Journeés EDP, Evian-les-Bains

Soliton Scattering by Delta Impurities

Justin Holmer, Jeremy Marzuola, and Maciej Zworski UC Berkeley

9 Juin 2006

$$u(x,t) = A \operatorname{sech} \left(A(x-vt) \right) \exp(i\varphi + ivx + i(A^2 - v^2)t/2) \,,$$

$$u(x,t) = A \operatorname{sech} \left(A(x-vt) \right) \exp(i\varphi + ivx + i(A^2 - v^2)t/2) \,,$$

$A > 0, \quad v \in \mathbf{R}$,

$$u(x,t) = A \operatorname{sech} \left(A(x-vt) \right) \exp(i\varphi + ivx + i(A^2 - v^2)t/2) \,,$$

$A > 0, \quad v \in \mathbf{R}$,

It is a solution of the nonlinear Schrödinger equation (NLS):

$$u(x,t) = A \operatorname{sech} \left(A(x-vt) \right) \exp(i\varphi + ivx + i(A^2 - v^2)t/2) \,,$$

$A > 0, \quad v \in \mathbf{R}$,

It is a solution of the nonlinear Schrödinger equation (NLS):

$$i\partial_t u + \frac{1}{2}\partial_x^2 u + u|u|^2 = 0$$

$$\begin{cases} i\partial_t u + \frac{1}{2}\partial_x^2 u - q\delta_0(x)u + u|u|^2 = 0\\ u(x,0) = u_0(x) \end{cases}$$

$$\begin{cases} i\partial_t u + \frac{1}{2}\partial_x^2 u - q\delta_0(x)u + u|u|^2 = 0\\ u(x,0) = u_0(x) \end{cases}$$

As initial data we take a fast soliton:

$$\begin{cases} i\partial_t u + \frac{1}{2}\partial_x^2 u - q\delta_0(x)u + u|u|^2 = 0\\ u(x,0) = u_0(x) \end{cases}$$

As initial data we take a fast soliton:

$$u_0(x) = e^{ivx}\operatorname{sech}(x - x_0), \quad x_0 \le -v^{\epsilon}$$

$$\begin{cases} i\partial_t u + \frac{1}{2}\partial_x^2 u - q\delta_0(x)u + u|u|^2 = 0\\ u(x,0) = u_0(x) \end{cases}$$

As initial data we take a fast soliton:

$$u_0(x) = e^{ivx}\operatorname{sech}(x - x_0), \quad x_0 \le -v^{\epsilon}$$

Not surprisingly, the behaviour depends on the relation between v and q. We take q > 0 in this talk (more on q < 0 later).

$$T_q^{\rm s}(v) = \frac{1}{2} \lim_{t \to \infty} \int_0^\infty |u(t,x)|^2 dx \,, \quad \int_{\mathbf{R}} |u(t,x)|^2 dx = 2$$

$$T_q^{\rm s}(v) = \frac{1}{2} \lim_{t \to \infty} \int_0^\infty |u(t,x)|^2 dx \,, \quad \int_{\mathbf{R}} |u(t,x)|^2 dx = 2$$

The reflection coefficient is

$$R_q^{\rm s}(v) = \frac{1}{2} \lim_{t \to \infty} \int_{-\infty}^0 |u(t,x)|^2 dx$$

$$T_q^{\rm s}(v) = \frac{1}{2} \lim_{t \to \infty} \int_0^\infty |u(t,x)|^2 dx \,, \quad \int_{\mathbf{R}} |u(t,x)|^2 dx = 2$$

The reflection coefficient is

$$R_q^{\rm s}(v) = \frac{1}{2} \lim_{t \to \infty} \int_{-\infty}^0 |u(t,x)|^2 dx$$

$$T_q^{\rm s}(v) + R_q^{\rm s}(v) = 1$$

$$T_q^{s}(v) = \frac{1}{2} \lim_{t \to \infty} \int_0^\infty |u(t,x)|^2 dx, \quad \int_{\mathbf{R}} |u(t,x)|^2 dx = 2$$

The reflection coefficient is

$$R_q^{s}(v) = \frac{1}{2} \lim_{t \to \infty} \int_{-\infty}^0 |u(t,x)|^2 dx$$

$$T_q^{\rm s}(v) + R_q^{\rm s}(v) = 1$$

It is not clear if these limits exist!

Theorem 1. Fix δ ,

Theorem 1. Fix δ , $2/3 < \delta < 1$.

$$x_0 < -v^{1-\delta}$$

٠

$$x_0 < -v^{1-\delta}$$

٠

$$x_0 < -v^{1-\delta} \, .$$

$$\frac{1}{2} \int_{x>0} |u(x,t)|^2 dx$$

$$x_0 < -v^{1-\delta}$$

٠

$$\frac{1}{2} \int_{x>0} |u(x,t)|^2 dx = \frac{v^2}{v^2 + q^2}$$

$$x_0 < -v^{1-\delta}$$

٠

$$\frac{1}{2} \int_{x>0} |u(x,t)|^2 dx = \frac{v^2}{v^2 + q^2} + \mathcal{O}(v^{1-\frac{3}{2}\delta}), \quad v \to \infty,$$

$$x_0 < -v^{1-\delta}$$

٠

Then

$$\frac{1}{2} \int_{x>0} |u(x,t)|^2 dx = \frac{v^2}{v^2 + q^2} + \mathcal{O}(v^{1-\frac{3}{2}\delta}), \quad v \to \infty,$$

uniformly for

$$x_0 < -v^{1-\delta}$$

٠

Then

$$\frac{1}{2} \int_{x>0} |u(x,t)|^2 dx = \frac{v^2}{v^2 + q^2} + \mathcal{O}(v^{1-\frac{3}{2}\delta}), \quad v \to \infty,$$

uniformly for

$$|x_0|/v + v^{-\delta} \le t$$

$$x_0 < -v^{1-\delta}$$

٠

Then

$$\frac{1}{2} \int_{x>0} |u(x,t)|^2 dx = \frac{v^2}{v^2 + q^2} + \mathcal{O}(v^{1-\frac{3}{2}\delta}), \quad v \to \infty,$$

uniformly for

$$|x_0|/v + v^{-\delta} \le t \le (1 - \delta) \log v$$
.

$$x_0 < -v^{1-\delta}$$

٠

Then

$$\frac{1}{2} \int_{x>0} |u(x,t)|^2 dx = \frac{v^2}{v^2 + q^2} + \mathcal{O}(v^{1-\frac{3}{2}\delta}), \quad v \to \infty,$$

uniformly for

$$|x_0|/v + v^{-\delta} \le t \le (1 - \delta) \log v$$
.

More precisely, for $v > v_0$, $v_0 = v_0(q/v, \delta)$, we have the uniform bound above.

• blue: q/v = 0.6, and theoretical asymptotic 0.7353

- green: q/v = 0.8, and theoretical asymptotic 0.6098
- red: q/v = 1.0, and theoretical asymptotic 0.5000
- light blue: q/v = 1.2, and theoretical asymptotic 0.4098
- purple: q/v = 1.4, and theoretical asymptotic 0.3378

v	N_1	N_C	N_t	$T_q^{ m sol}(v)$	$ T_q^{\mathrm{sol}}(v) - u(t) _{x>0} _2^2 $
0.50	2000	500	2000	0.067885	0.00006272
1.0	2000	500	2000	0.362334	0.000019881
1.50	2000	500	2000	0.446162	0.000027733
2.0	2000	500	2000	0.472210	0.00009639
2.50	2000	500	2000	0.483348	0.00002937
3.00	2000	500	2000	0.489011	0.00001065

Table 1: Data for q = v.

v	N_1	N_C	N_t	$T_q^{ m sol}(v)$	$ T_q^{\mathrm{sol}}(v) - u(t) _{x>0} _2^2 $
0.50	2000	500	2000	0.067885	0.00006272
1.0	2000	500	2000	0.362334	0.000019881
1.50	2000	500	2000	0.446162	0.000027733
2.0	2000	500	2000	0.472210	0.00009639
2.50	2000	500	2000	0.483348	0.00002937
3.00	2000	500	2000	0.489011	0.00001065

Table 1: Data for q = v.

 N_{\bullet} are the number of grid points, in space, near the delta singularity, and in time, respectively.

A plot of $\log(\frac{1}{2} - T_q^s)$ versus $\log v$ in the case q = v, for data at velocities $v = 3, 4, 5, \ldots, 9, 10$. The slope of this line is -2, showing that the asymptotic agreement is $(\frac{1}{2} - T_q^s) \sim v^{-2}$.

Hence, we expect the following result:

$$T_q^{\rm s}(v) =$$
$$T_q^{\rm s}(v) = \frac{v^2}{v^2 + q^2}$$

$$T^{\mathrm{s}}_q(v) = \frac{v^2}{v^2 + q^2} + \mathcal{O}\left(\frac{1}{v^2}\right) \,,$$

$$T_q^{\rm s}(v) = rac{v^2}{v^2 + q^2} + \mathcal{O}\left(rac{1}{v^2}
ight), \quad t > t_0(x_0, v).$$

$$T_q^{\rm s}(v) = \frac{v^2}{v^2 + q^2} + \mathcal{O}\left(\frac{1}{v^2}\right), \quad t > t_0(x_0, v).$$

What is the interpretation of the right hand side?

$$T_q^{\rm s}(v) = \frac{v^2}{v^2 + q^2} + \mathcal{O}\left(\frac{1}{v^2}\right), \quad t > t_0(x_0, v).$$

What is the interpretation of the right hand side? It is the quantum transmission rate of the potential $q\delta_0$.

$$(H_q - \lambda^2/2)u = 0,$$

$$(H_q - \lambda^2/2)u = 0, \quad H_q = -\frac{1}{2}\frac{d^2}{dx^2} + q \,\delta_0(x)$$

$$(H_q - \lambda^2/2)u = 0, \quad H_q = -\frac{1}{2}\frac{d^2}{dx^2} + q \,\delta_0(x)$$

$$u(x) = A_{\pm}e^{-i\lambda x} + B_{\pm}e^{i\lambda x}, \ \pm x > 0.$$

$$(H_q - \lambda^2/2)u = 0, \quad H_q = -\frac{1}{2}\frac{d^2}{dx^2} + q \,\delta_0(x)$$

$$u(x) = A_{\pm}e^{-i\lambda x} + B_{\pm}e^{i\lambda x}, \ \pm x > 0.$$

$$(H_q - \lambda^2/2)u = 0, \quad H_q = -\frac{1}{2}\frac{d^2}{dx^2} + q \,\delta_0(x)$$

$$u(x) = A_{\pm}e^{-i\lambda x} + B_{\pm}e^{i\lambda x}, \ \pm x > 0.$$

 $S(\lambda)$

$$(H_q - \lambda^2/2)u = 0, \quad H_q = -\frac{1}{2}\frac{d^2}{dx^2} + q \,\delta_0(x)$$

$$u(x) = A_{\pm}e^{-i\lambda x} + B_{\pm}e^{i\lambda x}, \ \pm x > 0.$$

$$S(\lambda) = \begin{bmatrix} A_+ \\ B_- \end{bmatrix} \longmapsto \begin{bmatrix} A_- \\ B_+ \end{bmatrix},$$

$$(H_q - \lambda^2/2)u = 0, \quad H_q = -\frac{1}{2}\frac{d^2}{dx^2} + q \,\delta_0(x)$$

$$u(x) = A_{\pm}e^{-i\lambda x} + B_{\pm}e^{i\lambda x}, \ \pm x > 0.$$

$$S(\lambda) = \begin{bmatrix} A_+ \\ B_- \end{bmatrix} \longmapsto \begin{bmatrix} A_- \\ B_+ \end{bmatrix},$$

is called the scattering matrix

$$S(\lambda) =$$

$$S(\lambda) = \begin{bmatrix} t_q(\lambda) & r_q(\lambda) \\ r_q(\lambda) & t_q(\lambda) \end{bmatrix},$$

$$S(\lambda) = \begin{bmatrix} t_q(\lambda) & r_q(\lambda) \\ r_q(\lambda) & t_q(\lambda) \end{bmatrix},$$

$$t_q(\lambda) = rac{i\lambda}{i\lambda - q},$$

$$S(\lambda) = \begin{bmatrix} t_q(\lambda) & r_q(\lambda) \\ r_q(\lambda) & t_q(\lambda) \end{bmatrix},$$

$$t_q(\lambda) = \frac{i\lambda}{i\lambda - q}, \quad r_q(\lambda) = \frac{q}{i\lambda - q}$$

٠

$$S(\lambda) = \begin{bmatrix} t_q(\lambda) & r_q(\lambda) \\ r_q(\lambda) & t_q(\lambda) \end{bmatrix},$$

$$t_q(\lambda) = \frac{i\lambda}{i\lambda - q}, \quad r_q(\lambda) = \frac{q}{i\lambda - q}$$

٠

 $|t_q(\lambda)|^2 + |r_q(\lambda)|^2 = 1$,

$$S(\lambda) = \begin{bmatrix} t_q(\lambda) & r_q(\lambda) \\ r_q(\lambda) & t_q(\lambda) \end{bmatrix},$$

$$t_q(\lambda) = \frac{i\lambda}{i\lambda - q}, \quad r_q(\lambda) = \frac{q}{i\lambda - q}$$

٠

 $|t_q(\lambda)|^2 + |r_q(\lambda)|^2 = 1$, $t_q(\lambda) = 1 + r_q(\lambda)$.

$$S(\lambda) = \begin{bmatrix} t_q(\lambda) & r_q(\lambda) \\ r_q(\lambda) & t_q(\lambda) \end{bmatrix},$$

$$t_q(\lambda) = \frac{i\lambda}{i\lambda - q}, \quad r_q(\lambda) = \frac{q}{i\lambda - q}$$

٠

$$|t_q(\lambda)|^2 + |r_q(\lambda)|^2 = 1$$
, $t_q(\lambda) = 1 + r_q(\lambda)$.

The quantum transmission rate is given by

$$S(\lambda) = \begin{bmatrix} t_q(\lambda) & r_q(\lambda) \\ r_q(\lambda) & t_q(\lambda) \end{bmatrix},$$

$$t_q(\lambda) = \frac{i\lambda}{i\lambda - q}, \quad r_q(\lambda) = \frac{q}{i\lambda - q}$$

٠

$$|t_q(\lambda)|^2 + |r_q(\lambda)|^2 = 1$$
, $t_q(\lambda) = 1 + r_q(\lambda)$.

The quantum transmission rate is given by

$$T_q(v) = |t_q(v)|^2 = \frac{v^2}{v^2 + q^2}.$$

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right) \,,$$

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right) \,,$$

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right) \,,$$

where

 $u_T(t,x)$

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right) \,,$$

$$u_T(t,x) = A_T e^{i\varphi_T} e^{ivx + i(A_T^2 - v^2)t/2} \operatorname{sech}(A_T(x - x_0 - tv))$$

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right) \,,$$

$$u_T(t,x) = A_T e^{i\varphi_T} e^{ivx + i(A_T^2 - v^2)t/2} \operatorname{sech}(A_T(x - x_0 - tv))$$
$$\varphi_T = \arg t_q(v) + \varphi_0(|t_q(v)|) + (1 - A_T^2)|x_0|/2v,$$

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right) \,,$$

$$u_T(t,x) = A_T e^{i\varphi_T} e^{ivx + i(A_T^2 - v^2)t/2} \operatorname{sech}(A_T(x - x_0 - tv))$$
 $\varphi_T = \arg t_q(v) + \varphi_0(|t_q(v)|) + (1 - A_T^2)|x_0|/2v,$
 $A_T(v/q)$

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right) \,,$$

$$\begin{split} u_T(t,x) &= A_T e^{i\varphi_T} e^{ivx + i(A_T^2 - v^2)t/2} \operatorname{sech}(A_T(x - x_0 - tv)) \\ \varphi_T &= \arg t_q(v) + \varphi_0(|t_q(v)|) + (1 - A_T^2)|x_0|/2v \,, \\ A_T(v/q) &= \end{split}$$

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right) \,,$$

$$\begin{split} u_T(t,x) &= A_T e^{i\varphi_T} e^{ivx + i(A_T^2 - v^2)t/2} \operatorname{sech}(A_T(x - x_0 - tv)) \\ \varphi_T &= \arg t_q(v) + \varphi_0(|t_q(v)|) + (1 - A_T^2)|x_0|/2v \,, \\ A_T(v/q) &= (2|t_q(v)| - 1)_+ \,, \end{split}$$

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right)$$

,

where

$$\begin{split} u_T(t,x) &= A_T e^{i\varphi_T} e^{ivx + i(A_T^2 - v^2)t/2} \operatorname{sech}(A_T(x - x_0 - tv)) \\ \varphi_T &= \arg t_q(v) + \varphi_0(|t_q(v)|) + (1 - A_T^2)|x_0|/2v \,, \\ A_T(v/q) &= (2|t_q(v)| - 1)_+ \,, \end{split}$$

and similarly for the reflected term u_R .

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right)$$

,

where

$$u_T(t,x) = A_T e^{i\varphi_T} e^{ivx + i(A_T^2 - v^2)t/2} \operatorname{sech}(A_T(x - x_0 - tv))$$
$$\varphi_T = \arg t_q(v) + \varphi_0(|t_q(v)|) + (1 - A_T^2)|x_0|/2v,$$
$$A_T(v/q) = (2|t_q(v)| - 1)_+,$$

and similarly for the reflected term u_R . When $2|t_q(v)| = 1$ or $2|r_q(v)| = 1$,

$$u(t,x) = u_R(t,x) + u_T(t,x) + \mathcal{O}_{L^2_x}\left(\frac{1}{v^{1-\frac{3}{2}\delta}}\right) + \mathcal{O}_{L^\infty_x}\left(\frac{1}{\sqrt{t}}\right) \,,$$

where

$$\begin{split} u_T(t,x) &= A_T e^{i\varphi_T} e^{ivx + i(A_T^2 - v^2)t/2} \operatorname{sech}(A_T(x - x_0 - tv)) \\ \varphi_T &= \arg t_q(v) + \varphi_0(|t_q(v)|) + (1 - A_T^2)|x_0|/2v \,, \\ A_T(v/q) &= (2|t_q(v)| - 1)_+ \,, \end{split}$$

and similarly for the reflected term u_R .

When $2|t_q(v)| = 1$ or $2|r_q(v)| = 1$, the L^{∞} error becomes,

Theorem 2. For $|x_0|/v + 1 \le t \le (1 - \delta) \log v$ $u(t, x) = u_R(t, x) + u_T(t, x) + \mathcal{O}_{L_x^2} \left(\frac{1}{v^{1 - \frac{3}{2}\delta}}\right) + \mathcal{O}_{L_x^\infty} \left(\frac{1}{\sqrt{t}}\right),$

where

$$\begin{split} u_T(t,x) &= A_T e^{i\varphi_T} e^{ivx + i(A_T^2 - v^2)t/2} \operatorname{sech}(A_T(x - x_0 - tv)) \\ \varphi_T &= \arg t_q(v) + \varphi_0(|t_q(v)|) + (1 - A_T^2)|x_0|/2v \,, \\ A_T(v/q) &= (2|t_q(v)| - 1)_+ \,, \end{split}$$

and similarly for the reflected term u_R . When $2|t_q(v)| = 1$ or $2|r_q(v)| = 1$, the L^{∞} error becomes,

 $\mathcal{O}_{L^\infty_x}(\log t/\sqrt{t})$.

What is $\varphi(\alpha)$?
$$\varphi(\alpha) = \int_0^\infty \log\left(1 + \frac{\sin^2 \pi \alpha}{\cosh^2 \pi \zeta}\right) \frac{\zeta}{\zeta^2 + (2\alpha - 1)^2} d\zeta \,,$$

$$\varphi(\alpha) = \int_0^\infty \log\left(1 + \frac{\sin^2 \pi \alpha}{\cosh^2 \pi \zeta}\right) \frac{\zeta}{\zeta^2 + (2\alpha - 1)^2} d\zeta \,,$$

$$\varphi(\alpha) = \int_0^\infty \log\left(1 + \frac{\sin^2 \pi \alpha}{\cosh^2 \pi \zeta}\right) \frac{\zeta}{\zeta^2 + (2\alpha - 1)^2} d\zeta \,,$$

Notice that the plot on the right appears to be slowly converging to $\varphi(0.8) \simeq 0.045$. This plot represents the difference of two numbers of size ~ 100 by the end of the computation, and must therefore be taken with a grain of salt. A nice bottle of wine for a nice expression for this integral!

Soliton scattering rates compared with quantum scattering rates.

The constants in the Strichartz estimate for H_q are independent of $q \ge 0$:

The constants in the Strichartz estimate for H_q are independent of $q \ge 0$:

 $i\partial_t u(x,t) + \frac{1}{2}\partial_x^2 u(x,t) - q\delta_0(x)u(x,t) = f(x,t),$

The constants in the Strichartz estimate for H_q are independent of $q \ge 0$:

$$i\partial_t u(x,t) + \frac{1}{2}\partial_x^2 u(x,t) - q\delta_0(x)u(x,t) = f(x,t),$$

 $u(x,0) = u_0(x).$

The constants in the Strichartz estimate for H_q are independent of $q \ge 0$:

$$i\partial_t u(x,t) + \frac{1}{2}\partial_x^2 u(x,t) - q\delta_0(x)u(x,t) = f(x,t),$$

 $u(x,0) = u_0(x).$

 $\|u\|_{L^q_t L^r_x}$

The constants in the Strichartz estimate for H_q are independent of $q \ge 0$:

$$i\partial_t u(x,t) + \frac{1}{2}\partial_x^2 u(x,t) - q\delta_0(x)u(x,t) = f(x,t),$$

 $u(x,0) = u_0(x).$

$$||u||_{L^q_t L^r_x} \le C ||u_0||_{L^2} + C ||f||_{L^{\tilde{q}}_t L^{\tilde{r}}_x},$$

The constants in the Strichartz estimate for H_q are independent of $q \ge 0$:

$$i\partial_t u(x,t) + \frac{1}{2}\partial_x^2 u(x,t) - q\delta_0(x)u(x,t) = f(x,t),$$

 $u(x,0) = u_0(x).$

$$||u||_{L^q_t L^r_x} \le C ||u_0||_{L^2} + C ||f||_{L^{\tilde{q}}_t L^{\tilde{r}}_x},$$

 $2 \le q, r \le \infty \,,$

The constants in the Strichartz estimate for H_q are independent of $q \ge 0$:

$$i\partial_t u(x,t) + \frac{1}{2}\partial_x^2 u(x,t) - q\delta_0(x)u(x,t) = f(x,t),$$

 $u(x,0) = u_0(x).$

$$||u||_{L^{q}_{t}L^{r}_{x}} \leq C||u_{0}||_{L^{2}} + C||f||_{L^{\tilde{q}}_{t}L^{\tilde{r}}_{x}},$$

 $2 \leq q, r \leq \infty \,, \ \ 1 \leq \tilde{q}, \tilde{r} \leq 2 \,,$

The constants in the Strichartz estimate for H_q are independent of $q \ge 0$:

$$i\partial_t u(x,t) + \frac{1}{2}\partial_x^2 u(x,t) - q\delta_0(x)u(x,t) = f(x,t),$$

 $u(x,0) = u_0(x).$

$$\begin{aligned} \|u\|_{L^q_t L^r_x} &\leq C \|u_0\|_{L^2} + C \|f\|_{L^{\tilde{q}}_t L^{\tilde{r}}_x} ,\\ 2 &\leq q, r \leq \infty \,, \ \ 1 \leq \tilde{q}, \tilde{r} \leq 2 \,, \ \ \frac{2}{q} + \frac{1}{r} = \frac{1}{2} \,, \end{aligned}$$

The constants in the Strichartz estimate for H_q are independent of $q \ge 0$:

$$i\partial_t u(x,t) + \frac{1}{2}\partial_x^2 u(x,t) - q\delta_0(x)u(x,t) = f(x,t),$$

 $u(x,0) = u_0(x).$

$$\begin{aligned} \|u\|_{L^q_t L^r_x} &\leq C \|u_0\|_{L^2} + C \|f\|_{L^{\tilde{q}}_t L^{\tilde{r}}_x}, \\ 2 &\leq q, r \leq \infty, \quad 1 \leq \tilde{q}, \tilde{r} \leq 2, \quad \frac{2}{q} + \frac{1}{r} = \frac{1}{2}, \quad \frac{2}{\tilde{q}} + \frac{1}{\tilde{r}} = \frac{5}{2}. \end{aligned}$$

The constants in the Strichartz estimate for H_q are independent of $q \ge 0$:

$$i\partial_t u(x,t) + \frac{1}{2}\partial_x^2 u(x,t) - q\delta_0(x)u(x,t) = f(x,t),$$

 $u(x,0) = u_0(x).$

$$\begin{aligned} \|u\|_{L^q_t L^r_x} &\leq C \|u_0\|_{L^2} + C \|f\|_{L^{\tilde{q}}_t L^{\tilde{r}}_x} ,\\ 2 &\leq q, r \leq \infty , \ 1 \leq \tilde{q}, \tilde{r} \leq 2 , \ \frac{2}{q} + \frac{1}{r} = \frac{1}{2} , \ \frac{2}{\tilde{q}} + \frac{1}{\tilde{r}} = \frac{5}{2} \end{aligned}$$

Since " $\delta_0 \in L^1_x$ " we can take $f = g(t)\delta_0(x)$ and use $\|g\|_{L^{4/3}_t}$ on the right hand side.

 $0 \le t \le t_1$, $t_1 = |x_0|/v - v^{-\delta}$

$$0 \le t \le t_1$$
, $t_1 = |x_0|/v - v^{-\delta}$

No real interaction with the delta obstacle:

$$0 \le t \le t_1$$
, $t_1 = |x_0|/v - v^{-\delta}$

No real interaction with the delta obstacle:

$$u(x,t) = e^{-itv^2/2}e^{it/2}e^{ixv}\operatorname{sech}(x-x_0-vt)$$

$$0 \le t \le t_1$$
, $t_1 = |x_0|/v - v^{-\delta}$

No real interaction with the delta obstacle:

$$u(x,t) = e^{-itv^2/2}e^{it/2}e^{ixv}\operatorname{sech}(x - x_0 - vt) + \mathcal{O}(qe^{-v^{1-\delta}}),$$

$$0 \le t \le t_1$$
, $t_1 = |x_0|/v - v^{-\delta}$

No real interaction with the delta obstacle:

$$u(x,t) = e^{-itv^2/2} e^{it/2} e^{ixv} \operatorname{sech}(x - x_0 - vt) + \mathcal{O}(q e^{-v^{1-\delta}}),$$

If we further require that

$$0 \le t \le t_1$$
, $t_1 = |x_0|/v - v^{-\delta}$

No real interaction with the delta obstacle:

$$u(x,t) = e^{-itv^2/2}e^{it/2}e^{ixv}\operatorname{sech}(x - x_0 - vt) + \mathcal{O}(qe^{-v^{1-\delta}}),$$

If we further require that $v^{-3/2}e^{v^{1-\delta}} \geq q/v$

$$0 \le t \le t_1$$
, $t_1 = |x_0|/v - v^{-\delta}$

No real interaction with the delta obstacle:

$$u(x,t) = e^{-itv^2/2} e^{it/2} e^{ixv} \operatorname{sech}(x - x_0 - vt) + \mathcal{O}(q e^{-v^{1-\delta}}),$$

If we further require that $v^{-3/2}e^{v^{1-\delta}} \geq q/v$ then

$$0 \le t \le t_1$$
, $t_1 = |x_0|/v - v^{-\delta}$

No real interaction with the delta obstacle:

$$u(x,t) = e^{-itv^2/2} e^{it/2} e^{ixv} \operatorname{sech}(x - x_0 - vt) + \mathcal{O}(q e^{-v^{1-\delta}}),$$

If we further require that $v^{-3/2}e^{v^{1-\delta}} \geq q/v$ then

$$q e^{-v^{1-\delta}} \le v^{-1/2} \le v^{-\delta/2}$$
.

Phase 2 (Interaction).

 $t_1 \le t \le t_2 = t_1 + 2v^{-\delta},$

 $t_1 \le t \le t_2 = t_1 + 2v^{-\delta},$

 $u(x,t_2)$

 $t_1 \le t \le t_2 = t_1 + 2v^{-\delta},$

$$u(x, t_2) = t(v)e^{-it_2v^2/2}e^{it_2/2}e^{ixv}\operatorname{sech}(x - x_0 - vt_2)$$

+ $r(v)e^{-it_2v^2/2}e^{it_2/2}e^{-ixv}\operatorname{sech}(x + x_0 + vt_2)$
+ $\mathcal{O}(v^{-\frac{1}{2}\delta})$

• Solution is approximated by the linear flow

- Solution is approximated by the linear flow
- Linear flow is approximated by the sum of

- Solution is approximated by the linear flow
- Linear flow is approximated by the sum of transmitted and reflected free linear flows

- Solution is approximated by the linear flow
- Linear flow is approximated by the sum of transmitted and reflected free linear flows
- Free linear flow is approximated by the free

• Solution is approximated by the linear flow

- Linear flow is approximated by the sum of transmitted and reflected free linear flows
- Free linear flow is approximated by the free nonlinear flow

Now $t_2 < t < t_3 = t_2 + (1 - \delta) \log v$

Now $t_2 < t < t_3 = t_2 + (1 - \delta) \log v$ and a perturbative

Now $t_2 < t < t_3 = t_2 + (1 - \delta) \log v$ and a perturbative argument enables us to evolve in time at the expense

Now $t_2 < t < t_3 = t_2 + (1 - \delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error

Now $t_2 < t < t_3 = t_2 + (1 - \delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error by a multiplicative factor of

Now $t_2 < t < t_3 = t_2 + (1 - \delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error by a multiplicative factor of $e^{(1-\delta)\log v} = v^{1-\delta}$.

Now $t_2 < t < t_3 = t_2 + (1 - \delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error by a multiplicative factor of $e^{(1-\delta)\log v} = v^{1-\delta}$.

The error thus goes from $v^{-\delta/2}$ at $t = t_2$ to

Now $t_2 < t < t_3 = t_2 + (1 - \delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error by a multiplicative factor of $e^{(1-\delta)\log v} = v^{1-\delta}$.

The error thus goes from $v^{-\delta/2}$ at $t = t_2$ to

$$v^{1-\frac{3}{2}\delta}$$

Now $t_2 < t < t_3 = t_2 + (1 - \delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error by a multiplicative factor of $e^{(1-\delta)\log v} = v^{1-\delta}$.

The error thus goes from $v^{-\delta/2}$ at $t = t_2$ to

$$v^{1-\frac{3}{2}\delta}$$

at $t = t_3$.

Hence u(x,t) =

Hence u(x,t) =

$$\begin{aligned} e^{-itv^2/2} e^{it_2/2} e^{ixv} \mathsf{NLS}_0(t-t_2) [t(v)\mathsf{sech}(x)](x-x_0-tv) \\ &+ e^{-itv^2/2} e^{it_2/2} e^{-ixv} \mathsf{NLS}_0(t-t_2) [r(v)\mathsf{sech}(x)](x+x_0+tv) \\ &+ \mathcal{O}(v^{1-\frac{3}{2}\delta}), \qquad t_2 \le t \le t_3 \end{aligned}$$

 $NLS_0(\alpha \operatorname{sech}) =$

Phase 4 (New solitons). $\int_{-\infty}^{\infty} \frac{1}{100} \frac{1}{100}$

$$e^{i\varphi(\alpha)}\mathsf{NLS}_0((2\alpha-1)^{\frac{1}{2}}\mathsf{sech}((2\alpha-1)^{\frac{1}{2}}ullet))$$

Phase 4 (New solitons). $\int_{-\infty}^{-\infty} \frac{1}{40} = 0$ $(\alpha \text{ sech}) = 0$

$$e^{i\varphi(\alpha)}\mathsf{NLS}_0((2\alpha-1)^{\frac{1}{2}}\mathsf{sech}((2\alpha-1)^{\frac{1}{2}}\bullet)) + \mathcal{O}_{L^{\infty}}(t^{-\frac{1}{2}})$$

Phase 4 (New solitons). $\int_{-100}^{-100} \frac{1}{-80} \frac{1}$

$$e^{i\varphi(\alpha)}\mathsf{NLS}_0((2\alpha-1)^{\frac{1}{2}}\mathsf{sech}((2\alpha-1)^{\frac{1}{2}}\bullet)) + \mathcal{O}_{L^{\infty}}(t^{-\frac{1}{2}})$$

for $1/2 < \alpha < 1$.

Phase 4 (New solitons). $\int_{0}^{0} \frac{1}{40} \frac{1$

$$e^{i\varphi(\alpha)}\mathsf{NLS}_0((2\alpha-1)^{\frac{1}{2}}\mathsf{sech}((2\alpha-1)^{\frac{1}{2}}\bullet)) + \mathcal{O}_{L^{\infty}}(t^{-\frac{1}{2}})$$

for $1/2 < \alpha < 1$.

The proof is based on the Inverse Scattering Method

Phase 4 (New solitons). $NLS_0(\alpha \operatorname{sech}) =$

$$e^{i\varphi(\alpha)}\mathsf{NLS}_0((2\alpha-1)^{\frac{1}{2}}\mathsf{sech}((2\alpha-1)^{\frac{1}{2}}\bullet)) + \mathcal{O}_{L^{\infty}}(t^{-\frac{1}{2}})$$

for $1/2 < \alpha < 1$.

The proof is based on the Inverse Scattering Method of Zakharov-Shabat, Manakov, Faddeev, Takhtajan,

Phase 4 (New solitons). NLS₀(α sech) =

$$e^{i\varphi(\alpha)}\mathsf{NLS}_0((2\alpha-1)^{\frac{1}{2}}\mathsf{sech}((2\alpha-1)^{\frac{1}{2}}\bullet)) + \mathcal{O}_{L^{\infty}}(t^{-\frac{1}{2}})$$

for $1/2 < \alpha < 1$.

The proof is based on the Inverse Scattering Method of Zakharov-Shabat, Manakov, Faddeev, Takhtajan, Its, Deift, Zhang, Kamvissis...

The key is a well known calculation of

The key is a well known calculation of the scattering matrix

The key is a well known calculation of

the scattering matrix for the Zakharov-Shabat system

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential $\alpha \operatorname{sech} x$:

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential $\alpha \operatorname{sech} x$:

 $t(\lambda)$

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential α sech x:

$$t(\lambda) = \frac{\Gamma(\frac{1}{2} + \alpha - i\lambda)\Gamma(\frac{1}{2} - \alpha - i\lambda)}{\Gamma(\frac{1}{2} - i\lambda)},$$

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential α sech x:

$$t(\lambda) = \frac{\Gamma(\frac{1}{2} + \alpha - i\lambda)\Gamma(\frac{1}{2} - \alpha - i\lambda)}{\Gamma(\frac{1}{2} - i\lambda)}, \quad r(\lambda)$$

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential $\alpha \operatorname{sech} x$:

$$t(\lambda) = \frac{\Gamma(\frac{1}{2} + \alpha - i\lambda)\Gamma(\frac{1}{2} - \alpha - i\lambda)}{\Gamma(\frac{1}{2} - i\lambda)}, \quad r(\lambda) = it(\lambda)\frac{\sin\pi\alpha}{\cosh\pi\lambda}$$

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential $\alpha \operatorname{sech} x$:

$$t(\lambda) = \frac{\Gamma(\frac{1}{2} + \alpha - i\lambda)\Gamma(\frac{1}{2} - \alpha - i\lambda)}{\Gamma(\frac{1}{2} - i\lambda)}, \quad r(\lambda) = it(\lambda)\frac{\sin\pi\alpha}{\cosh\pi\lambda}$$

So we end up with scattering coefficients again!

 Transmission rate of high velocity (numerically not so high!) solitons is given by the quantum transmission rate.

- Transmission rate of high velocity (numerically not so high!) solitons is given by the quantum transmission rate.
- Delta impurity splits the soliton into a reflected and transmitted solitons with precisely described parameters. The scattering is "inelastic" in the sense that some mass is lost to radiation $(\mathcal{O}_{L^{\infty}}(t^{-1/2}))$ and interaction errors $(\mathcal{O}_{L^2}(v^{-1/2}))$.

- Transmission rate of high velocity (numerically not so high!) solitons is given by the quantum transmission rate.
- Delta impurity splits the soliton into a reflected and transmitted solitons with precisely described parameters. The scattering is "inelastic" in the sense that some mass is lost to radiation $(\mathcal{O}_{L^{\infty}}(t^{-1/2}))$ and interaction errors $(\mathcal{O}_{L^2}(v^{-1/2}))$.
- Better error estimates are expected based on numerics ($\mathcal{O}_{L^2}(v^{-2})$)

- Transmission rate of high velocity (numerically not so high!) solitons is given by the quantum transmission rate.
- Delta impurity splits the soliton into a reflected and transmitted solitons with precisely described parameters. The scattering is "inelastic" in the sense that some mass is lost to radiation $(\mathcal{O}_{L^{\infty}}(t^{-1/2}))$ and interaction errors $(\mathcal{O}_{L^2}(v^{-1/2}))$.
- Better error estimates are expected based on numerics ($\mathcal{O}_{L^2}(v^{-2})$)
- Similar results are true for q < 0 (in progress...).