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Abstract. We study Dirac points of the chiral model of twisted bilayer graphene

(TBG) with constant in-plane magnetic field. The striking feature of the chiral model

is the presence of perfectly flat bands at magic angles of twisting. The Dirac points

for zero magnetic field and non magic angles of twisting are fixed at high symmetry

points K and K ′ in the Brillouin zone, with Γ denoting the remaining high symmetry

point. For a fixed small constant in-plane magnetic field, we show that as the angle of

twisting varies between magic angles, the Dirac points move between K,K ′ points and

the Γ point. In particular, near magic angles, the Dirac points are located near the

Γ point. For special directions of the magnetic field, we show that the Dirac points

move, as the twisting angle varies, along straight lines and bifurcate orthogonally

at distinguished points. At the bifurcation points, the linear dispersion relation of

the merging Dirac points disappears and exhibit a quadratic band crossing point

(QBCP). The results are illustrated by links to animations suggesting interesting

additional structure.

1. Introduction

Twisted bilayer graphene (TBG) is a material obtained from two sheets of graphene

positioned parallel but at a relative twisting angle. It became famous due to an experi-

mentally realized [Ca*18] theoretical prediction [BiMa11] of a magic angle of twisting at

which TBG acquires special properties. These special properties are due the existence

of nearly flat bands of the corresponding periodic spectral problem. Tarnopolsky–

Kruchkov–Vishwanath [TKV19] showed that in the chiral model of TBG one obtains

exact flat bands with the expectation of a sequence of magic angles converging to

0. That model possesses many attractive mathematical features and was studied by

Watson–Luskin [WaLu21] and Becker et al [Be*22, BHZ22a, BHZ22b].

In this paper we consider the effects of a (small) constant magnetic field parallel to

TBG, in other words of a constant in-plane magnetic field. We follow physics papers

Kwan et al [KPS20] and Qin–MacDonald [QiMa21] (see also [RoYa13]) and introduce

an additional term B = B0e
2πiθ to the chiral Hamiltonian. It corresponds to an in-

plane magnetic field of strength B0 and direction 2πθ – see (2.1).

The chiral model of TBG is a Hamiltonian which is periodic with respect to the

moiré length-scale. Thus, one can study the band structure and finds that the two
1
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Figure 1. We show the movement of Dirac points as α varies

in (0, 2.3) for the Bistritzer–MacDonald potential U(z) = UBM =∑2
k=0 ω

ke
1
2

(zω̄k−z̄ωk) (left) and α ∈ (0, 2.7) and U(z) = 2−
1
2 (UBM(z) −∑2

k=0 ω
ke−zω̄

k−z̄ωk
) (right). (Here we use the convention of [TKV19,

Be*22] – see (2.5).) The magnetic field is given by B = B0e
2πiθ with B0 =

0.1 and curves of different colour correspond to different θ ∈ [0, 1
2
]. In the

case on the left α passes two simple magic α’s; on the right, it passes two

double magic α’s. The Γ point corresponds to 0 and K, K ′ points to ±i.
The boundary of the Brillouin zone, a fundamental domain of Λ∗, is out-

lined in black. See https://math.berkeley.edu/~zworski/B01.mp4

and https://math.berkeley.edu/~zworski/B01_double.mp4 for the

corresponding animations.

bands closest to zero energy exhibit precisely two Dirac cones at distinguished points

in the Brillouin zone, denoted by K and K ′. These points, together with another point

that we call Γ are distinguished as fixed points under the 2π/3 rotational symmetry of

the honeycomb moiré lattice modulo lattice translations. For a discrete set of twisting

angles, the so-called magic angles, the bands closest to zero energy become completely

flat which we show does no longer happen once an in-plane magnetic field is applied.

In this work, we demonstrate that under in-plane magnetic fields the Dirac points are

no longer tied to the K and K ′ points and study their location and structure as the

constant magnetic field or the twisting angle are changed. The tunability of the Dirac

point locations is particularly rich close to magic angles.

We concentrate on the case of simple magic α’s (α is a dimensionless parameter

roughly corresponding to the reciprocal of the angle of twisting of the two graphene

sheets; see §3.7 for the discussion of simplicity). For the Bistritzer–MacDonald po-

tential UBM(z) (see the caption to Figure 1) the real magic angles are expected to be

simple (see Remark 1 after Theorem 2).

https://math.berkeley.edu/~zworski/B01.mp4
https://math.berkeley.edu/~zworski/B01_double.mp4
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We have the following combination of mathematical and numerical observations:

• We show (Theorem 2) that a small in-plane magnetic field destroys flat bands

corresponding to simple magic α’s (under an additional non-degeneracy as-

sumption);

• For small magnetic fields, the motion of Dirac points appears quasi-periodic

for α ∈ [αj, αj+1] where αj are the magic angles for the Bistritzer–MacDonald

potential [TKV19]. That is most striking for θ = 0, 2
3

for which the motion is

linear – see Theorem 3 and Figure 6.

• Theorem 1 shows that most of the action takes place near the magic angles:

the Dirac points get close to Γ point (Theorem 2; they meet there for θ = 0,

Proposition 5.1 and θ = 2
3
, Proposition 5.3) at simple magic angles – see

https://math.berkeley.edu/~zworski/magic_billiard.mp4 for an anima-

tion. When the Dirac cones meet, they exhibit a quadratic band crossing point

(QBCP), see Figure 3 and Proposition 5.2 (its formulation requires introduc-

tion of Bloch–Floquet spectra in §3.1) – for the discussion of such phenomena

in the physics literature see [dGGM12, KPS20, MLFP18].

• Figure 2 (right) shows that for fixed α’s and varying directions of the mag-

netic field, we have “fixed points” at Γ and K,K ′ with “normal crossings” and

the vertices and middle of points of edges of the boundary of the Brillouin

zone. These points are precisely the intersection of the rectangles (other than

Γ, K,K ′).

• The situation is more complicated near double (protected) magic angles: see

the right panel in Figure 1: at magic α’s, Dirac points are now close to K and

K ′.

The paper is organized as follows:

• We present the Hamiltonian and the definition of Dirac points in §2. We also

establish basic symmetry properties of Dirac points and a perturbation result

valid away from magic α’s.

• In §3, we review the theory of magic angles following [Be*22, BHZ22b] but in

a more invariant and general way.

• In §4 we set up Grushin problems needed for the understanding the small in-

plane magnetic fields as a perturbation.

• We then specialize, in §5, to directions of the magnetic field for which the Dirac

points move linearly as α changes. In particular, they meet at special points

and we describe the resulting quadratic band crossing.

• We conclude in §6 with the proofs of the main theorems.

Acknowledgements. We would like to thank Allan MacDonald for suggesting the

in-plane magnetic field problem to us, Charles Epstein for a helpful discussion, and

https://math.berkeley.edu/~zworski/magic_billiard.mp4
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θ α

Figure 2. The dynamics of Dirac points for the Bistritzer–MacDonald

potential U(z) = UBM =
∑2

k=0 ω
ke

1
2

(zω̄k−z̄ωk). The magnetic field given

by B = B0e
2πiθ with B0 = 0.1 On the left different colours correspond to

different values of θ shown in the colour bar and α varies between 0.1 and

0.9 (this is a colour map version of the left panel of Figure 1). On the

right, the colours correspond to different values of α shown in the colour

bar and θ varies. The predominance of green (corresponding to the

range between 0.5 and 0.6) means that most of the motion happens near

the (first) magic alpha – see https://math.berkeley.edu/~zworski/

first_band.mp4 for E1(α, k)/maxk E1(α, k) for fixed B as α varies.

the anonymous referee whose detailed comments improved the exposition and led to

a correction of a serious mistake. MZ was partially supported by National Science

Foundation under the grant DMS-1901462 and by the Simons Foundation Targeted

Grant Award No. 896630.

2. In-plane magnetic field

Adding a constant in-plane magnetic field [KPS20, QiMa21] with magnetic vec-

tor potential A = z⊥B × êz⊥ , where z⊥ is the coordinate perpendicular to the two-

dimensional plane of TBG and êz⊥ the unit vector pointing in that direction, to the

chiral model of TBG [TKV19] results for layers at positions z⊥ = ±1, in the Hamil-

tonian HB(α) in (2.7) build from non-normal operators

DB(α) := D(α) +Bσ3, D(α) =

(
2Dz̄ αU(z)

αU(−z) 2Dz̄

)
, σ3 :=

(
1 0

0 −1

)
, (2.1)

https://math.berkeley.edu/~zworski/first_band.mp4
https://math.berkeley.edu/~zworski/first_band.mp4
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Im k
Re k

E

Im k
Re k

E

Figure 3. When B is real (in the convention of (2.1)), two Dirac cones

approach Γ point as α → α∗ = α + O(B3) (α a simple real magic pa-

rameter) on the line Im k = 0 (left). For α = α∗, the quasi-momentum

k at which the bifurcation happens are the boundary of the Brillouin

zone and the Γ-point which is shown in the figure (right). The anima-

tion https://math.berkeley.edu/~zworski/Rectangle_1.mp4 shows

the motion of Dirac points in this case.

where we make the following assumptions on U :

U(z + γ) = e−2i〈γ,K〉U(z), U(ωz) = ωU(z), U(z̄) = −U(−z), ω = e2πi/3,

γ ∈ Λ := ωZ⊕ Z, ωK ≡ K 6≡ 0 mod Λ∗, Λ∗ :=
4πi√

3
Λ, 〈z, w〉 := Re(zw̄).

(2.2)

In this convention the Bistritzer–MacDonald potential used in [TKV19, Be*22] corre-

sponds to

U(z) = −4
3
πi

2∑
`=0

ω`ei〈z,ω
`K〉, K = 4

3
π. (2.3)

For a discussion of a perpendicular constant magnetic field in the chiral model of

twisted bilayer graphene we refer to [BKZ22].

Remark. We adapt here a more mathematically straightforward convention of coor-

dinates than that of [Be*22, BHZ22a] where we followed [TKV19] (with some, possibly

also misguided, small changes; our motivation comes from a cleaner agreement with

theta function conventions). The translation between the two conventions is as follows:

https://math.berkeley.edu/~zworski/Rectangle_1.mp4
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the operator considered in [Be*22], and rigorously derived in [CGG22, Wa*22] was

D̃(α) :=

(
2Dζ̄ αU0(ζ)

αU0(−ζ) 2Dζ̄

)
, U0(ζ̄) = U0(ζ),

U0

(
ζ + 4πi

3
(a1ω + a2ω

2)
)

= ω̄a1+a2U0(ζ), U0(ωζ) = ωU0(ζ).

(2.4)

We then have a (twisted) periodicity with respect to 1
3
Γ and periodicity with respect

to

Γ := 4πi(ωZ + ω2Z) = 4πiΛ such that Γ∗ :=
1√
3

(ωZ⊕ ω2Z) =
Λ√
3
.

This means that to switch to (twisted) periodicity with respect to Λ we need a change

of variables:

ζ = 4
3
πiz, 1

3
Γ = 4

3
πiΛ, 3Γ∗ = (1

3
Γ)∗ =

√
3Λ =

3

4πi
Λ∗. (2.5)

Then

D̃(α) = − 3

4πi

(
2Dz̄ αU(z)

αU(−z) 2Dz̄

)
, U(z) := −4

3
πiU0

(
4
3
πiz
)
. (2.6)

The twisted periodicity condition in (2.4) corresponds to the condition in (2.2) since

ω̄a1+a2 = ei〈a1ω+a2ω2,K〉, K = 4πi(−1
3
− 2

3
ω)/
√

3 = 4π/3. See the caption to Figure 1

for examples of U0(z) in the coordinates of [TKV19, Be*22].

The self-adjoint Hamiltonian built from (2.1) is given by

HB(α) =

(
0 DB(α)∗

DB(α) 0

)
(2.7)

and the Dirac points are given by the spectrum of

DB(α) : H1
0 → L2

0, L2
0 := {u ∈ L2

loc(C;C) : u(x+ γ) = diag(e−i〈γ,K〉, ei〈γ,K〉)u(x)},

with a similar definition of H1
0 (replace L2

loc with H1
loc) – see §3.1 for a systematic

discussion and explanations.

We recall (see §3.4) that there exists a discrete set A ⊂ C such that

SpecL2
0
(D0(α)) =

{
(K + Λ∗) ∪ (−K + Λ∗) α /∈ A

C α ∈ A. (2.8)

The elements of A are reciprocals of magic angles and the real ones are of physical in-

terest. As recalled in Proposition 3.3, elements of A are characterized by the condition

that α−1 ∈ SpecL2
0
Tk, where C \ {K,−K} 7→ Tk is a (holomorphic) family of compact

operators given in (3.25) (the spectrum is independent of k and so are its algebraic

multiplicities). In this paper we will use the following notion of simplicity (see also

§3.7):

α ∈ A is said to be simple ⇐⇒ 1/α is a simple eigenvalue of Tk. (2.9)

Here simplicity of an eigenvalue is meant in the algebraic sense.
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K ′

K ′
K ′

K

K

K

Im kRe k

α

Figure 4. Dirac point dynamics for B = 0.1e2πiθ with θ ∈ [0, 1/2].

Close to the first two magic angles (α ≈ 0.585, 2.221), the dynamics

spreads out in space.

The first result is a consequence of simple perturbation theory and of symmetries of

DB(α):

Theorem 1. Suppose that Ω b C \A is an open set. Then there exists δ = δ(Ω) such

that for |B| < δ there exists α 7→ kB(α) ∈ Cω(Ω) such that

SpecL2
0
(DB(α)) = (kB(α) + Λ∗) ∪ (−kB(α) + Λ∗),

and kB(α) = K +O(B). In addition, for α,B ∈ C,

SpecL2
0
DωB(α) = ω SpecL2

0
DB(α),

SpecL2
0
DB(−α) = SpecL2

0
DB(α) = − SpecL2

0
DB(α),

SpecL2
0
DB̄(ᾱ) = SpecL2

0
DB(α).

(2.10)

Proof of Theorem 1. Proposition 3.3 shows that for α ∈ Ω the spectrum of D(α) is

given by ±K + Λ∗ and for small B we have two eigenvalues for DB(α). The structure

of D(α) implies that

ED(α) = −D(α)E , E v(z) := Jv(−z), J :=

(
0 −1

1 0

)
(2.11)
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and since Jσ3B = −σ3BJ we also have

E (DB(α) + k)E ∗ = −(DB(α)− k), (2.12)

that is the spectrum is invariant under reflection k 7→ −k.

Since RD(α)R∗ = ωD(α), Ru(z) := u(ωz), we have RDB(α)R∗ = ωDω̄B(α) which

gives the first identity in (2.10). We now recall the following antilinear symmetries:

FD(α)F = D(−ᾱ), Fv(z) := v(−z̄),

QD(α)Q = D(−α)∗, Qv(z) := v(−z), Q :=

(
Q 0

0 −Q

)
.

(2.13)

Since •σ3B = σ3B
∗•, • = F,Q, we have

F (DB̄(−ᾱ)− k̄)F = (DB(α)− k) = Q(DB(−α)∗ − k̄)Q, Q2 = F 2 = I,

which shows that (since the spectrum is invariant under k 7→ −k),

SpecL2
0
(DB(α)) = SpecL2

0
(DB̄(−ᾱ)) = SpecL2

0
(DB(−α)), (2.14)

and that gives the rest of (2.10). �

We now state a result valid near simple α ∈ A.

Theorem 2. Suppose α ∈ A is simple and g0(α) 6= 0 where g0 is defined in (4.5).

Then there exists δ0 > 0 such that for 0 < |B| < δ0 and |α − α| < δ0, the spectrum of

DB(α) on L2
0 is discrete and

| SpecL2
0
(DB(α)) ∩ C/Λ∗| = 2, (2.15)

where the elements of the spectrum are included according to their (algebraic) multi-

plicity. In addition, for a fixed constant a0 > 0 and for every ε there exists δ such that

for 0 < |B| < δ, |α− α| < a0δ|B|,

SpecL2
0
(DB(α)) ⊂ Λ∗ +D(0, ε), (2.16)

where D(z, δ) := {ζ ∈ C : |z−ζ| < δ}. We also recall that elements of Λ∗, in particular

0, correspond to the Γ point.

Remarks. 1. Existence of the first real magic angle α ' 0.585 was proved by Watson–

Luskin [WaLu21] and its simplicity (including the simplicity as an eigenvalue of the

operator Tk defined in (3.25)) in [BHZ22a], with computer assistance in both cases. Nu-

merically, the simplicity is valid at the computed real elements of A for the Bistritzer–

MacDonald potential used in [TKV19].

2. The constant g0(α) can be evaluated numerically (and its non-vanishing for the

first magic angles could be established via a computer assisted proof) and here are the

results for the (numerically) simple magic angles for the potential UBM in Table 1.
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Magic angle α 0.585 2.221 3.751 5.276 6.794 8.312 9.829

|g0(α)| ' 7e-02 5e-04 7e-04 2e-05 3e-05 9e-07 6e-06

|g1(α)| ' 1.3035 0.2881 0.0880 0.0252 0.0068 0.0017 1.7326e-04

Table 1. Values of g0(α) defined in (4.5); their non-vanishing is a con-

dition in Theorems 2 and 3. Values g1(α) = g1(0, α), defined in (4.7), ap-

pear in the perturbation theory in the parameter α. Their non-vanishing

is a consequence of the non-vanishing of g0(α) as shown in the proof of

Proposition 5.1.

3. The combination of Theorems 1 and 2 shows that for any U b (C\A)∪{α} (with α

satisfying the assumptions of Theorem 2) there exists δ = δ(U) such that 0 < |B| < δ,

the spectrum of DB(α) is discrete and | SpecL2
0
(DB(α)) ∩ C/Λ∗| = 2.

From the symmetries in (2.10) we conclude that for special values of θ = 0,±2
3

the

spectrum of DB(α) has a particularly nice structure as α varies. We state the result

for θ = 0, as we can use the first identity in (2.10) to obtain the other two.

Theorem 3. For 0 < B � 1,

SpecL2
0
(DB(α)) ⊂ R := 2π(iR + Z) ∪ 2π√

3
(R + iZ), α ∈ R \ A. (2.17)

Moreover, if the assumptions of Theorem 2 are satisfied at α ∈ R then for every ε > 0

there are δ0, δ1 > 0 such that

R \
⋃
k∈K0

D(k, ε) ⊂
⋃

α−δ1<α<α+δ1

SpecL2
0
(DB(α)) ⊂ R, 0 < B < δ0. (2.18)

Here, D(z, δ) := {ζ ∈ C : |z − ζ| < δ} and K0 = {K,−K} + Λ∗, K = 4
3
π, the

set of protected states in the Brillouin zone for the non-magnetic model, defined in

Proposition 3.2. In addition, for every k ∈ R \
⋃
k∈K0

D(k, ε) there is a unique α ∈
(α− δ1 < α < α + δ1) such that k ∈ SpecL2

0
(DB(α)).

Remarks. 1. A more precise statement about the behaviour at R is given in Propo-

sitions 5.1 and 5.3 – the implicit formulas for λ = 1/α in terms of k and B describe

a bifurcation phenomenon. In particular, when B is real, the bifurcation of the eigen-

values of DB(α) at 0 (at the specific value of α) is given by (5.5). For the bifurcation

at the vertices of the boundary of the Brillouin zone, see (5.18).

2. The inclusion (2.17) means that the spectrum lies on a grid of straight lines parallel

to the x and y axes – see https://math.berkeley.edu/~zworski/Rectangle_1.mp4.

To obtain the sets of other rectangles we use the the first identity in (2.10), that is

take B = ωB0, B0 > 0.

https://math.berkeley.edu/~zworski/Rectangle_1.mp4
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Re k

Im k

Re kα α

K

K ′

Γ Γ

K

K ′

Figure 5. Dirac point trajectory for B = 0.1 (left) and B = 0.1ω

(right). The bifurcation happens at Γ and one additional point (modulo

Λ∗) in each figure, respectively. The colors indicate the position of the

Dirac cones for given values of α. The exclusion of K and K ′ points

in the statement of Theorem 3 seems to be a technical issue, as shown

in https://math.berkeley.edu/~zworski/Rectangle_2.mp4 (for the

case of the figure on the right).

3. Review of magic angle theory

We start with a general discussion of operators arising in chiral TBG models.

3.1. Bloch–Floquet theory. We recall that

Λ := Z⊕ ωZ, ω := e2πi/3, ωΛ = Λ, Λ∗ =
4πi√

3
Λ.

(The dual basis of {1, ω} is given by {−4πiω/
√

3, 4πi/
√

3}.)
We then consider a generalization of (2.1):

D(α) := 2Dz̄ + αV (z) : H1
loc(C;Cn)→ L2

loc(C;Cn), H(α) :=

(
0 D(α)∗

D(α) 0

)
,

where V (z) := C∞(C;Cn ⊗ Cn). Let ρ : Λ → U(n) be a unitary representation and

assume that

V (z + γ) = ρ(γ)−1V (z)ρ(γ). (3.1)

We note that without loss of generality (amounting to a basis change on Cn) we can

assume that

ρ(γ) = diag
[
(χkj(γ))nj=1

]
, kj ∈ C/Λ∗, χk(γ) := exp(i〈γ, k〉). (3.2)

https://math.berkeley.edu/~zworski/Rectangle_2.mp4
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If in the corresponding basis, V (z) = (Vij(z))0≤i,j≤k, then (3.1) means that

Vij(z + γ) = exp(i〈γ, kj − ki〉)Vij(z). (3.3)

If we define

ρ(z) := diag
[
(ei〈z,kj〉)nj=1

]
,

then

Vρ(z + γ) = Vρ(z), Vρ(z) := ρ(z)V (z)ρ(z)−1,

and

ρ(z)D(α)ρ(z)−1 = Dρ(α), Dρ(α) := diag
[
(2Dz̄ − kj)nj=1

]
+ Vρ(z), (3.4)

which is a periodic operator. In view of this standard Bloch-Floquet theory applies,

which can be presented using modified translations:

Lγu(z) := ρ(γ)u(z + γ), Lγ : S ′(C,Cn)→ S ′(C,Cn).

We have

LγD(α) = D(α)Lγ.

Thus, we can define a generalized Bloch transform

Bu(z, k) :=
∑
γ∈Λ

ei〈z+γ,k〉Lγu(z), σ3Bu(z, k + p) = ei〈z,p〉σ3Bu(z, k), p ∈ Λ∗, u ∈ S (C),

LαBu(•, k) =
∑
γ

ei〈z+α+γ,k〉Lα+γu(z) = σ3Bu(•, k), α ∈ Λ

such that (extending the actions of Lγ and σ3B to Cn×Cn-valued functions diagonally)

σ3BD(α) = (D(α)− k)σ3B, D(α)− k = ei〈z,k〉D(α)e−i〈z,k〉,

σ3BH(α) = Hk(α)σ3B, Hk(α) := ei〈z,k〉H(α)e−i〈z,k〉 =

(
0 D(α)∗ − k̄

D(α)− k 0

)
.

(3.5)

We check that∫
C/Λ

∫
C/Λ∗
|σ3Bu(z, k)|2dm(z)dm(k) = |C/Λ∗|

∫
C
|u(z)|2dm(z),

and that

Cv(z) := |C/Λ∗|−1

∫
C/Λ∗

v(z, k)e−i〈z,k〉dm(k)

is the inverse of σ3B. We now define

Hs
0 = Hs

0(C;Ck) := {u ∈ Hs
loc(C;Ck) : Lγu = u, γ ∈ Λ}, L2

0 := H0
0 , k = n, 2n,

We have a unitary operator identifying L2
0 with L2(C/Λ)

U0u(z) := ρ(z)u(z), U0 : L2
0 → L2(C/Λ;Cn), U0D(α)U∗0 = Dρ(α), (3.6)

where we used the notation of (3.4).



12 SIMON BECKER AND MACIEJ ZWORSKI

In view of this, SpecL2
0
(Hk(α)) (with the domain given by H1

0 ) is discrete and

SpecL2(C;C2n)(H(α)) =
⋃

k∈C/Λ∗
SpecL2

0
Hk(α).

Since for p ∈ Λ∗,

τ(p) : L2
0 → L2

0, [τ(p)u](z) := ei〈z,p〉u(z), τ(p)−1 = τ(p)∗, (3.7)

and

τ(p)∗D(α)τ(p) = D(α) + p,

we have

SpecL2
0
D(α) = SpecL2

0
D(α) + Λ∗. (3.8)

Finally, we use (3.4) and SpecL2(C/Λ;C)(2Dz̄) = Λ∗ (with simple eigenvalues) to see that

(for ρ given by (3.2)) we have the disjoint union

SpecL2
0
(2Dz̄) =

n⊔
j=1

(Λ∗ − kj), Domain of 2Dz̄ = H1
0 . (3.9)

3.2. Rotational symmetries. We now introduce

Ωu(z) := u(ωz), u ∈ S ′(C;Cn),

and in addition to (3.1) assume that

V (ωz) = ωV (z). (3.10)

(We do not have many options here as ΩDz̄ = ωDz̄Ω). Then

ΩD(α) = ωD(α)Ω,

and

CH(α) = H(α)C , C :=

(
Ω 0

0 ω̄Ω

)
: S ′(C;Cn × Cn)→ S ′(C;Cn × Cn).

We have the following commutation relation

LγΩu(z) = ρ(γ)u(ω(z + γ)) = ρ(γ − ωγ)ρ(ωγ)u(ωz + ωγ)

= ρ(γ − ωγ)ΩLωγu(z).

A natural case to consider is given by

ρ(γ) = ρ(ωγ), ∀ γ ∈ Λ, (3.11)

which implies that

ρ(γ)3 = ρ(γ + ωγ + ω2γ) = ρ(0) = ICn . (3.12)

In the notation of (3.2), condition (3.11) means that

ω̄kj ≡ kj mod Λ∗ ⇐⇒ kj ∈ K :=
4πi√

3

({
0,±(1

3
+ 2

3
ω)
}

+ Λ
)
. (3.13)
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We see that K/Λ∗ is the subgroup of fixed points of multiplication ω : C/Λ∗ → C/Λ∗
and it is isomorphic to Z3.

Since (3.11) implies that

LγΩ = ΩLωγ, LγC = C Lωγ, C Lγ = Lω̄γC ,

we follow [Be*22, §2.1] and combine the two actions into a group of unitary action

which commute with H(α):

G := Λ o Z3, Z3 3 ` : γ → ω̄`γ, (γ, `) · (γ′, `′) = (γ + ω̄`γ′, `+ `′),

(γ, `) · u = LγC
`u, u ∈ L2

loc(C;Cn × Cn).
(3.14)

By taking a quotient by 3Λ we obtain a finite group which acts unitarily on L2(C/3Λ),

and that action commutes with H(α):

G3 := G/3Λ = Λ/3Λ o Z3 ' Z2
3 o Z3. (3.15)

By restriction to the first two components, G and G3 act on Cn-valued function and

use the same notation for those actions.

The key fact (hence the name chiral model) is that

H(α) = −W H(α)W , W :=

(
1 0

0 −1

)
: Cn × Cn → Cn × Cn,

W C = C W , LγW = W Lγ.

(3.16)

3.3. Protected states. We now make the assumption (3.11) and consider the ques-

tion of protected states. We are looking for the set K0 ⊂ C such that

∀α ∈ C, k ∈ K0, 0 ∈ SpecL2
0
Hk(α). (3.17)

This condition is equivalent to

k ∈ SpecL2
0
D(α) ⇐⇒ k ∈ SpecL2(C/Λ;Cn) Dρ(α),

where we used the notation of (3.4). Putting α = 0 we see that K0 ⊂ K.

The following simple lemma is used a lot. To formulate it we introduce the following

spaces:

Hs
k := {u ∈ Hs(C/3Λ;C2 × C2) : Lγu = ei〈k,γ〉u}, k ∈ K/Λ∗ ' Z3, p ∈ Z3, (3.18)

(with the corresponding definition of L2
k).

Lemma 3.1. Suppose that k, k′ ∈ K and τ(k) is defined as in (3.7). Then in the

notation of (3.18), τ(k) : Hs
k′ → Hs

k′+k and

τ(k) : kerH1
0
(D(α) + k) → kerH1

k
D(α),

τ(k) : kerH1
0
H−k(α) → kerH1

k
H(α).

(3.19)
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Proof. We have τ(k) = ei〈k,z〉 (as a multiplication operator) and for u ∈ Hs
k′ ,

Lγ(τ(k)u)(z) = ei〈k,z+γ〉Lγu(z) = ei〈k+k′,γ〉τ(k)u(z),

which proves the mapping property of τ(k). Also, D(α)w = ei〈z,k〉(D(α)+k)(e−i〈z,k〉w).

Hence if (D(α) + k)u = 0 and Lγu = u then w := ei〈z,k〉u ∈ H1(C/3Λ;C2n), D(α)w =

0, and Lγw = Lγ(e
i〈z,k〉u) = ei〈z+γ,k〉Lγu = ei〈γ,k〉w, that is w ∈ H1

k . �

We are interested in the case of n = 2 and obtain the following reinterpretation of

earlier protected states statements – see [TKV19].

Proposition 3.2. If n = 2 (in the notation of (3.2) and (3.17)) and k1 6≡ k2 mod Λ∗,

kj ∈ K, then K0 = {−k1,−k2}+ Λ∗.

Proof. We use (3.19) and decompose kerH1(C/3Λ;C4) H(α) into representations of G3

given by (3.14). From (3.16) we see that the spectrum of H(α) restricted to a rep-

resentation of G3 is symmetric with respect to the origin. If (see [Be*22, §2.2] for a

review of representations of G3)

Hs
k,p := {u ∈ Hs(C/3Λ;C2 × C2) : LγC

`u = ei〈k,γ〉ω̄`pu}, (3.20)

k ∈ K/Λ∗ ' Z3, p ∈ Z3, (with the corresponding definition of L2
k,p) then the constant

functions (given by the standard basis vectors in C4) satisfy

e1 ∈ H1
k1,0

, e2 ∈ H1
k2,0

, e3 ∈ H1
k1,1

, e4 ∈ H1
k2,1

,

and since k1 6≡ k2 mod Λ∗, all these spaces are different. The spectrum of H(α)|L2
k,p

is even (see (3.16)) and kerH1
kj,p

H(0) = Cej+2p, j = 1, 2, p = 0, 1. Continuity of

eigenvalues shows that

dim kerL2
kj,p

H(α) ≥ 1, α ∈ C, j = 1, 2, p = 0, 1. (3.21)

which in view of Lemma 3.1 concludes the proof. �

Remark. Under the assumptions of Proposition 3.2 the corresponding −k1,−k2 ∈
C/Λ∗ are called the K and K ′ points in the physics literature. The remaining element

of K/Λ∗ is called the Γ point.

Existence of protected states shows that we have a natural labelling for the eigen-

values of H(k) on L2
0:

SpecL2
0
(H(k)) = {Ej(α, k)}j∈Z∗ , Ej(α, k) = −E−j(α, k),

0 ≤ E1(α, k) ≤ E2(α, k) ≤ · · · , E±1(α,−k1) = E±1(α,−k2) = 0.
(3.22)

where the eigenvalues are included according to their multiplicities (and Z∗ := Z\{0}).
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3.4. Magic angles. We recall the main result of [Be*22], the spectral characterization

of magic angles. See also proof of [BHZ22b, Proposition 2.2].

Proposition 3.3. Suppose that n = 2 and that the condition (3.11) holds. Then, in

the notation of Proposition 3.2 there exists a discrete set A such that

SpecL2
0
D(α) =

{
K0 α /∈ A,
C α ∈ A. (3.23)

Moreover,

α ∈ A ⇐⇒ ∃ k /∈ K0, α
−1 ∈ SpecL2

0
Tk ⇐⇒ ∀ k /∈ K0, α

−1 ∈ SpecL2
0
Tk, (3.24)

where Tk is a compact operator given by

Tk := R(k)V (z) : L2
0 → L2

0, R(k) := (2Dz̄ − k)−1 (3.25)

3.5. Antilinear symmetry. We will make the following assumption:

AD(α) = −D(α)∗A , A :=

(
0 Γ

−Γ 0

)
, Γv(z) = v(z). (3.26)

A calculation based on the definition of Lγ gives

A : L2
k,p → L2

−k+k1+k2,−p, k ∈ K, p ∈ Z3. (3.27)

In particular if (as we assume) k1 6≡ k2 mod Λ∗ and k0 /∈ {k1, k2} + Λ∗, then −k0 +

k1 + k2 ≡ k0 mod Λ∗, and consequently

A : L2
k0,p
→ L2

k0,−p, p ∈ Z3. (3.28)

Since (we put α = 1 to streamline notation; that amounts to absorbing α into V )

A

(
V11 0

0 V22

)
= −

(
−V̄22 0

0 −V̄11

)
A ,

for (3.26) to hold we need V11 = −V22 =: W1. From (3.3) we see that W1 is Λ-periodic

and there exists Λ-periodic W0 such that(
2Dz̄ +W1 0

0 2Dz̄ −W1

)
=

(
eW0(z) 0

0 e−W0(z)

)(
2Dz̄ 0

0 2Dz̄

)(
e−W0(z) 0

0 eW0(z)

)
,

2Dz̄W0 = W1, W0(ωz) = W0(z).

(From (3.10) we see that W1(ωz) = ωW1(z) and hence the integral of W1 over C/Λ is

equal to 0; this shows that we can find W0, which is unique up to an additive constant.)

We conclude that if we insist on (3.26) then we can, without loss of generality assume

that

V (z) =

(
0 V12(z)

V21(z) 0

)
,

Vij(z + γ) = ei〈kj−ki,γ〉Vij(z), k` ∈ K, k1 6= k2, Vij(ωz) = ωVij(z).

(3.29)
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To verify the latter we check that, with w = (w1, w2),(
2Dz̄ V12

V21 2Dz̄

)
A w =

(
2Dz̄Γw2 − V12Γw1

−2Dz̄Γw1 + V21Γw2

)
=

(
Γ
(
−2Dzw2 − V̄12w1

)
Γ
(
2Dzw1 + V̄21w2

) )
= −

(
0 Γ

−Γ 0

)(
2Dzw1 + V̄21w2

2Dzw2 + V̄12w1

)
= −A

(
2Dz̄ V12

V21 2Dz̄

)∗
w.

Remarks. 1. The antilinear symmetry is closely related to the C2zT symmetry in the

physics literature.

2. In the case when V21(z) = V12(−z), we have another antilinear symmetry:

Qv(z) := −A E v(z) = v(−z), QD(α)Q = D(α)∗. (3.30)

The mapping property is simpler than (3.27): Q : L2
k,p(C/Λ;C2)→ L2

k,−p(C/Λ;C2).

3.6. Theta functions. We now review properties of theta functions. To simplify

notation we put θ(z) := θ1(z|ω) := −θ 1
2
, 1
2
(z|ω), and recall that

θ(z) = −
∑
n∈Z

exp(πi(n+ 1
2
)2ω + 2πi(n+ 1

2
)(z + 1

2
)), θ(−z) = −θ(z)

θ(z +m) = (−1)mθ(z), θ(z + nω) = (−1)ne−πin
2ω−2πiznθ(z),

(3.31)

and that θ has simple zeros at Λ (and no other zeros) – see [KhZa15].

We now define

Fk(z) = e
i
2

(z−z̄)k θ(z − z(k))

θ(z)
, z(k) :=

√
3k

4πi
, z : Λ∗ → Λ. (3.32)

Then, using (3.31) and differentiating in the sense of distributions,

Fk(z +m+ nω) = e−nk Imωe2πinz(k)Fk(z) = Fk(z),

(2Dz̄ + k)Fk(z) = c(k)δΛ(z), c(k) := 2πiθ(z(k))/θ′(0).
(3.33)

(HereδΛ(z) :=
∑

γ∈Λ δ0(z−γ) and we used the fact that if f and g are holomorphic, g(ζ)

has a simple zero at 0 and f(0) 6= 0 then, near 0, ∂ζ̄(f(ζ)/g(ζ)) = πf(0)/g′(0))δ0(ζ) –

see for instance [HöI, (3.1.12)].)

The following Lemma is now immediate. It reinterprets the theta function argument

in [TKV19].

Lemma 3.4. Suppose that p ∈ K and u ∈ kerH1
p
(D(α) + k). Then

(D(α) + k + k′)(Fk′(z − z(k′′)))u(z)) = c(k′ − k′′)δz(k′′)(z)u(z(k′′)), k, k′, k′′ ∈ C,
(3.34)

where c(k) is given in (3.33). In particular, if u(z(k′′)) = 0 then

Fk′(z − z(k′′))u(z) ∈ kerH1
p
(D(α) + k + k′). (3.35)
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3.7. Multiplicity one. The definition of the set of magic α’s based on Proposition

3.3 does not involve the notion of multiplicity. Here we will discuss the case of multi-

plicity one†. One natural definition of multiplicity of magic angles is given in terms of

eigenvalues of Hk(α) in (3.22). We first note that

α ∈ A ⇐⇒ ∀ k ∈ C/Λ∗, E±1(α, k) = 0. (3.36)

We then say, that the magic angle α ∈ A is simple/has multiplicity one, if and only if

∀ k ∈ C, j > 1, Ej(α, k) > 0. (3.37)

As stated in (2.9) we use a stronger definition in this paper.

The operators

C2 3 (α, k) 7−→ D(α) + k : H1
0 → L2

0,

form a continuous family of Fredholm operators of index 0. (This follows from the

ellipticity of D(α), the continuity of the index and then fact (3.36) implies that D(α)−k
is invertible for some k and α.) In particular, dim ker(D(α) + k) = dim coker(D(α)∗+

k̄) = dim ker(D(α)∗ − k̄), and hence

(3.37) ⇐⇒ ∀ k ∈ C, dim kerH1
0
(D(α) + k) = 1. (3.38)

In [BHZ22b, Theorem 2] we proved that

Proposition 3.5. Suppose (3.29) holds and that

k0 ∈ K \ {k1, k2}, k1 6≡ k2 mod Λ∗.

Then for α ∈ A we have

(3.37) ⇐⇒ ∃ k 6≡ k1, k2 mod Λ∗, dim kerH1
0
(D(α) + k) = 1.

In particular, α ∈ C is a simple magic angle (in the sense of (3.37)) if and only if

dim kerH1
0
(D(α) + k0) = 1. (3.39)

We recall that the proof is based on Proposition 3.3 and theta function arguments

reviewed in §3.6.

A symmetric choice of ρ in (3.2) is given by:

k1 =
4π

i
√

3
(1

3
+ 2

3
ω) = 4

3
π =: K, k2 = −K = 4

3
π, k0 = 0. (3.40)

This corresponds to Γ = 0 in the physics notation. In [Be*22] we followed [TKV19]

and used a non-symmetric (equivalent) choice. This corresponds to the assumptions

in (2.2) with k1 = K.

†A more general discussion is presented in [BHZ23] – generic simplicity presented there is modified

in view of protected multiplicity two magic angles – see the proof of Proposition 3.6.
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Proposition 3.6. Suppose that (3.39) holds. Then, in the notation of Lemma 3.1,

kerH1
0
(D(α) + k0) = Cτ(k0)∗u0, ‖u0‖L2

k0
= 1, Ωu0 = ωu0, (3.41)

that is, in the notation of (3.20), u0 ∈ L2
k0,2

. In addition,

u0(z) = zw(z), w ∈ C∞(C;C2), w(0) 6= 0, u0(z) 6= 0, z /∈ Λ. (3.42)

Remark. The key insight in [TKV19] was to use vanishing of u ∈ kerH1
k1
D(α) for

magic α’s at a distinguished point zS to show that SpecH1
0
(D(α)) = C. In [Be*22,

Theorems 1] this was shown equivalent to the spectral definition based on Proposition

3.3. Here we take a direct approach: only at magic α’s we have kerH1
k0
D(α) 6= {0} and

(3.41) shows that its elements have to vanish at 0. Lemma 3.34 then implies vanishing

of other eigenfunctions.

Proof of Proposition 3.6. From Lemma 3.1 and (3.39) we conclude that kerH1
k0
D(α) =

Cu0 and as L2
k0

=
⊕2

j=0 L
2
k0,j

we can decompose the kernel using these subspaces.

Since D(0)+k0 : H1
0 → L2

0 is invertible (see (3.9)), (3.19) shows that D(0) : H1
k0
→ L2

k0

is invertible with the inverse given by R(0). It then follows that (see (3.25))

I + αT0 = R(0)D(α) : L2
k0,j
→ L2

k0,j
, kerH1

k0,j
D(α) = kerL2

k0,j
R(0)D(α).

(We do use ellipticity of D(α) here: the element of the kernel on L2 must automatically

be smooth.) Hence if kerL2
k0,j

(R(0)D(α)) 6= {0}, j = 0, 1, then kerL2
k0,j

(D(α)∗R(0)∗) 6=
{0}, and there exists w ∈ L2

k0,j
such that D(α)∗R(0)∗w = 0. We now note that

R(0)∗ : L2
k0,j
→ L2

k0,j−1. (3.43)

In fact, 2Dz̄ = D(0) : H1
k0
→ L2

k0
is invertible by Proposition 3.2 and 3.3 and R(0) :

L2
k0
→ H1

k0
⊂ L2

k0
is its inverse. Since 2Dz̄[u(ω`z)] = (ω̄)`[2Dz̄u](ω`z), if u(ω`z) = ω̄`p

then [2Dz̄u](ω`z) = ω̄`(p−1). Hence, in terms of definition (3.20), 2Dz̄ : H1
k0,j
→ L2

k0,j−1.

Consequently, R(0) : L2
k0,j−1 → L2

k0,j
and as the dual space to L2

k0,p
(using the L2

pairing) is given by L2
k0,p

, (3.43) follows.

This and A : L2
k0,j−1 → L2

k0,−j+1 (see (3.28)) show

D(α)A R(0)∗w = 0, A R(0)∗w ∈ L2
k0,−j+1 6= L2

k0,j
when j = 0, 1.

This means that dim kerH1
k0
D(α) > 1, contradicting the simplicity assumption. The

simplicity and uniqueness of the zero of u0 (3.42) follows from [BHZ22b, Theorem

3]. �

For an α ∈ A, we assume that (3.39) holds. In that case Proposition 3.6 and Lemma

3.4 show that

kerH1
0
(D(α) + k) = Cu(k), u(k) :=

Fku0

‖Fku0‖
. (3.44)
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Using (3.26) we see that (since A 2 = −I)

(D(α)∗ + k̄)A = −A (D(α)− k),

which implies that

kerH1
0
(D(α)∗ + k̄) = CA u(−k). (3.45)

Remark. From [BHZ22b, (6.6)] we see that (note the difference of notation: u(k)

there is not normalized) for the basis of Λ∗ satisfying z(e1) = 1, z(e2) = ω, we have

for p = me1 + ne2 ∈ Λ∗,

u(k + p) = ep(k)−1τ(p)u(k), ep(k) := e−
1
2
πin2+πi(k+k̄)n(−1)n+m, (3.46)

where the unitary operator τ(p) was defined in (3.7).

4. Grushin problems

In this section we construct Grushin problems (see [SjZw07] and [DyZw19, §C.1])

which allow us to treat small in-plane magnetic fields as perturbations. In §5 we

combine that with the spectral characterization of magic angles (Proposition 3.3) to

analyze the behaviour at the Γ point and at the vertices of the boundary of the Brillouin

zone.

4.1. Grushin problem for DB(α). Suppose α ∈ A is simple, in the sense that (3.39)

holds. We then put, in the notation of (3.44) and (3.45),

DB(α, k) =

(
D(α) + k R−(k)

R+(k) 0

)
+

(
σ3B 0

0 0

)
: H1

0 × C→ L2
0 × C,

R−(k)u− = u∗(k)u−, R+(k)u = 〈u, u(k)〉,
(D(α) + k)u(k) = 0, ‖u(k)‖ = 1, u∗(k) = A u(−k).

(4.1)

We have

DB(α, k)−1 =

(
EB(k) EB

+ (k)

EB
− (k) EB

−+(k)

)
,

where
E0

+v+ := u(k)v+, E0
−v := 〈v, u∗(k)〉, E0

−+ = 0,

E0v :=
(
(D(α) + k)|(Cu(k))⊥→(Cu∗(k))⊥

)−1
(v − 〈v, u∗(k)〉u∗(k)).

(4.2)

We now apply [DyZw19, Lemma C.3] to obtain

EB
−+ = −E−σ3BE+ +O(B2) = −c(k)c∗(k)B(G(k) +O(B)),

G(k) := (c(k)c∗(k))−1 (〈u1(k), u∗1(k)〉 − 〈u2(k), u∗2(k)〉) ,
(4.3)

and, if u0 = (ψ, ϕ)t, and u(k) = (u1(k), u2(k))t then

u1(k) = c(k)Fkψ, u2(k) = c(k)Fkϕ, u∗1(k) = c∗(k)F−kϕ, u∗2 = −c∗(k)F−kψ,

where c(k), c∗(k) > 0 come from L2-normalizations of u and u∗.



20 SIMON BECKER AND MACIEJ ZWORSKI

Hence,

G(k) = 2

∫
C/Λ

Fk(z)F−k(z)ϕ(z)ψ(z)dm(z).

In fact G(k) is a multiple of θ(z(k))2 which follows from a theta function identity (see

[KhZa15, (4.7a)])

θ(z + u)θ(z − u)θ2(0)2 = θ2(z)θ2
2(u)− θ2

2(z)θ2(u), θ2(z) := θ(z + 1
2
). (4.4)

Since, (from u ∈ H1
0,2)∫

C/Λ
ϕ(z)ψ(z)dm(z) =

∫
C/Λ

ϕ(ωz)ψ(ωz)dm(z) = ω2

∫
C/Λ

ϕ(z)ψ(z)dm(z),

this integral vanishes, and (4.4) gives

G(k) = g0
θ(z(k))2

θ(1
2
)2

, g0 = g0(α) := 2

∫
C/Λ

θ(z + 1
2
)2ϕ(z)ψ(z)

θ(z)2
dm(z). (4.5)

Numerical evidence, see Table 1, suggests that for the Bistritzer–MacDonald potential

and the first magic angle,

|g0| ' 0.07 6= 0.

(The number g0 is determined up to phase which we can choose arbitrarily by modifying

u0 7→ eiθu0.) Table 1 shows approximate values of |g0| for higher magic angles for the

same potential.

Remark. We also see that the Grushin problem (4.1) remains well posed with α

replaced with α, |α − α| � 1. The effective Hamiltonian (4.3) has to be modified by

term (obtained again using [SjZw07, Proposition 2.12])

EB
−+(k, α) = EB

−+(k)− (α− ᾱ)f2(k,B, α),

f2(k, 0, α) := g1(k, α) = −E0
−(k)

(
0 U(z)

U(−z) 0

)
E0

+(k),
(4.6)

where and in the notation following (4.3),

g1(k, α) :=

∫
C/Λ

(U(−z)u1(k, z)u1(−k, z)− U(z)u2(k, z)u2(−k, z))dm(z)

=

∫
C/Λ

Fk(z)F−k(z)(U(−z)ψ(z)2 − U(z)ϕ(−z)2)dm(z).

(4.7)

An indirect argument presented in the proof of Proposition 5.1 shows that if g0(α) 6= 0

then g1(0, α) 6= 0. This can also be verified numerically – see Table 1.
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4.2. Grushin problem for the self-adjoint Hamiltonian. We now turn to the

corresponding Grushin problem for HB
k (α) given in (3.5) (note the irrelevant change

of sign of k)

HB
k (α, z) :=

(
HB
k (α)− z R̃−(k)

R̃+(k) 0

)
: H1

0 (C/Λ;C4)× C2 → L2
0(C/Λ;C4)× C2,

HB
k (α) :=

(
0 DB(α)∗ + k̄

DB(α) + k 0

)
,

R̃−(k) =

(
0 R+(k)∗

R−(k) 0

)
, R̃+(k) = R̃−(k)∗,

(4.8)

where R±(k) are the same as in (4.1). The operator HB
k (α, z) is invertible for all k,

|B| � 1, |α − α| � 1 and |z| � 1. We denote the components of the inverse by

ẼB
• (k, α, z) and we have

Ẽ0
+(k, α, 0) =

(
0 E0

+(k)

E0
−(k)∗ 0

)
, Ẽ0

−(k, α, 0) = Ẽ0
+(k, α, 0)∗, Ẽ0

−+(k, α, 0) ≡ 0.

Using [DyZw19, Lemma C.3] again we see that (in the notation of (4.6))

ẼB
−+(k, α, z) =

(
z EB

−+(k, α)

EB
−+(k, α)∗ z

)
+O(|z|2 + |B|2 + |α− α|2).

(Here we used the fact that E0
−(k)E0

−(k)∗ ≡ 1 and E0
+(k)∗E0

+(k) ≡ 1 which follows

from (4.2) and normalization of u(k) and u∗(k).)

Hence z = EB
1 (k, α) = −EB

−1(k,B) (the eigenvalues of HB
k (α) closest 0) for k close

to 0 are given by solutions of

det ẼB
± (k, α, z) = 0 =⇒

z = ±
∣∣γ1Bk

2 + γ0(α− α) +O(|B|2 + |α− α|2 + |k|4)
∣∣ , (4.9)

where (under the assumption that g0(α) 6= 0) γ0 6= 0, γ1 6= 0. (The exact symmetry of

signs follows from the extension of the chiral symmetry (3.16) to the Grushin problem

(4.8) which shows that det ẼB
± (k, α, z) = det ẼB

± (k, α,−z).)

5. Bifurcation

This section is devoted to showing (2.18) and giving a stronger version of Theorem

3.

We first observe that for ±B − k /∈ K0 = {K,−K}+ Λ∗, K = 4
3
π > 0,

((2Dz̄ − k)IC2 + σ3B)−1 : L2
0 → H1

0 ,
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Incoming DPs

Outgoing DP Outgoing DP

Re k

Im k

Re kα α

Figure 6. Bifurcation for B = 0.1. (Top): The color-coding indicates

the position of the Dirac points for given values of α ∈ R. The right figure

illustrates the bifurcation at Γ and the left figure at a non-equivalent

(modulo Λ∗) bifurcation point that is a vertex of the boundary of the

Brillouin zone, see Figure 1.

and we can define

Tk(B) := ((2Dz̄ − k)IC2 + σ3B)−1

(
0 U(z)

U(−z) 0

)
. (5.1)

It then follows that for ±B − k /∈ K0 = {K,−K}+ Λ∗,

k ∈ SpecL2
0
(DB(α)) ⇐⇒ 1/α ∈ SpecL2

0
(Tk(B)). (5.2)

In particular, this characterization holds when k ∈ C \ (K0 + D(0, δ)) and |B| < 1
2
δ.

However, in Figure 8 we will show and discuss the spectrum of Tk(B) when k ∈ K0

and B 6= 0.

Combining the spectral characterization with the result of §4 we can obtain a rather

precise characterization of the behaviour of eigenvalues of Tk(B):

Proposition 5.1. Suppose that λ is a simple eigenvalue of Tk = Tk(0) and that as-

sumptions of Theorem 2 hold for α = 1/λ. Then for every ε > 0 there exists δ > 0

and a holomorphic function λ(k,B), such that λ(k,B) is a simple eigenvalue of Tk(B)

and
(k,B) 7→ λ(k,B), k ∈ Ωε := C \ (K0 +D(0, ε)), B ∈ D(0, δ)

λ(k + p,B) = λ(k,B), p ∈ Λ∗, k, k + p ∈ Ωε, B ∈ D(0, δ),

λ(k,B) = −λ(k̄, B̄) = λ(ωk, ωB) = λ(−k,B),

λ(k, 0) = λ, ∂B∂
2
kλ(0, 0) ∈ R \ {0}.

(5.3)



DIRAC POINTS FOR TBG WITH IN-PLANE MAGNETIC FIELD 23

-1 -0.5 0 0.5 1
-0.18

-0.17

-0.16

-0.15

-0.14

-0.13

λ0(B3)

B

-1 -0.5 0 0.5 1
-12

-10

-8

-6

-4

-2

0

10
-5

2nd

3rd

4th

λ0(B3)

B

Figure 7. Plot of the B 7→ λ1(B) of Proposition 5.1 for the first (left)

and second to fourth magic angle (right).

In particular, for B ∈ D(0, δ) ⊂ C,

λ(k,B) = λ+ c1Bk
2 + λ1(B3)B3 +O(B4k2) +O(B2k4) +O(Bk8), (5.4)

where c1 ∈ R \ {0}, λ1(z) = λ1(z̄),

Remarks. 1. It follows from the proof that the constant c1 can be computed using

the constants g0(α) and g1(α) defined in (4.5) and (4.6) respectively:

c1 = − 3θ′(0)2

16π2θ(1
2
)2

g0(α)

g1(α)
.

2. In view of (5.2), (5.4), shows that when α is is magical and λ = 1/α satisfies the

assumptions of Proposition 5.1, then for 0 < |B| � 1, k ∈ SpecL2
0
DB(α) ∩ D(0, δ),

0 < δ � 1, if and only if

Bk2(1 +O(k8)) = c−1
1 (1− α/α) +O(B3). (5.5)

In particular, when B and α are real then the eigenvalues of DB(α) bifurcate k = 0

when α is chosen so that the right hand side of (5.5) vanishes. (We recall from (5.4)

that c1 ∈ R \ {0} and λ1(B3) is real for B real). We see the same bifurcation for

B = B0e
±2πi/3, B0 > 0, obtained using (2.10).

3. Numerical evidence suggests (see Figure 7) that ∂3
Bλ(0, 0) < 0 for the Bistritzer–

MacDonald potential. If B = B0e
2πiθ that means the Γ point (corresponding k = 0) is

in the spectrum of DB(α), α ∈ R, only if θ ∈ 1
3
Z.

Proof of Proposition 5.1. Let U b C \ K0 be an open set. Then for k ∈ U , Tk(B) =

Tk(0)+O(B)L2
0→L2

0
and if 0 < ε0 � 1, then the projection, Π(k,B) := (2πi)−1

∫
∂D(λ,ε0)

(ζ−
Tk(B))−1dζ, is holomorphic in k and B and has a fixed rank. We assumed that
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Tk(0) has a simple eigenvalue at λ (independent of k – see (3.24)), which then im-

plies that the rank is one, and Tk(B) has a simple eigenvalue λ = λ(k,B). Since

λ(k,B) = tr(Tk(B)Π(k,B)) it follows that λ(k,B) is holomorphic in k and B.

From (2.10) and (5.1) we conclude that

SpecL2
0
(Tk(B)) = SpecL2

0
(Tk̄(B̄)) = SpecL2

0
(T−k(B)) = SpecL2

0
(Tωk(ωB)), (5.6)

This gives

λ(k,B) = λ(−k,B) = λ(k̄, B̄) = λ(ωk, ωB). (5.7)

Definitions (5.2) and (3.7) give Tk+p(B) = τ(p)Tk(B)τ(p)∗, p ∈ Λ∗, and hence

λ(k + p,B) = λ(k,B), p ∈ Λ∗ (5.8)

provided that k, k+ p ∈ U . This allows an extension of λ(k,B) to Ωε in the statement

of the proposition, provided that |B| < δ for some sufficiently small δ. The properties

of the expansion (5.4) come from the fact that individual terms in the Taylor expansion

satisfy the symmetries (5.7):

apqk
pBq = apq(−1)pkpBq = āpqk

pBq = apqω
p+qkpBq, apq 6= 0 =⇒

apq ∈ R, p = 2`, ` ∈ N, q ≡ `mod 3.
(5.9)

This proves (5.3) and (5.4) except for c1 6= 0, that is, the non-vanishing of ∂B∂
2
kλ(0, 0).

To establish that, we compare the expansion of λ(k,B) with the effective Hamilton-

ian (4.6):

λ(k,B) = λ ⇐⇒ EB
−+(k, α) = 0, α = λ−1.

We now define µ by

λ = λ(1− µλ), λ−1 = λ−1(1− λµ)−1 = λ−1 + µ+O(µ2).

Using (4.6) and (4.3), EB
−+(k, α) = 0 becomes

Bk2 + a−1
0 µg1(k, α) +O(µ2) +O(B2) +O(Bk3) = 0, (5.10)

a0 := −αg0(α)θ(1
2
)−2(θ′(0))2 6= 0, which is then equivalent to (5.4):

− µ = c̃1bk
2 +O(B3) +O(Bk8), c̃1 := λ−2c1. (5.11)

Inserting (5.11) into (5.10) gives

Bk2 = a−1
0 g1(k, α)c̃1Bk

2 +O(B2) +O(Bk3),

which should hold for (k,B) near (0, 0) (since µ = µ(k,B) = λ−1 − λ−2λ(k,B)). But

that is possible only when g1(0, α)c̃1 6= 0 (we used here the numerically established

assumption that g0(α) 6= 0). Hence ∂B∂
2
kλ(0, 0) = 1

2
c1 = 1

2
λ2c̃1 6= 0 and, as promised

after (4.6), g1(0, α) 6= 0. �

At the bifurcation point, the Bloch eigenvalues exhibit a quadratic well, see Figure

3.
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Proposition 5.2. Under the assumptions, and in the notation, of Proposition 5.1 and

(5.5), let α∗ be the solution to

α∗ = α + α2(B)3λ1(B3),

so that 0 ∈ SpecL2
0
DB(α∗). Then the two Bloch eigenvalues E±1 of HB

k (α) closest to

zero, defined in (3.22), satisfy

E±1(α∗, k) = ±|γ1Bk
2|+O(B2 + |k|4), γ1 > 0.

Proof. This follows from (4.9) and (5.5). �

The next proposition deals with the vertices of the boundary of the Brillouin zone.

In view of (5.8) it is enough to consider one of the vertices, say,

k1 := 2πi/
√

3, z(k1) = 1
2
. (5.12)

We will crucially use the following properties of the theta function defined in (3.31):

θ(1
2
) 6= 0, θ′(1

2
) = 0, θ′′(1

2
) 6= 0. (5.13)

The first property follows from the fact that the only zeros of θ lie on Λ. The second

one comes from θ(−z) = −θ(z) and θ(z + 1) = −θ(z) so that w 7→ θ(1
2

+ w) is an

even function. The last claim can be obtained from taking logarithmic derivatives of

[KhZa15, (2.10b)] or by a rigorous numerical verification based on fast convergence of

the sum in (3.31).

Proposition 5.3. Suppose that λ is a simple eigenvalue of Tk = Tk(0) and that as-

sumptions of Theorem 2 hold for α = 1/λ. Then, for k near k1 given in (5.12),

λ(k,B) = λ+Bλ2(B) + c2B(k − k1)2 +O(|B|2|k − k1|2). (5.14)

where c2, λ2(0) ∈ R \ {0}.

Remark. We again have a bifurcation result similar to (5.5) but less precise:

B(k − k1)2(1 +O(B)) = c−1
2 (1− α/α)−Bλ2(α−1B) +O(B2). (5.15)

For B real we see a bifurcation at α∗ = α + Bλ2(B), with similar bifurcations for

B = B0e
±2πi/3, B0 > 0, obtained using (2.10).

Proof of Proposition 5.3. From (5.7), (5.8) and the fact that 2k1 = 4πi/
√

3 ∈ Λ∗ we

conclude that

λ(k1 + z,B) = λ(−k1 − z,B) = λ(k1 − z,B)

= λ(−z̄ − k1, B̄) = λ(k1 − z̄, B̄).
(5.16)

We also note that for k /∈ K0 + D(0, ε), λ(k, 0) = λ (since k ∈ SpecL2
0
D0(α) only at

α = α = 1/λ). Hence, as in (5.11) and with the same definition of µ,

−µ = Bλ2(B) + c̃2Bw
2 +O(B2w2), w := k1 − k c̃2 := λ−2c2, λ2(0) ∈ R. (5.17)
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We now proceed as in the proof of Proposition 5.1 and use (4.6) and (5.13):

(θ(z(k)))2 = θ(1
2
)2 + θ′′(1

2
)w2 +O(w4).

This gives the following equation:

a1B + a2Bw
2 + a3µ+O(µ2) +O(B2) +O(Bw4) = 0, a1a2 6= 0. (5.18)

Substituting (5.17) into (5.18) shows that a3 6= 0 and c2 6= 0. �

6. Proofs of Theorems 2 and 3

Combining the results of previous of sections we can now prove the main results of

this paper.

Proof of Theorem 2. In the notation of (4.6) we see the effective Hamiltonian for

DB(α) for B small

EB
−+(k, α) = −Bc(k)c∗(k)(c0θ(z(k))2 +O(B)) +O(α− α). (6.1)

Since θ(z(k)) 6= 0 for k /∈ Λ∗ (see §3.6) there exists a constant a1 such that if |α −
α| < a1|B| then EB

−+(k) is not identically 0 (provided that B is small enough). This

shows invertibility at some k and hence discreteness of the spectrum (by the analytic

Fredholm theory applied to k 7→ (DB(α)− k)−1 – see for instance [DyZw19, Theorem

C.8]) for

(B,α) ∈ Ω1 := {(B,α) : |B| < δ1, |α− α| < a1|B|}. (6.2)

On the other hand, we can put k = 0 and recall from the proof of Proposition 5.1 (see

(4.6)) that

EB
−+(0, α) = c0(α− α)(1 +O(α− α) +O(B)) +O(B2), c0 6= 0.

Hence EB
−+(0, α) does not vanish if, for some constant A1, and small δ2 > 0,

(B,α) ∈ Ω2 := {(B,α) : A1|B|2 < |α− α| < δ2}. (6.3)

Again, that implies discreteness of the spectrum. We now note that there exists δ0 > 0

such that

(D(0, δ0) \ {0})×D(α, δ0) ⊂ Ω1 ∪ Ω2,

and this proves discreteness of the spectrum of DB(α) for 0 < |B| < δ0 and |α−α| < δ0.

We also see that (6.1) implies (2.16): for U b C, for any epsilon there exits ρ > 0

such that |θ(z(k))2| > ρ for z ∈ U \ (Λ∗ +D(0, ε)). But then

|EB
−+(k, α)| > c0c(k)c∗(k)|B|ρ−O(B2)−O(|α− α|) > 0,

if 0 < |B| ≤ ρ/C and |α− α| < ρ|B|/C for some (large) constant C.
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Figure 8. Top figure showing α ∈ C such that 1/α ∈ SpecL2
0
(TK(B))

or K ∈ SpecL2
0
(DB(α)). We see that indeed for B ∈ R\{0} the trajectory

of Dirac points passes through K,K ′. Bottom figure showing α ∈ C such

that 1/α ∈ SpecL2
0
(TK(B)) or K ∈ SpecL2

0
(DB(α)). For general B /∈ R

the trajectory of Dirac points for varying α ∈ R does not pass through

K between successive real magic angles.
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It remains to prove (2.15). Let F be a fundamental domain of Λ∗ containing 0

and such that there are no eigenvalues on ∂F (that can be arranged as under our

assumptions the spectrum of DB(α) is discrete and periodic with respect to Λ∗). Then,

| SpecL2
0
(DB(α)) ∩ F | = 1

2πi
tr

∫
∂F

(ζ −DB(α))−1dζ.

As long DB(α) has no eigenvalue on ∂F for (B,α) ∈ K ⊂ C2, this value remains

constant for (B,α) ∈ K. Choosing a small ε and δ needed for (2.16) and putting

K = {(B,α) : |B| < δ, |α − α| < a0δ|B|}, we see that (using [SjZw07, Proposition

4.2])

1

2πi
tr

∫
∂F

(ζ −DB(α))−1dζ =
1

2πi
tr

∫
∂D(0,ε)

(ζ −DB(α))−1dζ

=
1

2πi

∫
∂D(0,ε)

EB
−+(ζ)−1dζE

B
−+(ζ)

=
1

2πi

∫
∂D(0,ε)

(ζ2 +O(B))−1(2ζ +O(B))dζ

= 2 +O(B) = 2,

provided B is small enough (depending on ε, note that α = α in the calculation; the

answer has to be an integer).

We now need to account for the possibility that DB(α) has an eigenvalue on ∂F .

Periodicity of the spectrum shows that if k1 ∈ SpecDB(α) ∩ ∂F then k1 + γ ∈ ∂F for

a finite number of γ ∈ Λ∗ (from the definition of a fundamental domain). Only one

of these points can be in the fundamental domain F and a small deformation includes

it in the interior of (the new) F , while excludes all others from ∂F . The previous

argument shows that the number of eigenvalues remains 2. �

Proof of Theorem 3. When B,α ∈ R then the last identity in (2.10) gives

SpecL2
0
DB(α) = − SpecL2

0
DB(α) = SpecL2

0
DB(α). (6.4)

From Theorem 1 we know that for α /∈ A,

SpecL2
0
(DB(α)) = {d(α),−d(α)}+ Λ∗

(we fix B ∈ R here) and (6.4) shows that

d(α) ≡ d(α) mod Λ∗ or d(α) ≡ −d(α) mod Λ∗.

Since Λ∗ = Λ∗ this means that SpecL2
0
DB(α) ⊂ (R+ Λ∗)∪ (iR+ Λ∗) which is the same

as (2.17).

To prove (2.18) we recall that C × (C \ K0) 3 (B, k) 7→ Tk(B), is a holomorphic

family of compact operators with simple eigenvalue µ = 1/α ∈ Spec(Tk(0)). We define

K := R \
⋃
k′∈K0

D(k′, ε), then by periodicity of the spectrum of DB(α) it suffices to
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restrict us to a fundamental domain: Since K /Λ∗ is a compact set, the spectrum of

K 3 k 7→ Tk(B) is uniformly continuous in B on compact sets. Thus, for 0 < |B| < δ0

small enough, the operator Tk(B) has precisely one eigenvalue in a δ1 neighbourhood

of µ for every k. This implies that for every k ∈ K /Λ∗ there is precisely one µk such

that µk ∈ Spec(Tk(B)) and |µk − µ| < δ1. From Propositions 5.1 and 5.3 we conclude

that µk ∈ R and the result follows. �

Remark. While our proof does not show that for B ∈ R \ {0} the points K,K ′ are

also in the spectrum of DB(α) for some real α between successive magic angle, the

bottom figure in Figure 8 shows that this is indeed the case. For general B /∈ R this is

however false, as the top figure in Figure 8 shows. Both figures exhibit an interesting

universal pattern for |α| large.
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