Journeés EDP, Evian-Ies-Bains

Soliton Scattering by Delta Impurities

Justin Holmer, Jeremy Marzuola, and Maciej Zworski

UC Berkeley
9 Juin 2006

A bright soliton is a travelling wave

A bright soliton is a travelling wave

$$
u(x, t)=A \operatorname{sech}(A(x-v t)) \exp \left(i \varphi+i v x+i\left(A^{2}-v^{2}\right) t / 2\right)
$$

A bright soliton is a travelling wave

$$
u(x, t)=A \operatorname{sech}(A(x-v t)) \exp \left(i \varphi+i v x+i\left(A^{2}-v^{2}\right) t / 2\right)
$$

$$
A>0, \quad v \in \mathbf{R}
$$

A bright soliton is a travelling wave

$$
u(x, t)=A \operatorname{sech}(A(x-v t)) \exp \left(i \varphi+i v x+i\left(A^{2}-v^{2}\right) t / 2\right)
$$

$$
A>0, \quad v \in \mathbf{R}
$$

It is a solution of the nonlinear Schrödinger equation (NLS):

A bright soliton is a travelling wave

$$
u(x, t)=A \operatorname{sech}(A(x-v t)) \exp \left(i \varphi+i v x+i\left(A^{2}-v^{2}\right) t / 2\right)
$$

$$
A>0, \quad v \in \mathbf{R}
$$

It is a solution of the nonlinear Schrödinger equation (NLS):

$$
i \partial_{t} u+\frac{1}{2} \partial_{x}^{2} u+u|u|^{2}=0
$$

Suppose now that we consider a perturbed NLS, that is, the Gross-Pitaevskii equation, by adding an external potential:

Suppose now that we consider a perturbed NLS, that is, the Gross-Pitaevskii equation, by adding an external potential:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\frac{1}{2} \partial_{x}^{2} u-q \delta_{0}(x) u+u|u|^{2}=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Suppose now that we consider a perturbed NLS, that is, the Gross-Pitaevskii equation, by adding an external potential:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\frac{1}{2} \partial_{x}^{2} u-q \delta_{0}(x) u+u|u|^{2}=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

As initial data we take a fast soliton:

Suppose now that we consider a perturbed NLS, that is, the Gross-Pitaevskii equation, by adding an external potential:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\frac{1}{2} \partial_{x}^{2} u-q \delta_{0}(x) u+u|u|^{2}=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

As initial data we take a fast soliton:

$$
u_{0}(x)=e^{i v x} \operatorname{sech}\left(x-x_{0}\right), \quad x_{0} \leq-v^{\epsilon} .
$$

Suppose now that we consider a perturbed NLS, that is, the Gross-Pitaevskii equation, by adding an external potential:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\frac{1}{2} \partial_{x}^{2} u-q \delta_{0}(x) u+u|u|^{2}=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

As initial data we take a fast soliton:

$$
u_{0}(x)=e^{i v x} \operatorname{sech}\left(x-x_{0}\right), \quad x_{0} \leq-v^{\epsilon} .
$$

Not surprisingly, the behaviour depends on the relation between v and q. We take $q>0$ in this talk (more on $q<0$ later).

For the soliton scattering the natural definition of the transmission rate is given by

For the soliton scattering the natural definition of the transmission rate is given by

$$
T_{q}^{\mathrm{s}}(v)=\frac{1}{2} \lim _{t \rightarrow \infty} \int_{0}^{\infty}|u(t, x)|^{2} d x, \quad \int_{\mathbf{R}}|u(t, x)|^{2} d x=2
$$

For the soliton scattering the natural definition of the transmission rate is given by

$$
T_{q}^{\mathrm{s}}(v)=\frac{1}{2} \lim _{t \rightarrow \infty} \int_{0}^{\infty}|u(t, x)|^{2} d x, \quad \int_{\mathbf{R}}|u(t, x)|^{2} d x=2
$$

The reflection coefficient is

$$
R_{q}^{\mathrm{s}}(v)=\frac{1}{2} \lim _{t \rightarrow \infty} \int_{-\infty}^{0}|u(t, x)|^{2} d x
$$

For the soliton scattering the natural definition of the transmission rate is given by

$$
T_{q}^{\mathrm{s}}(v)=\frac{1}{2} \lim _{t \rightarrow \infty} \int_{0}^{\infty}|u(t, x)|^{2} d x, \quad \int_{\mathbf{R}}|u(t, x)|^{2} d x=2
$$

The reflection coefficient is

$$
R_{q}^{\mathrm{s}}(v)=\frac{1}{2} \lim _{t \rightarrow \infty} \int_{-\infty}^{0}|u(t, x)|^{2} d x
$$

$$
T_{q}^{\mathrm{s}}(v)+R_{q}^{\mathrm{s}}(v)=1
$$

For the soliton scattering the natural definition of the transmission rate is given by

$$
T_{q}^{\mathrm{s}}(v)=\frac{1}{2} \lim _{t \rightarrow \infty} \int_{0}^{\infty}|u(t, x)|^{2} d x, \quad \int_{\mathbf{R}}|u(t, x)|^{2} d x=2
$$

The reflection coefficient is

$$
\begin{gathered}
R_{q}^{\mathrm{s}}(v)=\frac{1}{2} \lim _{t \rightarrow \infty} \int_{-\infty}^{0}|u(t, x)|^{2} d x \\
T_{q}^{\mathrm{s}}(v)+R_{q}^{\mathrm{s}}(v)=1
\end{gathered}
$$

It is not clear if these limits exist!

Theorem 1.

Theorem 1. Fix δ,

Theorem 1. Fix $\delta, 2 / 3<\delta<1$.

Theorem 1. Fix $\delta, 2 / 3<\delta<1$. Suppose that

Theorem 1. Fix $\delta, 2 / 3<\delta<1$. Suppose that

$$
x_{0}<-v^{1-\delta}
$$

Theorem 1. Fix $\delta, 2 / 3<\delta<1$. Suppose that

$$
x_{0}<-v^{1-\delta}
$$

Then

Theorem 1. Fix $\delta, 2 / 3<\delta<1$. Suppose that

$$
x_{0}<-v^{1-\delta}
$$

Then

$$
\frac{1}{2} \int_{x>0}|u(x, t)|^{2} d x
$$

Theorem 1. Fix $\delta, 2 / 3<\delta<1$. Suppose that

$$
x_{0}<-v^{1-\delta}
$$

Then

$$
\frac{1}{2} \int_{x>0}|u(x, t)|^{2} d x=\frac{v^{2}}{v^{2}+q^{2}}
$$

Theorem 1. Fix $\delta, 2 / 3<\delta<1$. Suppose that

$$
x_{0}<-v^{1-\delta}
$$

Then

$$
\frac{1}{2} \int_{x>0}|u(x, t)|^{2} d x=\frac{v^{2}}{v^{2}+q^{2}}+\mathcal{O}\left(v^{1-\frac{3}{2} \delta}\right), \quad v \rightarrow \infty
$$

Theorem 1. Fix $\delta, 2 / 3<\delta<1$. Suppose that

$$
x_{0}<-v^{1-\delta}
$$

Then

$$
\frac{1}{2} \int_{x>0}|u(x, t)|^{2} d x=\frac{v^{2}}{v^{2}+q^{2}}+\mathcal{O}\left(v^{1-\frac{3}{2} \delta}\right), \quad v \rightarrow \infty
$$

uniformly for

Theorem 1. Fix $\delta, 2 / 3<\delta<1$. Suppose that

$$
x_{0}<-v^{1-\delta}
$$

Then

$$
\frac{1}{2} \int_{x>0}|u(x, t)|^{2} d x=\frac{v^{2}}{v^{2}+q^{2}}+\mathcal{O}\left(v^{1-\frac{3}{2} \delta}\right), \quad v \rightarrow \infty
$$

uniformly for

$$
\left|x_{0}\right| / v+v^{-\delta} \leq t
$$

Theorem 1. Fix $\delta, 2 / 3<\delta<1$. Suppose that

$$
x_{0}<-v^{1-\delta}
$$

Then

$$
\frac{1}{2} \int_{x>0}|u(x, t)|^{2} d x=\frac{v^{2}}{v^{2}+q^{2}}+\mathcal{O}\left(v^{1-\frac{3}{2} \delta}\right), \quad v \rightarrow \infty
$$

uniformly for

$$
\left|x_{0}\right| / v+v^{-\delta} \leq t \leq(1-\delta) \log v
$$

Theorem 1. Fix $\delta, 2 / 3<\delta<1$. Suppose that

$$
x_{0}<-v^{1-\delta}
$$

Then

$$
\frac{1}{2} \int_{x>0}|u(x, t)|^{2} d x=\frac{v^{2}}{v^{2}+q^{2}}+\mathcal{O}\left(v^{1-\frac{3}{2} \delta}\right), \quad v \rightarrow \infty
$$

uniformly for

$$
\left|x_{0}\right| / v+v^{-\delta} \leq t \leq(1-\delta) \log v
$$

More precisely, for $v>v_{0}, v_{0}=v_{0}(q / v, \delta)$, we have the uniform bound above.

- blue: $q / v=0.6$, and theoretical asymptotic 0.7353
- green: $q / v=0.8$, and theoretical asymptotic 0.6098
- red: $q / v=1.0$, and theoretical asymptotic 0.5000
- light blue: $q / v=1.2$, and theoretical asymptotic 0.4098
- purple: $q / v=1.4$, and theoretical asymptotic 0.3378

v	N_{1}	N_{C}	N_{t}	$T_{q}^{\text {sol }}(v)$	$\left\|T_{q}^{\text {sol }}(v)-\left\\|\left.u(t)\right\|_{x>0}\right\\|_{2}^{2}\right\|$
0.50	2000	500	2000	0.067885	0.000006272
1.0	2000	500	2000	0.362334	0.000019881
1.50	2000	500	2000	0.446162	0.000027733
2.0	2000	500	2000	0.472210	0.000009639
2.50	2000	500	2000	0.483348	0.000002937
3.00	2000	500	2000	0.489011	0.000001065

Table 1: Data for $q=v$.

v	N_{1}	N_{C}	N_{t}	$T_{q}^{\text {sol }}(v)$	$\left\|T_{q}^{\text {sol }}(v)-\left\\|\left.u(t)\right\|_{x>0}\right\\|_{2}^{2}\right\|$
0.50	2000	500	2000	0.067885	0.000006272
1.0	2000	500	2000	0.362334	0.000019881
1.50	2000	500	2000	0.446162	0.000027733
2.0	2000	500	2000	0.472210	0.000009639
2.50	2000	500	2000	0.483348	0.000002937
3.00	2000	500	2000	0.489011	0.000001065

Table 1: Data for $q=v$.
N_{\bullet} are the number of grid points, in space, near the delta singularity, and in time, respectively.

A plot of $\log \left(\frac{1}{2}-T_{q}^{\mathrm{s}}\right)$ versus $\log v$ in the case $q=v$, for data at velocities $v=3,4,5, \ldots, 9,10$. The slope of this line is -2 , showing that the asymptotic agreement is
$\left(\frac{1}{2}-T_{q}^{\mathrm{s}}\right) \sim v^{-2}$.

Hence, we expect the following result:

$$
T_{q}^{\mathrm{s}}(v)=
$$

Hence, we expect the following result:

$$
T_{q}^{\mathrm{S}}(v)=\frac{v^{2}}{v^{2}+q^{2}}
$$

Hence, we expect the following result:

$$
T_{q}^{\mathrm{S}}(v)=\frac{v^{2}}{v^{2}+q^{2}}+\mathcal{O}\left(\frac{1}{v^{2}}\right)
$$

Hence, we expect the following result:

$$
T_{q}^{\mathrm{s}}(v)=\frac{v^{2}}{v^{2}+q^{2}}+\mathcal{O}\left(\frac{1}{v^{2}}\right), \quad t>t_{0}\left(x_{0}, v\right)
$$

Hence, we expect the following result:

$$
T_{q}^{\mathrm{S}}(v)=\frac{v^{2}}{v^{2}+q^{2}}+\mathcal{O}\left(\frac{1}{v^{2}}\right), \quad t>t_{0}\left(x_{0}, v\right)
$$

What is the interpretation of the right hand side?

Hence, we expect the following result:

$$
T_{q}^{\mathrm{s}}(v)=\frac{v^{2}}{v^{2}+q^{2}}+\mathcal{O}\left(\frac{1}{v^{2}}\right), \quad t>t_{0}\left(x_{0}, v\right)
$$

What is the interpretation of the right hand side?
It is the quantum transmission rate of the potential $q \delta_{0}$.
$\left(H_{q}-\lambda^{2} / 2\right) u=0$,

$$
\left(H_{q}-\lambda^{2} / 2\right) u=0, \quad H_{q}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+q \delta_{0}(x)
$$

$$
\begin{gathered}
\left(H_{q}-\lambda^{2} / 2\right) u=0, \quad H_{q}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+q \delta_{0}(x) \\
u(x)=A_{ \pm} e^{-i \lambda x}+B_{ \pm} e^{i \lambda x}, \pm x>0
\end{gathered}
$$

$$
\begin{gathered}
\left(H_{q}-\lambda^{2} / 2\right) u=0, \quad H_{q}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+q \delta_{0}(x) \\
u(x)=A_{ \pm} e^{-i \lambda x}+B_{ \pm} e^{i \lambda x}, \pm x>0
\end{gathered}
$$

The matrix

$$
\begin{gathered}
\left(H_{q}-\lambda^{2} / 2\right) u=0, \quad H_{q}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+q \delta_{0}(x) \\
u(x)=A_{ \pm} e^{-i \lambda x}+B_{ \pm} e^{i \lambda x}, \pm x>0
\end{gathered}
$$

The matrix
$S(\lambda)$

$$
\begin{gathered}
\left(H_{q}-\lambda^{2} / 2\right) u=0, \quad H_{q}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+q \delta_{0}(x) \\
u(x)=A_{ \pm} e^{-i \lambda x}+B_{ \pm} e^{i \lambda x}, \pm x>0
\end{gathered}
$$

The matrix

$$
S(\lambda)=\left[\begin{array}{l}
A_{+} \\
B_{-}
\end{array}\right] \longmapsto\left[\begin{array}{l}
A_{-} \\
B_{+}
\end{array}\right]
$$

$$
\begin{gathered}
\left(H_{q}-\lambda^{2} / 2\right) u=0, \quad H_{q}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+q \delta_{0}(x) \\
u(x)=A_{ \pm} e^{-i \lambda x}+B_{ \pm} e^{i \lambda x}, \pm x>0
\end{gathered}
$$

The matrix

$$
S(\lambda)=\left[\begin{array}{l}
A_{+} \\
B_{-}
\end{array}\right] \longmapsto\left[\begin{array}{l}
A_{-} \\
B_{+}
\end{array}\right],
$$

is called the scattering matrix

In our simple case it can be easily computed:

In our simple case it can be easily computed:

$$
S(\lambda)=
$$

In our simple case it can be easily computed:

$$
S(\lambda)=\left[\begin{array}{ll}
t_{q}(\lambda) & r_{q}(\lambda) \\
r_{q}(\lambda) & t_{q}(\lambda)
\end{array}\right]
$$

In our simple case it can be easily computed:

$$
\begin{aligned}
& S(\lambda)=\left[\begin{array}{ll}
t_{q}(\lambda) & r_{q}(\lambda) \\
r_{q}(\lambda) & t_{q}(\lambda)
\end{array}\right], \\
& t_{q}(\lambda)=\frac{i \lambda}{i \lambda-q}
\end{aligned}
$$

In our simple case it can be easily computed:

$$
\begin{gathered}
S(\lambda)=\left[\begin{array}{ll}
t_{q}(\lambda) & r_{q}(\lambda) \\
r_{q}(\lambda) & t_{q}(\lambda)
\end{array}\right] \\
t_{q}(\lambda)=\frac{i \lambda}{i \lambda-q}, \quad r_{q}(\lambda)=\frac{q}{i \lambda-q} .
\end{gathered}
$$

In our simple case it can be easily computed:

$$
\begin{gathered}
S(\lambda)=\left[\begin{array}{ll}
t_{q}(\lambda) & r_{q}(\lambda) \\
r_{q}(\lambda) & t_{q}(\lambda)
\end{array}\right], \\
t_{q}(\lambda)=\frac{i \lambda}{i \lambda-q}, \quad r_{q}(\lambda)=\frac{q}{i \lambda-q} . \\
\left|t_{q}(\lambda)\right|^{2}+\left|r_{q}(\lambda)\right|^{2}=1,
\end{gathered}
$$

In our simple case it can be easily computed:

$$
\begin{gathered}
S(\lambda)=\left[\begin{array}{ll}
t_{q}(\lambda) & r_{q}(\lambda) \\
r_{q}(\lambda) & t_{q}(\lambda)
\end{array}\right], \\
t_{q}(\lambda)=\frac{i \lambda}{i \lambda-q}, \quad r_{q}(\lambda)=\frac{q}{i \lambda-q} . \\
\left|t_{q}(\lambda)\right|^{2}+\left|r_{q}(\lambda)\right|^{2}=1, \quad t_{q}(\lambda)=1+r_{q}(\lambda) .
\end{gathered}
$$

In our simple case it can be easily computed:

$$
\begin{gathered}
S(\lambda)=\left[\begin{array}{ll}
t_{q}(\lambda) & r_{q}(\lambda) \\
r_{q}(\lambda) & t_{q}(\lambda)
\end{array}\right], \\
t_{q}(\lambda)=\frac{i \lambda}{i \lambda-q}, \quad r_{q}(\lambda)=\frac{q}{i \lambda-q} . \\
\left|t_{q}(\lambda)\right|^{2}+\left|r_{q}(\lambda)\right|^{2}=1, \quad t_{q}(\lambda)=1+r_{q}(\lambda) .
\end{gathered}
$$

The quantum transmission rate is given by

In our simple case it can be easily computed:

$$
\begin{gathered}
S(\lambda)=\left[\begin{array}{ll}
t_{q}(\lambda) & r_{q}(\lambda) \\
r_{q}(\lambda) & t_{q}(\lambda)
\end{array}\right], \\
t_{q}(\lambda)=\frac{i \lambda}{i \lambda-q}, \quad r_{q}(\lambda)=\frac{q}{i \lambda-q} . \\
\left|t_{q}(\lambda)\right|^{2}+\left|r_{q}(\lambda)\right|^{2}=1, \quad t_{q}(\lambda)=1+r_{q}(\lambda) .
\end{gathered}
$$

The quantum transmission rate is given by

$$
T_{q}(v)=\left|t_{q}(v)\right|^{2}=\frac{v^{2}}{v^{2}+q^{2}} .
$$

Theorem 2.

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

$$
u_{T}(t, x)
$$

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

$$
u_{T}(t, x)=A_{T} e^{i \varphi_{T}} e^{i v x+i\left(A_{T}^{2}-v^{2}\right) t / 2} \operatorname{sech}\left(A_{T}\left(x-x_{0}-t v\right)\right)
$$

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

$$
\begin{aligned}
u_{T}(t, x) & =A_{T} e^{i \varphi_{T}} e^{i v x+i\left(A_{T}^{2}-v^{2}\right) t / 2} \operatorname{sech}\left(A_{T}\left(x-x_{0}-t v\right)\right) \\
\varphi_{T} & =\arg t_{q}(v)+\varphi_{0}\left(\left|t_{q}(v)\right|\right)+\left(1-A_{T}^{2}\right)\left|x_{0}\right| / 2 v,
\end{aligned}
$$

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

$$
\begin{gathered}
u_{T}(t, x)=A_{T} e^{i \varphi_{T}} e^{i v x+i\left(A_{T}^{2}-v^{2}\right) t / 2} \operatorname{sech}\left(A_{T}\left(x-x_{0}-t v\right)\right) \\
\varphi_{T}=\arg t_{q}(v)+\varphi_{0}\left(\left|t_{q}(v)\right|\right)+\left(1-A_{T}^{2}\right)\left|x_{0}\right| / 2 v, \\
A_{T}(v / q)
\end{gathered}
$$

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

$$
\begin{gathered}
u_{T}(t, x)=A_{T} e^{i \varphi_{T}} e^{i v x+i\left(A_{T}^{2}-v^{2}\right) t / 2} \operatorname{sech}\left(A_{T}\left(x-x_{0}-t v\right)\right) \\
\varphi_{T}=\arg t_{q}(v)+\varphi_{0}\left(\left|t_{q}(v)\right|\right)+\left(1-A_{T}^{2}\right)\left|x_{0}\right| / 2 v, \\
A_{T}(v / q)=
\end{gathered}
$$

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

$$
\begin{gathered}
u_{T}(t, x)=A_{T} e^{i \varphi_{T}} e^{i v x+i\left(A_{T}^{2}-v^{2}\right) t / 2} \operatorname{sech}\left(A_{T}\left(x-x_{0}-t v\right)\right) \\
\varphi_{T}=\arg t_{q}(v)+\varphi_{0}\left(\left|t_{q}(v)\right|\right)+\left(1-A_{T}^{2}\right)\left|x_{0}\right| / 2 v, \\
A_{T}(v / q)=\left(2\left|t_{q}(v)\right|-1\right)_{+},
\end{gathered}
$$

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

$$
\begin{gathered}
u_{T}(t, x)=A_{T} e^{i \varphi_{T}} e^{i v x+i\left(A_{T}^{2}-v^{2}\right) t / 2} \operatorname{sech}\left(A_{T}\left(x-x_{0}-t v\right)\right) \\
\varphi_{T}=\arg t_{q}(v)+\varphi_{0}\left(\left|t_{q}(v)\right|\right)+\left(1-A_{T}^{2}\right)\left|x_{0}\right| / 2 v, \\
A_{T}(v / q)=\left(2\left|t_{q}(v)\right|-1\right)_{+},
\end{gathered}
$$

and similarly for the reflected term u_{R}.

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

$$
\begin{gathered}
u_{T}(t, x)=A_{T} e^{i \varphi_{T}} e^{i v x+i\left(A_{T}^{2}-v^{2}\right) t / 2} \operatorname{sech}\left(A_{T}\left(x-x_{0}-t v\right)\right) \\
\varphi_{T}=\arg t_{q}(v)+\varphi_{0}\left(\left|t_{q}(v)\right|\right)+\left(1-A_{T}^{2}\right)\left|x_{0}\right| / 2 v, \\
A_{T}(v / q)=\left(2\left|t_{q}(v)\right|-1\right)_{+},
\end{gathered}
$$

and similarly for the reflected term u_{R}.
When $2\left|t_{q}(v)\right|=1$ or $2\left|r_{q}(v)\right|=1$,

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

$$
\begin{gathered}
u_{T}(t, x)=A_{T} e^{i \varphi_{T}} e^{i v x+i\left(A_{T}^{2}-v^{2}\right) t / 2} \operatorname{sech}\left(A_{T}\left(x-x_{0}-t v\right)\right) \\
\varphi_{T}=\arg t_{q}(v)+\varphi_{0}\left(\left|t_{q}(v)\right|\right)+\left(1-A_{T}^{2}\right)\left|x_{0}\right| / 2 v, \\
A_{T}(v / q)=\left(2\left|t_{q}(v)\right|-1\right)_{+},
\end{gathered}
$$

and similarly for the reflected term u_{R}.
When $2\left|t_{q}(v)\right|=1$ or $2\left|r_{q}(v)\right|=1$, the L^{∞} error becomes,

Theorem 2. For $\left|x_{0}\right| / v+1 \leq t \leq(1-\delta) \log v$

$$
u(t, x)=u_{R}(t, x)+u_{T}(t, x)+\mathcal{O}_{L_{x}^{2}}\left(\frac{1}{v^{1-\frac{3}{2} \delta}}\right)+\mathcal{O}_{L_{x}^{\infty}}\left(\frac{1}{\sqrt{t}}\right)
$$

where

$$
\begin{gathered}
u_{T}(t, x)=A_{T} e^{i \varphi_{T}} e^{i v x+i\left(A_{T}^{2}-v^{2}\right) t / 2} \operatorname{sech}\left(A_{T}\left(x-x_{0}-t v\right)\right) \\
\varphi_{T}=\arg t_{q}(v)+\varphi_{0}\left(\left|t_{q}(v)\right|\right)+\left(1-A_{T}^{2}\right)\left|x_{0}\right| / 2 v, \\
A_{T}(v / q)=\left(2\left|t_{q}(v)\right|-1\right)_{+},
\end{gathered}
$$

and similarly for the reflected term u_{R}.
When $2\left|t_{q}(v)\right|=1$ or $2\left|r_{q}(v)\right|=1$, the L^{∞} error becomes,

$$
\mathcal{O}_{L_{x}^{\infty}}(\log t / \sqrt{t}) .
$$

What is $\varphi(\alpha)$?

What is $\varphi(\alpha)$?

$$
\varphi(\alpha)=\int_{0}^{\infty} \log \left(1+\frac{\sin ^{2} \pi \alpha}{\cosh ^{2} \pi \zeta}\right) \frac{\zeta}{\zeta^{2}+(2 \alpha-1)^{2}} d \zeta,
$$

What is $\varphi(\alpha)$?

$$
\varphi(\alpha)=\int_{0}^{\infty} \log \left(1+\frac{\sin ^{2} \pi \alpha}{\cosh ^{2} \pi \zeta}\right) \frac{\zeta}{\zeta^{2}+(2 \alpha-1)^{2}} d \zeta
$$

What is $\varphi(\alpha)$?

$$
\varphi(\alpha)=\int_{0}^{\infty} \log \left(1+\frac{\sin ^{2} \pi \alpha}{\cosh ^{2} \pi \zeta}\right) \frac{\zeta}{\zeta^{2}+(2 \alpha-1)^{2}} d \zeta,
$$

What is $\varphi(\alpha)$?

$$
\varphi(\alpha)=\int_{0}^{\infty} \log \left(1+\frac{\sin ^{2} \pi \alpha}{\cosh ^{2} \pi \zeta}\right) \frac{\zeta}{\zeta^{2}+(2 \alpha-1)^{2}} d \zeta
$$

Notice that the plot on the right appears to be slowly converging to $\varphi(0.8) \simeq 0.045$. This plot represents the difference of two numbers of size ~ 100 by the end of the computation, and must therefore be taken with a grain of salt. A nice bottle of wine for a nice expression for this integral!

Soliton scattering rates compared with quantum scattering rates.

The proof starts with the following crucial observation:

The proof starts with the following crucial observation:
The constants in the Strichartz estimate for H_{q} are independent of $q \geq 0$:

The proof starts with the following crucial observation: The constants in the Strichartz estimate for H_{q} are independent of $q \geq 0$:

$$
i \partial_{t} u(x, t)+\frac{1}{2} \partial_{x}^{2} u(x, t)-q \delta_{0}(x) u(x, t)=f(x, t),
$$

The proof starts with the following crucial observation: The constants in the Strichartz estimate for H_{q} are independent of $q \geq 0$:

$$
\begin{gathered}
i \partial_{t} u(x, t)+\frac{1}{2} \partial_{x}^{2} u(x, t)-q \delta_{0}(x) u(x, t)=f(x, t), \\
u(x, 0)=u_{0}(x)
\end{gathered}
$$

The proof starts with the following crucial observation: The constants in the Strichartz estimate for H_{q} are independent of $q \geq 0$:

$$
\begin{gathered}
i \partial_{t} u(x, t)+\frac{1}{2} \partial_{x}^{2} u(x, t)-q \delta_{0}(x) u(x, t)=f(x, t) \\
u(x, 0)=u_{0}(x) \\
\|u\|_{L_{t}^{q} L_{x}^{r}}
\end{gathered}
$$

The proof starts with the following crucial observation: The constants in the Strichartz estimate for H_{q} are independent of $q \geq 0$:

$$
\begin{gathered}
i \partial_{t} u(x, t)+\frac{1}{2} \partial_{x}^{2} u(x, t)-q \delta_{0}(x) u(x, t)=f(x, t) \\
u(x, 0)=u_{0}(x) \\
\|u\|_{L_{t}^{q} L_{x}^{r}} \leq C\left\|u_{0}\right\|_{L^{2}}+C\|f\|_{L_{t}^{\tilde{q}} L_{x}^{\tilde{x}}}
\end{gathered}
$$

The proof starts with the following crucial observation: The constants in the Strichartz estimate for H_{q} are independent of $q \geq 0$:

$$
\begin{gathered}
i \partial_{t} u(x, t)+\frac{1}{2} \partial_{x}^{2} u(x, t)-q \delta_{0}(x) u(x, t)=f(x, t) \\
u(x, 0)=u_{0}(x) \\
\|u\|_{L_{t}^{q} L_{x}^{r}} \leq C\left\|u_{0}\right\|_{L^{2}}+C\|f\|_{L_{t}^{\tilde{q}} L_{x}^{\tilde{x}}}
\end{gathered}
$$

$2 \leq q, r \leq \infty$,

The proof starts with the following crucial observation: The constants in the Strichartz estimate for H_{q} are independent of $q \geq 0$:

$$
\begin{gathered}
i \partial_{t} u(x, t)+\frac{1}{2} \partial_{x}^{2} u(x, t)-q \delta_{0}(x) u(x, t)=f(x, t), \\
u(x, 0)=u_{0}(x) . \\
\|u\|_{L_{t}^{q} L_{x}^{r}} \leq C\left\|u_{0}\right\|_{L^{2}}+C\|f\|_{L_{t}^{\tilde{q}} L_{x}^{\tilde{\tilde{x}}}} \\
2 \leq q, r \leq \infty, \quad 1 \leq \tilde{q}, \tilde{r} \leq 2
\end{gathered}
$$

The proof starts with the following crucial observation: The constants in the Strichartz estimate for H_{q} are independent of $q \geq 0$:

$$
\begin{gathered}
i \partial_{t} u(x, t)+\frac{1}{2} \partial_{x}^{2} u(x, t)-q \delta_{0}(x) u(x, t)=f(x, t), \\
u(x, 0)=u_{0}(x) . \\
\|u\|_{L_{t}^{q} L_{x}^{r}} \leq C\left\|u_{0}\right\|_{L^{2}}+C\|f\|_{L_{t}^{\tilde{L}} L_{x}^{\tilde{x}}} \\
2 \leq q, r \leq \infty, \quad 1 \leq \tilde{q}, \tilde{r} \leq 2, \quad \frac{2}{q}+\frac{1}{r}=\frac{1}{2},
\end{gathered}
$$

The proof starts with the following crucial observation: The constants in the Strichartz estimate for H_{q} are independent of $q \geq 0$:

$$
\begin{gathered}
i \partial_{t} u(x, t)+\frac{1}{2} \partial_{x}^{2} u(x, t)-q \delta_{0}(x) u(x, t)=f(x, t), \\
u(x, 0)=u_{0}(x) . \\
\|u\|_{L_{t}^{q} L_{x}^{r}} \leq C\left\|u_{0}\right\|_{L^{2}}+C\|f\|_{L_{t}^{\tilde{t}} L_{x}^{\tilde{x}}} \\
2 \leq q, r \leq \infty, \quad 1 \leq \tilde{q}, \tilde{r} \leq 2, \quad \frac{2}{q}+\frac{1}{r}=\frac{1}{2}, \quad \frac{2}{\tilde{q}}+\frac{1}{\tilde{r}}=\frac{5}{2} .
\end{gathered}
$$

The proof starts with the following crucial observation: The constants in the Strichartz estimate for H_{q} are independent of $q \geq 0$:

$$
\begin{gathered}
i \partial_{t} u(x, t)+\frac{1}{2} \partial_{x}^{2} u(x, t)-q \delta_{0}(x) u(x, t)=f(x, t), \\
u(x, 0)=u_{0}(x) . \\
\|u\|_{L_{t}^{q} L_{x}^{r}} \leq C\left\|u_{0}\right\|_{L^{2}}+C\|f\|_{L_{t}^{\tilde{q}} L_{x}^{\tilde{x}}}, \\
2 \leq q, r \leq \infty, \quad 1 \leq \tilde{q}, \tilde{r} \leq 2, \quad \frac{2}{q}+\frac{1}{r}=\frac{1}{2}, \quad \frac{2}{\tilde{q}}+\frac{1}{\tilde{r}}=\frac{5}{2} .
\end{gathered}
$$

Since " $\delta_{0} \in L_{x}^{1, "}$ we can take $f=g(t) \delta_{0}(x)$ and use $\|g\|_{L_{t}^{4 / 3}}$ on the right hand side.

Phase 1 (Pre-interaction).

Phase 1 (Pre-interaction).

Phase 1 (Pre-interaction).

$$
0 \leq t \leq t_{1}, t_{1}=\left|x_{0}\right| / v-v^{-\delta}
$$

Phase 1 (Pre-interaction).

$0 \leq t \leq t_{1}, t_{1}=\left|x_{0}\right| / v-v^{-\delta}$
No real interaction with the delta obstacle:

Phase 1 (Pre-interaction).

$0 \leq t \leq t_{1}, t_{1}=\left|x_{0}\right| / v-v^{-\delta}$
No real interaction with the delta obstacle:

$$
u(x, t)=e^{-i t v^{2} / 2} e^{i t / 2} e^{i x v} \operatorname{sech}\left(x-x_{0}-v t\right)
$$

Phase 1 (Pre-interaction).

$0 \leq t \leq t_{1}, t_{1}=\left|x_{0}\right| / v-v^{-\delta}$
No real interaction with the delta obstacle:

$$
u(x, t)=e^{-i t v^{2} / 2} e^{i t / 2} e^{i x v} \operatorname{sech}\left(x-x_{0}-v t\right)+\mathcal{O}\left(q e^{-v^{1-\delta}}\right)
$$

Phase 1 (Pre-interaction).

$$
0 \leq t \leq t_{1}, t_{1}=\left|x_{0}\right| / v-v^{-\delta}
$$

No real interaction with the delta obstacle:

$$
u(x, t)=e^{-i t v^{2} / 2} e^{i t / 2} e^{i x v} \operatorname{sech}\left(x-x_{0}-v t\right)+\mathcal{O}\left(q e^{-v^{1-\delta}}\right),
$$

If we further require that

Phase 1 (Pre-interaction).

$$
0 \leq t \leq t_{1}, t_{1}=\left|x_{0}\right| / v-v^{-\delta}
$$

No real interaction with the delta obstacle:

$$
u(x, t)=e^{-i t v^{2} / 2} e^{i t / 2} e^{i x v} \operatorname{sech}\left(x-x_{0}-v t\right)+\mathcal{O}\left(q e^{-v^{1-\delta}}\right)
$$

If we further require that $v^{-3 / 2} e^{v^{1-\delta}} \geq q / v$

Phase 1 (Pre-interaction).

$$
0 \leq t \leq t_{1}, t_{1}=\left|x_{0}\right| / v-v^{-\delta}
$$

No real interaction with the delta obstacle:

$$
u(x, t)=e^{-i t v^{2} / 2} e^{i t / 2} e^{i x v} \operatorname{sech}\left(x-x_{0}-v t\right)+\mathcal{O}\left(q e^{-v^{1-\delta}}\right)
$$

If we further require that $v^{-3 / 2} e^{v^{1-\delta}} \geq q / v$ then

Phase 1 (Pre-interaction).

$$
0 \leq t \leq t_{1}, t_{1}=\left|x_{0}\right| / v-v^{-\delta}
$$

No real interaction with the delta obstacle:

$$
u(x, t)=e^{-i t v^{2} / 2} e^{i t / 2} e^{i x v} \operatorname{sech}\left(x-x_{0}-v t\right)+\mathcal{O}\left(q e^{-v^{1-\delta}}\right)
$$

If we further require that $v^{-3 / 2} e^{v^{1-\delta}} \geq q / v$ then

$$
q e^{-v^{1-\delta}} \leq v^{-1 / 2} \leq v^{-\delta / 2}
$$

Phase 2 (Interaction).

Phase 2 (Interaction).

$$
t_{1} \leq t \leq t_{2}=t_{1}+2 v^{-\delta}
$$

Phase 2 (Interaction).

$$
t_{1} \leq t \leq t_{2}=t_{1}+2 v^{-\delta}
$$

$$
u\left(x, t_{2}\right)
$$

Phase 2 (Interaction).

$$
\begin{aligned}
t_{1} \leq t \leq t_{2}= & t_{1}+2 v^{-\delta} \\
\qquad & \\
& +\left(x, t_{2}\right)= \\
& t(v) e^{-i t_{2} v^{2} / 2} e^{i t_{2} / 2} e^{i x v} \operatorname{sech}\left(x-x_{0}-v t_{2}\right) \\
& +\mathcal{O}(v) e^{-i t_{2} v^{2} / 2} e^{i t_{2} / 2} e^{-i x v} \operatorname{sech}\left(x+x_{0}+v t_{2}\right) \\
&
\end{aligned}
$$

Phase 2 (Interaction).

- Solution is approximated by the linear flow

Phase 2 (Interaction).

- Solution is approximated by the linear flow
- Linear flow is approximated by the sum of

Phase 2 (Interaction).

- Solution is approximated by the linear flow
- Linear flow is approximated by the sum of transmitted and reflected free linear flows

Phase 2 (Interaction).

- Solution is approximated by the linear flow
- Linear flow is approximated by the sum of transmitted and reflected free linear flows
- Free linear flow is approximated by the free

Phase 2 (Interaction).

- Solution is approximated by the linear flow
- Linear flow is approximated by the sum of transmitted and reflected free linear flows
- Free linear flow is approximated by the free nonlinear flow

Phase 3 (Post-interaction).

Phase 3 (Post-interaction).

Phase 3 (Post-interaction).

Now $t_{2}<t<t_{3}=t_{2}+(1-\delta) \log v$

Phase 3 (Post-interaction).

Now $t_{2}<t<t_{3}=t_{2}+(1-\delta) \log v$ and a perturbative

Phase 3 (Post-interaction).

Now $t_{2}<t<t_{3}=t_{2}+(1-\delta) \log v$ and a perturbative argument enables us to evolve in time at the expense

Phase 3 (Post-interaction).

Now $t_{2}<t<t_{3}=t_{2}+(1-\delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error

Phase 3 (Post-interaction).

Now $t_{2}<t<t_{3}=t_{2}+(1-\delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error by a multiplicative factor of

Phase 3 (Post-interaction).

Now $t_{2}<t<t_{3}=t_{2}+(1-\delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error by a multiplicative factor of $e^{(1-\delta) \log v}=v^{1-\delta}$.

Phase 3 (Post-interaction).

Now $t_{2}<t<t_{3}=t_{2}+(1-\delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error by a multiplicative factor of $e^{(1-\delta) \log v}=v^{1-\delta}$.
The error thus goes from $v^{-\delta / 2}$ at $t=t_{2}$ to

Phase 3 (Post-interaction).

Now $t_{2}<t<t_{3}=t_{2}+(1-\delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error by a multiplicative factor of $e^{(1-\delta) \log v}=v^{1-\delta}$.
The error thus goes from $v^{-\delta / 2}$ at $t=t_{2}$ to

$$
v^{1-\frac{3}{2} \delta}
$$

Phase 3 (Post-interaction).

Now $t_{2}<t<t_{3}=t_{2}+(1-\delta) \log v$ and a perturbative argument enables us to evolve in time at the expense of enlarging the error by a multiplicative factor of $e^{(1-\delta) \log v}=v^{1-\delta}$.
The error thus goes from $v^{-\delta / 2}$ at $t=t_{2}$ to

$$
v^{1-\frac{3}{2} \delta}
$$

at $t=t_{3}$.

Phase 3 (Post-interaction).

Phase 3 (Post-interaction).

Hence $u(x, t)=$

Phase 3 (Post-interaction).

Hence $u(x, t)=$

$$
\begin{aligned}
& e^{-i t v^{2} / 2} e^{i t_{2} / 2} e^{i x v} \mathrm{NLS}_{0}\left(t-t_{2}\right)[t(v) \operatorname{sech}(x)]\left(x-x_{0}-t v\right) \\
& +e^{-i t v^{2} / 2} e^{i t_{2} / 2} e^{-i x v} \mathrm{NLS}_{0}\left(t-t_{2}\right)[r(v) \operatorname{sech}(x)]\left(x+x_{0}+t v\right) \\
& +\mathcal{O}\left(v^{1-\frac{3}{2} \delta}\right), \quad t_{2} \leq t \leq t_{3}
\end{aligned}
$$

Phase 4 (New solitons).

Phase 4 (New solitons).

Phase 4 (New solitons).

$\mathrm{NLS}_{0}(\alpha$ sech $)=$

Phase 4 (New solitons).

$\mathrm{NLS}_{0}(\alpha$ sech $)=$

$$
e^{i \varphi(\alpha)} \operatorname{NLS}_{0}\left((2 \alpha-1)^{\frac{1}{2}} \operatorname{sech}\left((2 \alpha-1)^{\frac{1}{2}} \bullet\right)\right)
$$

Phase 4 (New solitons).

$\mathrm{NLS}_{0}(\alpha$ sech $)=$

$$
e^{i \varphi(\alpha)} \operatorname{NLS}_{0}\left((2 \alpha-1)^{\frac{1}{2}} \operatorname{sech}\left((2 \alpha-1)^{\frac{1}{2}} \bullet\right)\right)+\mathcal{O}_{L^{\infty}}\left(t^{-\frac{1}{2}}\right)
$$

Phase 4 (New solitons).

$\mathrm{NLS}_{0}(\alpha$ sech $)=$

$$
e^{i \varphi(\alpha)} \operatorname{NLS}_{0}\left((2 \alpha-1)^{\frac{1}{2}} \operatorname{sech}\left((2 \alpha-1)^{\frac{1}{2}} \bullet\right)\right)+\mathcal{O}_{L^{\infty}}\left(t^{-\frac{1}{2}}\right)
$$

for $1 / 2<\alpha<1$.

Phase 4 (New solitons).

$\mathrm{NLS}_{0}(\alpha$ sech $)=$

$$
e^{i \varphi(\alpha)} \operatorname{NLS}_{0}\left((2 \alpha-1)^{\frac{1}{2}} \operatorname{sech}\left((2 \alpha-1)^{\frac{1}{2}} \bullet\right)\right)+\mathcal{O}_{L^{\infty}}\left(t^{-\frac{1}{2}}\right)
$$

for $1 / 2<\alpha<1$.
The proof is based on the Inverse Scattering Method

Phase 4 (New solitons).

$\mathrm{NLS}_{0}(\alpha$ sech $)=$

$$
e^{i \varphi(\alpha)} \operatorname{NLS}_{0}\left((2 \alpha-1)^{\frac{1}{2}} \operatorname{sech}\left((2 \alpha-1)^{\frac{1}{2}} \bullet\right)\right)+\mathcal{O}_{L^{\infty}}\left(t^{-\frac{1}{2}}\right)
$$

for $1 / 2<\alpha<1$.
The proof is based on the Inverse Scattering Method of Zakharov-Shabat, Manakov, Faddeev, Takhtajan,

Phase 4 (New solitons).

$\mathrm{NLS}_{0}(\alpha$ sech $)=$

$$
e^{i \varphi(\alpha)} \operatorname{NLS}_{0}\left((2 \alpha-1)^{\frac{1}{2}} \operatorname{sech}\left((2 \alpha-1)^{\frac{1}{2}} \bullet\right)\right)+\mathcal{O}_{L^{\infty}}\left(t^{-\frac{1}{2}}\right)
$$

for $1 / 2<\alpha<1$.
The proof is based on the Inverse Scattering Method of Zakharov-Shabat, Manakov, Faddeev, Takhtajan, Its, Deift, Zhang, Kamvissis...

Phase 4 (New solitons).

Phase 4 (New solitons).

Phase 4 (New solitons).

The key is a well known calculation of

Phase 4 (New solitons).

The key is a well known calculation of the scattering matrix

Phase 4 (New solitons).

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system

Phase 4 (New solitons).

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential $\alpha \operatorname{sech} x$:

Phase 4 (New solitons).

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential $\alpha \operatorname{sech} x$:
$t(\lambda)$

Phase 4 (New solitons).

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential $\alpha \operatorname{sech} x$:

$$
t(\lambda)=\frac{\Gamma\left(\frac{1}{2}+\alpha-i \lambda\right) \Gamma\left(\frac{1}{2}-\alpha-i \lambda\right)}{\Gamma\left(\frac{1}{2}-i \lambda\right)},
$$

Phase 4 (New solitons).

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential $\alpha \operatorname{sech} x$:

$$
t(\lambda)=\frac{\Gamma\left(\frac{1}{2}+\alpha-i \lambda\right) \Gamma\left(\frac{1}{2}-\alpha-i \lambda\right)}{\Gamma\left(\frac{1}{2}-i \lambda\right)}, r(\lambda)
$$

Phase 4 (New solitons).

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential $\alpha \operatorname{sech} x$:

$$
t(\lambda)=\frac{\Gamma\left(\frac{1}{2}+\alpha-i \lambda\right) \Gamma\left(\frac{1}{2}-\alpha-i \lambda\right)}{\Gamma\left(\frac{1}{2}-i \lambda\right)}, \quad r(\lambda)=i t(\lambda) \frac{\sin \pi \alpha}{\cosh \pi \lambda} .
$$

Phase 4 (New solitons).

The key is a well known calculation of the scattering matrix for the Zakharov-Shabat system with the potential $\alpha \operatorname{sech} x$:

$$
t(\lambda)=\frac{\Gamma\left(\frac{1}{2}+\alpha-i \lambda\right) \Gamma\left(\frac{1}{2}-\alpha-i \lambda\right)}{\Gamma\left(\frac{1}{2}-i \lambda\right)}, \quad r(\lambda)=i t(\lambda) \frac{\sin \pi \alpha}{\cosh \pi \lambda} .
$$

So we end up with scattering coefficients again!

Conclusions

Conclusions

- Transmission rate of high velocity (numerically not so high!) solitons is given by the quantum transmission rate.

Conclusions

- Transmission rate of high velocity (numerically not so high!) solitons is given by the quantum transmission rate.
- Delta impurity splits the soliton into a reflected and transmitted solitons with precisely described parameters. The scattering is "inelastic" in the sense that some mass is lost to radiation $\left(\mathcal{O}_{L^{\infty}}\left(t^{-1 / 2}\right)\right)$ and interaction errors $\left(\mathcal{O}_{L^{2}}\left(v^{-1 / 2}\right)\right)$.

Conclusions

- Transmission rate of high velocity (numerically not so high!) solitons is given by the quantum transmission rate.
- Delta impurity splits the soliton into a reflected and transmitted solitons with precisely described parameters. The scattering is "inelastic" in the sense that some mass is lost to radiation $\left(\mathcal{O}_{L^{\infty}}\left(t^{-1 / 2}\right)\right)$ and interaction errors $\left(\mathcal{O}_{L^{2}}\left(v^{-1 / 2}\right)\right)$.
- Better error estimates are expected based on numerics $\left(\mathcal{O}_{L^{2}}\left(v^{-2}\right)\right)$

Conclusions

- Transmission rate of high velocity (numerically not so high!) solitons is given by the quantum transmission rate.
- Delta impurity splits the soliton into a reflected and transmitted solitons with precisely described parameters. The scattering is "inelastic" in the sense that some mass is lost to radiation $\left(\mathcal{O}_{L^{\infty}}\left(t^{-1 / 2}\right)\right)$ and interaction errors $\left(\mathcal{O}_{L^{2}}\left(v^{-1 / 2}\right)\right)$.
- Better error estimates are expected based on numerics $\left(\mathcal{O}_{L^{2}}\left(v^{-2}\right)\right)$
- Similar results are true for $q<0$ (in progress...).

