z
i
〈ȧu, [(R(λ)−R(−λ)](2zȧu+ (P − z)g)〉 =

− λ
K∑
k=1

〈ȧu, ek〉〈2λ2ȧu+ (P − z)g, ek〉 =

− 2λ3

K∑
k=1

|〈ȧu, ek〉|2 − λ
K∑
k=1

〈ȧu, ek〉〈ek, (P − z)g〉.

The second term on the right hand side is now rewritten using (3.1) and the boundary

conditions (3.9):

λ
K∑
k=1

〈ȧu, ek〉

(∑
v

∑
em3v

(∂νe
k
m(v)gm(v)− ∂νgm(v)ek(v))

)
=

λ
K∑
k=1

〈ȧu, ek〉

(∑
v

∑
em3v

1
2
ȧm(−∂νekm(v)u(v) + 3∂νum(v)ek(v))

)
.

We conclude that

2 Im〈(P − z)u̇, 1lx≤R u̇〉 = 2 Imα(ż − 2z〈ȧu, u〉)− 2λ3

K∑
k=1

|〈ȧu, ek〉|2

− 2λ
K∑
k=1

〈ȧu, ek〉

(∑
v

∑
em3v

1
4
ȧm(3∂νum(v)ek(v)− ∂νekm(v)u(v))

)
.

(3.14)

A similar analysis of the second term on the right hand side of (2.9) shows that

2 Im
∑
v

∑
em3v

∂ν u̇m(v)u̇m(v) = Imα

(
2
∑
v

∑
em3v

ȧm∂νum(v)u(v)

)

− 2λ−1

K∑
k=1

∣∣∣∣∣∑
v

∑
em3v

1
4
ȧm(∂νe

k
m(v)u(v)− 3∂νum(v)ek(v))

∣∣∣∣∣
2

− 2λ
K∑
k=1

〈ȧu, ek〉

(∑
v

∑
em3v

1
4
ȧm(3∂νum(v)ek(v)− ∂νekm(v)u(v))

)
.

(3.15)
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Inserting (3.14),(3.15) into (3.6), using (3.11) and Im z̈ = 2λ Im λ̈ gives (1.4). �

Example 1. Consider a connected graph with M bonds and K leads. Suppose that

an embedded eigenvalue λ is simple and satisfies

λ`m ∈ πZ, m = K + 1, · · · ,M +K. (3.16)

Then

Im λ̈ = −
K∑
k=1

∣∣λ〈ȧu, ek(λ)〉
∣∣2 . (3.17)

Proof. um(x) = Cm sin(λx) where em and a lead are meeting at a vertex. Since the

graph is connected, um(x) = Cm sin(λx) for K + 1 ≤ m ≤M +K. Let nm = λ`m
π

and

let

ekm(λ, x) = Amk sin(λx) +Bmk cos(λx).

Then um(0) = um(`m) = 0 and

∂νum(0) = (−1)nm+1∂νum(`m), ekm(λ, `m) = (−1)nmekm(λ, 0).

We can use this and (3.2) to reduce Fk in (1.4) to

Fk = λ〈ȧu, ek(λ)〉+ λ−1

M+K∑
m=K+1

3
4
ȧm(∂νum(0)ek(λ, 0) + ∂νum(`m)ek(λ, `m))

= λ〈ȧu, ek(λ)〉.

Theorem 1 then gives (3.17). �

Example 2. Let us consider a graph with M = 5, K = 2 and four vertices: see in

Fig. 4. Let `m(0) = 1, 3 ≤ m ≤ 7. Then the sequence of embedded eigenvalues λ is

given as S1 ∪ S2 where

S1 = πZ, S2 =
{
λ : tanλ+ 2 tan λ

2
= 0, λ /∈ π

2
Z
}
.

If λ ∈ S1, then (3.16) is satisfied. If λ ∈ S2, however, we have (with v1 and v2

corresponding to x = 0 for e3, e6 and e4, e5 respectively, and v4 to x = 0 for e7)

u3(x) = C sin(λx), u4(x) = C sin(λx), u5(x) = −C sin(λx),

u6(x) = −C sin(λx), u7(x) = C
sinλ

sin λ
2

sin
(
λ
(
x− 1

2

))
,

where C > 0 is the normalization constant. Note that

u(v3) = C sinλ 6= 0, u(v4) = −C sinλ 6= 0.

So we do not have the simple formula (3.17) in this case.
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Figure 4. The graph from Example 2: in this case boundary terms in our

Fermi golden rule appear at some embedded eigenvalues such as λ0 which is

the smallest solution of tanλ + 2 tan λ
2 = 0, λ0 ≈ 1.9106. We consider the

following variation of length: `3 = 1− t, `4 = 1 + t, `5 = 1− t, `6 = 1 + t, and

(a): `7 = 1 (b): `7 = 1 + t/2 (c): `7 = 1 + t. As pointed out by the referee,

the approximation λ(t) ' λ(0) + tλ̇ + i
2 t

2 Im λ̈ is not as accurate as in Fig.2

since now Re λ̈ 6= 0. The main point is to illustrate the appearance of the

boundary contributions to Fk in (1.4).

4. Proof of Theorem 2

The proof adapts to the setting of quantum graphs and of quasimodes u satisfying

(1.6) the arguments of [20]. They have origins in the classical work of Carleman [3] on

completeness of eigenfunctions for classes non-self-adjoint operators, see also [17] and

[19].

We start with general results which are a version of the arguments of [8, §7.2]. In

particular they apply without modification to quantum graphs with general Hamilto-

nians and general boundary conditions. We note that for metric graphs considered

here much more precise estimates are obtained by Davies–Pushnitski [6] and Davies–

Exner–Lipovský [7] but since we want uniformity we present an argument illustrating

the black box point of view.

Proposition 4.1. Suppose that P satisfies the assumptions of Theorem 2 and Ω1 b
Ω2 b C, where Ωj are open sets.
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Then there exist constants C1 depending only on Ω2 and L, and C2 depending on

Ω1,Ω2, R and L such that

|Res(P ) ∩ Ω2| ≤ C1,

‖ 1lr≤RR(λ) 1lr≤R ‖L2→L2 ≤ C2

∏
ζ∈Res(P )∩Ω2

|λ− ζ|−1, λ ∈ Ω1, (4.1)

where the elements of Res(P ) are included according to their multiplicities.

Proof. Let R0(λ) :
⊕K

k=1 L
2
comp(ek) →

⊕
H2

loc ∩ H1
0,loc(ek), be defined as the diagonal

operator acting on each component as R0
0(λ), the Dirichlet resolvent on L2

comp([0,∞))

continued analytically to all of C:

R0
0(λ)f(x) =

∫ ∞
0

eiλ(x+y) − eiλ|x−y|

2iλ
f(y)dy.

To describe 1lr≤RR(λ) 1lr≤R we follow the general argument of [15] (see also [8, §4.2,4.3]).

For that we choose χj ∈ C∞c , j = 0, · · · , 3 to be equal to 1 on all edges and to satisfy

χj|ek ∈ C∞c ([0, 2R)), χ0|ek(x) = 1, x ≤ R, χj|ek(x) = 1, x ∈ suppχj−1|ek ,

for k = 1, · · · , K. For λ0 with Imλ0 > 0, we define

Q(λ, λ0) := (1− χ0)R0(λ)(1− χ1) + χ2R(λ0)χ1, Q(λ, λ0) : L2
comp → Dloc(P ).

Then

(P − λ2)Q(λ, λ0) = I +K(λ, λ0),

K0(λ, λ0) := −[P, χ0]R0(λ)(1− χ1) + (λ2
0 − λ2)χ2R(λ0)χ1 + [P, χ2]R(λ0)χ1.

We now choose λ0 = eπi/4µ, µ� 1. Then

I +K0(λ0, λ0) and I +K0(λ0, λ0)χ3 are invertible on L2, (4.2)

K(λ, λ0)χ3 is compact, and

R(λ) = Q(λ, λ0)(I +K0(λ, λ0)χ3)−1(I −K0(λ, λ0)(1− χ3)), (4.3)

where λ 7→ (I +K0(λ, λ0)χ3)−1 is a meromorphic family of operators. We now put

K(λ, λ0) := K0(λ, λ0)χ3

and conclude that

1lr≤RR(λ) 1lr≤R = 1lr≤RQ(λ, λ0)χ3(I +K(λ, λ0))−1 1lr≤R, (4.4)

and the set of resonances is given by the poles of (I + K(λ, λ0))−1. (See [8, §4.2] and

in particular [8, (4.2.19)].)

We now claim that K(λ, λ0) is of trace class for λ ∈ C and that for a any compact

subset Ω b C there exists a constant C3 depending only on Ω, L and λ0 such that

‖K(λ, λ0)‖tr ≤ C3. (4.5)
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To see this, let P̃ be the operator of H3R where we put, say the Neumann boundary

condition at 3R on each infinite lead. Let P̃min, P̃max be the same operators but on

metric graphs were all the length `j ∈ L, K + 1 ≤ j ≤ K + M were replaced by

`min := minL and `max := maxL respectively. These operators have discrete spectra

and the ordered eigenvalues of these operators satisfy

λp(P̃max) ≤ λp(P̃ ) ≤ λp(P̃min). (4.6)

This is a consequence of the following lemma:

Lemma 4.2. Suppose that the unbounded operator P̃k(t) : Hρ → Hρ, ρ > 0, with edge

length given by

`k(t) = ρ, 1 ≤ k ≤ K, `m(t) = e−δmkt`m, K + 1 ≤ m ≤M +K,

and

D(P̃k(t)) = {u : um ∈ H2([0, `m(t)]), um(v) = u`(v), v ∈ em ∩ e`,
∑
em3v

∂νum(v) = 0}.

If 0 = µ0(t) ≤ µ1(t) ≤ µ2(t) · · · , is the ordered sequence of eigenvalues of Pk(t), then

µp(t) is a non-decreasing function of t.

Proof. From [2, Theorem 3.10] we know that if µ is an eigenvalue of P (s) of multiplicity

N then we can choose analytic functions µn(t) ∈ R, un(t) ∈ D(P (s)), such that

µn(s) = µ, and for small t−s, P (t)un(t) = µn(t)un(t), and {un(t)}Nn=1 is an orthonormal

setting spanning 1l|P (t)−µ|≤ε L
2, for ε > 0 small enough. The lemma follows from

showing that ∂tµ
n(s) ≥ 0 for any n.

Without loss of generality we can assume that s = 0. We can then use the same

calculation as in (3.11) with z = µn(0), am(t) = δkmt and u = un(0). That gives

µ′p(0) = 2µp(0)〈u, u〉L2(ek) +
∑
v∈∂ek

∂νuk(v)uk(v).

Since uk(x) = a sin
√
µ
p
x+ b cos

√
µ
p
x , for some a, b ∈ R, a calculation shows that

µ′p(0) = µp(0)`k(a
2 + b2) ≥ 0,

completing the proof. �

The inequality (4.6) follows from the lemma as we can change the length of the edges

in succession. The Weyl law for P̃ (see [1]) and the fact that P̃χ3 = Pχ3 (where χ3

denotes the multiplication operator), now shows that for any operator A : L2 → D(P ),

‖χ3Aχ3‖tr ≤ C4‖Pχ3Aχ3‖+ C4‖χ3Aχ3‖,
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where the constant C4 depends only on L. From this we deduce (4.5) and ‖ • ‖ =

‖ • ‖L2→L2 . For instance,

‖[P, χ2]R(λ0)χ1‖tr ≤ C4‖P [P, χ2]R(λ0)χ1‖+ C4‖[P, χ2]R(λ0)χ1‖
= C4‖[P, [P, χ2]]R(λ0)χ1‖+ C4(1 + |λ0|2)‖[P, χ2]R(λ0)χ1‖
≤ C5.

Here we used the facts that χ2 ≡ 1 on the support of χ1, hence [P, χ2]χ1 = 0, and

that [P, [P, χ2]] [P, χ2] are second and first order operators respectively and that R(λ0)

maps L2 to D(P ). The other terms in K(λ, λ0) are estimated similarly and that gives

(4.5). (Finer estimates for large λ are possible – see [8, §4.3, §7.2] and [20]– but we

concentrate here on uniformity near a given energy.)

Now, let Ω3 = {λ : |λ−λ0| < R where R is large enough so that Ω2 ⊂ Ω3. It follows

that for a constant C3 depending only on Ω3 and L, (and hence only on Ω2), we have

| det(I +K(λ, λ0)| ≤ eC3 . (4.7)

(For basic facts about determinants see for instance [8, §B.5].) Writing

(I +K(λ0, λ0))−1 = (I − (I +K(λ0, λ0))−1K(λ0, λ0))

we obtain

| det(I +K(λ0, λ0))|−1 = | det(I +K(λ0, λ0)−1|
≤ exp

(
‖(I +K(λ0, λ0))−1‖‖K(λ0, λ0)‖tr

)
≤ eC4 ,

that is

| det(I +K(λ0, λ0))| ≥ e−C4 , (4.8)

where C4 depends only on λ0 and L. The Jensen formula (see for instance [21, §3.61])

then gives a bound on the number of zeros of det(I + K(λ, λ0)) in Ω3. That proves

the first bound in (4.1).

We can write

det(I +K(λ0, λ)) = eg(λ)
∏

ζ∈Res(P )∩Ω3

(λ− ζ),

where g(λ) is holomorphic in Ω3. From the upper bound (4.7) and the lower bound

(4.8) we conclude that |g(λ)| ≤ C5 in a smaller disc containing Ω2, with C5 depending

only on the previous constants. (For instance we can use the Borel–Carathéodory

inequality – see [21, §5.5].) Hence

| det(I +K(λ0, λ)| ≥ e−C6

∏
ζ∈Res(P )∩Ω2

|λ− ζ|, λ ∈ Ω1,

To deduce the the second bound in (4.1) from this we use the inequality

‖(I + A)−1‖ ≤ det(I + |A|)
| det(I + A)|
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which gives

‖ 1lr≤RR(λ) 1lr≤R ‖ = ‖ 1lr≤RQ(λ, λ0)χ3(I +K(λ, λ0))−1 1lr≤R ‖
≤ ‖ 1lr≤RQ(λ, λ0)χ3‖| det(I + |K(λ, λ0))|| det(I +K(λ, λ0))|−1

≤ C7e
‖K(λ,λ0)‖tr

∏
ζ∈Res(P )∩Ω2

|λ− ζ|−1,

for λ ∈ Ω1 and C7 depending only on Ωj’s L, and R. This completes the proof. �

Before proving Theorem 2 we will use the construction of the meromorphic contin-

uation in the proof of Proposition 4.1 to give a general condition for smoothness of a

family of resonances (see also [16]):

(P (t)− λ2
0)−1 ∈ C∞((−t0, t0);L(L2, L2)), Imλ0 > 0. (4.9)

That is the only property used in the proof of

Proposition 4.3. Let P (t) be the family of unbounded operators on L2 (of a fixed

metric graph) defined by (3.3). Let R(λ, t) be the resolvent of P (t) meromorphically

continued to C. Suppose that γ is a smooth Jordan curve such that R(λ, t) has no poles

on γ for |t| < t0. Then for χj ∈ C∞c , j = 1, 2,∫
γ

χ1R(ζ, t)χ2dζ ∈ C∞((−t0, t0);L(L2, L2)). (4.10)

In particular, if λ0 is a simple pole of R(λ, 0) then there exist smooth families t 7→ λ(t)

and t 7→ u(t) ∈ Dloc(P (t)) such that λ(0) = λ0, λ(t) ∈ Res(P (t)) and u(t) is a resonant

state of P (t) corresponding to λ(t).

Proof. The proof of (4.10) under the condition (4.9) follows from (4.4) and the defini-

tions of Q(λ, λ0) and K(λ, λ0). From that the conclusion about the deformation of a

simple resonance is immediate – see [8, Theorems 4.7,4.9].

It remains to establish (4.9). Suppose f ∈ L2 and define u(t) := R(λ0, t)f ∈
L2. Formally, u̇ := ∂tu(t) satisfies (3.8) with ż = 0 and z = λ2

0. We can find a

smooth family g(t) ∈ L2 satisfying (3.9) with u = u(t). We then have ∂tu(t) =

g+R(λ0, t)(−2∂ta(t)u(t)−G(t)), where Gm := (−e−2a(t)∂2
x−λ2

0)gm(t). By considering

difference quotients a similar argument shows that u(t) ∈ L2 is differentiable. The

argument can be iterated showing that u(t) ∈ C∞((−t0, t0), L2) and that proves (4.9).

�

We now give

Proof of Theorem 2. We proceed by contradiction by assuming that, for 0 < δ � ρ�
1 to be chosen,

Res(P ) ∩ (Ω(ρ, δ) +D(0, δ)) = ∅, Ω(ρ, δ) := [λ0 − ρ, λ0 + ρ]− i[0, δ]
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does not contain any resonances. Choosing pre-compact open sets, independent of ε, ρ

and δ, Ω(ρ, δ) +D(0, δ) b Ω1 b Ω2 we apply Proposition 4.1 to see that for

‖ 1lr≤RR(λ) 1lr≤R ‖ ≤ C2δ
−C1 , λ ∈ Ω(ρ, δ). (4.11)

On the other hand, the resolvent estimate in the physical half-plane Imλ > 0 and the

fact that λ0 ∈ I b (0,∞), give

‖ 1lr≤RR(λ) 1lr≤R ‖ ≤ C3/ Imλ, Imλ > 0, |Reλ− Reλ0| < ρ. (4.12)

To derive a contradiction we use the following simple lemma:

Lemma 4.4. Suppose that f(z) is holomorphic in a neighbourhood of Ω := [−ρ, ρ] +

i[−δ−, δ+], δ± > 0. Suppose that, for M > 1, M± > 0, and 0 < δ+ ≤ δ− < 1,

|f(z)| ≤M±, Im z = ±δ+, |Re z| ≤ ρ, |f(z)| ≤M, z ∈ Ω. (4.13)

and that ρ2 > (1 + 2 logM)δ2
−. Then

|f(0)| ≤ eM θ
+M

1−θ
− , θ :=

δ−
δ+ + δ−

. (4.14)

Proof. We consider the following subharmonic function defined in a neighbourhood of

Ω. To define it we put m± = logM±, m = logM > 0, z = x+ iy, and

u(z) := log |f(x+ iy)| − δ−m+ + δ+m− + y(m+ −m−)

δ+ + δ−
−Kx2 +Ky2,

where K := 2m/(ρ2− δ2
−). Then for Im z = ±δ±, |Re z| ≤ ρ, u(z) ≤ δ2

−K ≤ 1 since we

assumed ρ2 > (1 + 2m)δ2
−). When |Re z| = ρ then u(z) ≤ 2m−K(ρ2 − δ2

−) ≤ 0. The

maximum principle for subharmonic functions shows that log |f(0)|−θm+−(1−θ)m− ≤
1 and that concludes the proof. �

We apply this lemma to f(z) := 〈1lr≤RR(z + λ0) 1lr≤R ϕ, ψ〉, ϕ, ψ ∈ L2, with M+ =

C3/δ+, M = M− = C2δ
−C1 . If we show that

|f(0)| � 1

ε
‖ϕ‖‖ψ‖, (4.15)

we obtain a contradiction to (1.6) by putting ϕ = (P − λ2
0)u and ψ = u and using

the support property of u (the outgoing resolvent is the right inverse of P − λ2
0 on

compactly supported function):

1 = 〈R(λ0)(P − λ2
0)u, u〉 = 〈1lr≤RR(λ0) 1lr≤R(P − λ2

0)u, u〉 � 1

ε
ε� 1.

For γ < 1 choose γ < γ1 < γ2 < γ3 < 1 and put

ρ = εγ1 , δ− = εγ2 , δ+ = εγ3 .

Then (4.14) implies (4.15) and that completes the proof. �
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For completeness we also include the following proposition which would be a converse

to Theorem 2 for γ = 1. The more subtle higher dimensional version in the semiclassical

setting was given by Stefanov [18].

Proposition 4.5. Suppose that P satisfies the assumptions of Theorem 2 and let

R > 0, δ > 0. There exists a constant C0 depending only of R, δ and L such that for

any 0 < ε < δ/2,

D(λ0, ε) ∩ Res(P ) 6= ∅, λ0 > δ =⇒
∃u ∈ HR ∩ DP , ‖u‖ = 1, ‖(P − λ2

0)u‖ ≤ C0ε(λ0 + ε).
(4.16)

Proof. Suppose that λ a resonance of P with |λ−λ0| < ε and let v be the corresponding

resonant state. Then in each infinite lead, vm(x) = ame
iλx, 1 ≤ m ≤ K. As in (3.5),

Im(λ2)‖v‖2
H0

= − Im
K∑
m=1

∂xvm(0)v̄m(0) = − Im
K∑
m=1

iλ|am|2

= −Reλ
K∑
m=1

|am|2.

Since Reλ 6= 0, it follows that
∑K

m=1 |am|2 = 2| Imλ|‖v‖2
H0
≤ 2ε‖v‖2

H0
.

Suppose r < R/2 and χ ∈ C∞c ([0, 2)) is equal to 1 on [0, 1]. We then define ũ ∈
HR ∩ DP by

ũm(x) :=

{
χ(x/r)vm(x), 1 ≤ m ≤ K

vm(x) K + 1 ≤ m ≤ K +M.

Now,

‖ũ‖2 = ‖v‖2
H0

+
K∑
m=1

|am|2
∫
R
e2| Imλ|xχ(x/r)2dx = ‖v‖2

H0
(1 +O(εre2εr)),

and hence,

‖(P − λ2
0)ũ‖2 = |λ2 − λ2

0|2‖ũ‖2 + ‖[P, χ(•/r)]ũ‖2

≤ (2ε(λ0 + ε))2‖ũ‖2 + C

K∑
m=1

|am|2(r−2 + (λ0 + ε)2)e2εr

≤ Cr,δε
2(λ0 + ε)2‖v‖2

H0
.

We conclude that we can take u := ũ/‖ũ‖ as the quasimode. �
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