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Suppose now that we consider a perturbed NLS, that

is, the Gross-Pitaevskii equation, by adding an external

potential:

{
i∂tu + 1

2
∂2

xu− qδ0(x)u + u|u|2 = 0

u(x, 0) = u0(x)

As initial data we take a fast soliton:

u0(x) = eivxsech(x− x0) , x0 ≤ −vε .

Not surprisingly, the behaviour depends on the relation

between v and q. We take q > 0 in this talk (more on

q < 0 later).
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|u(t, x)|2dx ,
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T s
q (v) + Rs
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It is not clear if these limits exist!
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x0 < −v1−δ .

Then

1

2

∫
x>0

|u(x, t)|2dx =
v2

v2 + q2
+O(v1− 3

2
δ) , v →∞ ,

uniformly for

|x0|/v + v−δ ≤ t ≤ (1− δ) log v .

More precisely, for v > v0, v0 = v0(q/v, δ), we have the

uniform bound above.
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v N1 NC Nt T sol
q (v) |T sol

q (v)− ‖u(t)|x>0‖2
2|

0.50 2000 500 2000 0.067885 0.000006272

1.0 2000 500 2000 0.362334 0.000019881

1.50 2000 500 2000 0.446162 0.000027733

2.0 2000 500 2000 0.472210 0.000009639

2.50 2000 500 2000 0.483348 0.000002937

3.00 2000 500 2000 0.489011 0.000001065

Table 1: Data for q = v.
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N• are the number of grid points, in space, near the

delta singularity, and in time, respectively.
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A plot of log(1
2
− T s

q ) versus log v in the case q = v, for

data at velocities v = 3, 4, 5, . . . , 9, 10. The slope of this

line is −2, showing that the asymptotic agreement is

(1
2
− T s

q ) ∼ v−2.
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T s
q (v) =

v2

v2 + q2
+O

(
1

v2

)
, t > t0(x0, v) .

What is the interpretation of the right hand side?

It is the quantum transmission rate of the potential

qδ0.
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Notice that the plot on the right appears to be slowly

converging to ϕ(0.8) ' 0.045. This plot represents the difference of two

numbers of size ∼ 100 by the end of the computation, and must therefore be taken with a grain of

salt. A nice bottle of wine for a nice expression for this integral!
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Since “δ0 ∈ L1
x” we can take f = g(t)δ0(x) and use

‖g‖
L

4/3
t

on the right hand side.
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0 ≤ t ≤ t1, t1 = |x0|/v − v−δ

No real interaction with the delta obstacle:

u(x, t) = e−itv2/2eit/2eixvsech(x− x0 − vt) +O(qe−v1−δ
),

If we further require that v−3/2ev1−δ ≥ q/v then

qe−v1−δ ≤ v−1/2 ≤ v−δ/2 .
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t1 ≤ t ≤ t2 = t1 + 2v−δ,

u(x, t2) = t(v)e−it2v2/2eit2/2eixvsech(x− x0 − vt2)

+ r(v)e−it2v2/2eit2/2e−ixvsech(x + x0 + vt2)

+O(v−
1
2
δ)
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• Solution is approximated by the linear flow

• Linear flow is approximated by the sum of

transmitted and reflected free linear flows

• Free linear flow is approximated by the free

nonlinear flow
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Now t2 < t < t3 = t2 + (1− δ) log v and a perturbative

argument enables us to evolve in time at the expense

of enlarging the error by a multiplicative factor of

e(1−δ) log v = v1−δ.

The error thus goes from v−δ/2 at t = t2 to

v1− 3
2
δ

at t = t3.
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Hence u(x, t) =

e−itv2/2eit2/2eixvNLS0(t− t2)[t(v)sech(x)](x− x0 − tv)

+ e−itv2/2eit2/2e−ixvNLS0(t− t2)[r(v)sech(x)](x + x0 + tv)

+O(v1− 3
2
δ), t2 ≤ t ≤ t3
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eiϕ(α)NLS0((2α− 1)
1
2 sech((2α− 1)

1
2•)) +OL∞(t−

1
2 )

for 1/2 < α < 1.

The proof is based on the Inverse Scattering Method

of Zakharov-Shabat, Manakov, Faddeev, Takhtajan,

Its, Deift, Zhang, Kamvissis...



Phase 4 (New solitons).



Phase 4 (New solitons).
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85



Phase 4 (New solitons).
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

The key is a well known calculation of



Phase 4 (New solitons).
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

The key is a well known calculation of

the scattering matrix



Phase 4 (New solitons).
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

The key is a well known calculation of

the scattering matrix for the Zakharov-Shabat system



Phase 4 (New solitons).
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

The key is a well known calculation of

the scattering matrix for the Zakharov-Shabat system

with the potential α sechx:



Phase 4 (New solitons).
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

The key is a well known calculation of

the scattering matrix for the Zakharov-Shabat system

with the potential α sechx:

t(λ)



Phase 4 (New solitons).
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

The key is a well known calculation of

the scattering matrix for the Zakharov-Shabat system

with the potential α sechx:

t(λ) =
Γ(1

2
+ α− iλ)Γ(1

2
− α− iλ)

Γ(1
2
− iλ)

,



Phase 4 (New solitons).
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

The key is a well known calculation of

the scattering matrix for the Zakharov-Shabat system

with the potential α sechx:

t(λ) =
Γ(1

2
+ α− iλ)Γ(1

2
− α− iλ)

Γ(1
2
− iλ)

, r(λ)



Phase 4 (New solitons).
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

The key is a well known calculation of

the scattering matrix for the Zakharov-Shabat system

with the potential α sechx:

t(λ) =
Γ(1

2
+ α− iλ)Γ(1

2
− α− iλ)

Γ(1
2
− iλ)

, r(λ) = it(λ)
sin πα

cosh πλ
.



Phase 4 (New solitons).
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

The key is a well known calculation of

the scattering matrix for the Zakharov-Shabat system

with the potential α sechx:

t(λ) =
Γ(1

2
+ α− iλ)Γ(1

2
− α− iλ)

Γ(1
2
− iλ)

, r(λ) = it(λ)
sin πα

cosh πλ
.

So we end up with scattering coefficients again!
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Conclusions

• Transmission rate of high velocity (numerically

not so high!) solitons is given by the quantum

transmission rate.

• Delta impurity splits the soliton into a reflected

and transmitted solitons with precisely described

parameters. The scattering is “inelastic” in the

sense that some mass is lost to radiation

(OL∞(t−1/2)) and interaction errors (OL2(v−1/2)).

• Better error estimates are expected based on

numerics (OL2(v−2))

• Similar results are true for q < 0 (in progress...).


