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Abstract. We consider a quantum graph as a model of graphene in constant mag-

netic field and describe the density of states in terms of relativistic Landau levels

satisfying a Bohr–Sommerfeld quantization condition. That provides semiclassical

corrections (with the magnetic flux as the semiclassical parameter) in the study of

magnetic oscillations.

1. Introduction and statement of results

The purpose of this paper is to describe the density of states for a model of graphene

in constant magnetic field and to relate it to the Shubnikov-de Haas and de Haas–van

Alphen effects.

We use a quantum graph model introduced by Kuchment–Post [KP07] with the

magnetic field formalism coming from Brüning–Geyler–Pankrashin [BGP07]. Quan-

tum graphs help to investigate spectral properties of complex systems: the complexity

is captured by the graph but analytic aspects remain one dimensional and hence rela-

tively simple. In particular, existence of Dirac points in the Bloch–Floquet dispersion

relation – see §3.3 – follows from a straightforward computation. This should be com-

pared with the subtle study by Fefferman–Weinstein [FW12] which starts with periodic

Schödinger operators on R2.

Figure 1. A molecular graphene [G∗12] in which the CO molecules

confine the Bloch electron to a one dimensional hexagonal structure.
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Figure 2. Graphs of smoothed-out density of states µ 7→ ρ̃B(exp((•−
µ)2/2σ2)/

√
2πσ) for h = 0.005 and for different values of σ (using an

approximation (7.4)). When σ is large the function x 7→ exp((x −
µ)2/2σ2)/

√
2πσ) is uniformly smooth and we see no oscillations as pre-

dicted by (1.4). Figure 9 compares these graphs with the ones based on

the “perfect cone” approximation (1.2); see also Figure 7 for the density

of states of the zero magnetic field.

One experimental setting for which quantum graphs could be a reasonable model

is molecular graphene studied by the Manoharan group [G∗12] – see also [P*13] for a

general discussion. In that case CO molecules placed on a copper plate confine the

electrons to a one dimensional hexagonal structure – see Figure 1.

The ideas behind rigorous study of the density of states and of magnetic oscilla-

tions come from the works of Helffer–Sjöstrand [HS88],[HS89],[HS90a],[HS90b],[Sj89]

(to which we refer for background and additional references). However, the simplicity

of our model allows us to give an essentially self-contained presentation.

The main object of our study is the density of state (DOS) for a magnetic Hamil-

tonian, HB, on a hexagonal quantum graph – see (3.4). The DOS is defined as a

non-negative distribution ρB ∈ D ′(R) (that is, a measure) produced by a renormalized

trace: for f ∈ Cc(R),

ρB(f) = t̃r(f(HB)) := lim
R→∞

tr 1lB(R) f(HB)

vol(B(R))
, B(R) := {x ∈ R2 : |x| < R}, (1.1)

see Definition 4.6.
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Our desription of the density of states comes close to formal expressions for the

density of states ρB given in the physics literature,

ρB(E) =
B

π

∑
n∈Z

δ(E − En), En := sign(n)vF
√
|n|B,

vF = Fermi velocity , B = strength of the magnetic field,

(1.2)

see for instance [CU08, (42)] or [SGB04, (4.2)]. The energies En are the (approximate)

relativistic Landau levels.

Theorem 1 gives the following rigorous version of (1.2). It is convenient to consider

a semiclassical parameter given by the magnetic flux through a cell of the hexagonal

lattice, see Figure 4:

h :=
3
√

3

2
B = |b1 ∧ b2|B.

Then, if I is a neighbourhood of a Dirac energy (see §3.3) and f ∈ Cα
c (I), α > 0,

ρB(f) =
h

π|b1 ∧ b2|
∑
n∈Z

f(zn(h)) +O(‖f‖Cαh∞), h→ 0, (1.3)

where zn(h) satisfy natural quantization conditions (5.6) and (6.12). They are ap-

proximately given by zD + En with En’s in (1.2), where zD is the Dirac energy. This

simple asymptotic formula should be contrasted with the complicated structure of the

spectrum of HB – see the analysis by Becker–Han–Jitomirskaya [BHJ18].

The importance of considering functions which are not smooth is their appearance

in condensed matter calculations – see §7. Oscillations as functions of 1/B are not

seen for smooth functions in view of Theorem 2:

ρB(f) ∼
∞∑
j=0

Aj(f)hj, A0(f) = ρ0(f), h→ 0, f ∈ C∞c (I). (1.4)

Roughly speaking, this expansion follows from the expansion of the Riemann sum

given by (1.3) – see [HS90b]. Here the proof follows [DS99, Chapter 8].

Many physical quantities are computed using DOS, in particular grand-canonical

potentials and magnetizations at temperature T = 1/β localized to an energy interval

using a function η:

Ωβ(µ, h) := ρB(η(•)fβ(µ− •)), fβ(x) := −β−1 log(eβx + 1),

Mβ(µ, h) := − |b1 ∧ b2|
∂

∂h
Ωβ(µ, h).

(1.5)

For β = ∞ we take f∞ = x+ which is a Lipschitz function. Hence (1.3) applies and

for β > h−M0 one could also obtain expansions for Mβ – see §7.2. We take a simpler

approach and calculate a semiclassical approximation, m∞(µ, h), to magnetization –

see (7.10) and compare it to (almost) exact spectral calculations – see §§7.3,7.4. The
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Figure 3. Plots of different approximations of the magnetization lo-

calized to the upper cone: the spectral one using M∞ defined in (1.5) (see

§7.3), the semiclassical approximation m∞ given in (7.10) and the saw-

tooth approximation (1.6). The agreement of M∞ and m∞ is remarkable

even for relatively large values h. The sawtooth approximation gives the

correct oscillations but with amplitude errors O(
√
h).

agreement between M∞ computed spectrally and the approximation m∞ is remarkable

already at fairly high values of the magnetic field. In Theorem 3 we derive a simple

“sawtooth” approximation for m∞ confirming approximations seen in the physics lit-

erature [SGB04],[CM01]:

m∞(µ, h) =
1

π
σ

(
g(µ)

h

)
g(µ)

g′(µ)
+O(h

1
2 ),

σ(y) := y − [y]− 1
2
.

(1.6)

The function g comes from the dispersion relation for the quantum graph model of

graphene [KP07] (see §3.3):

g(µ) :=
1

4π

∫
γ∆(µ)2

ξdx, γω =

{
(x, ξ) ∈ R2/2πZ2 :

|1 + eix + eiξ|2

9
= ω

}
,

where ∆(µ) is the Floquet discriminant of the potential on the edges (and is equal to

cos
√
λ for the zero potential). The Dirac energy, zD, for a given band is determined

by zD = ∆|−1
Bk

(0).
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Notation. We write fα = Oα(g)H for ‖f‖H ≤ Cαg, that is we have a bound with

constants depending on α. In particular, f = O(h∞)H means that for any N there

exists CN such that ‖f‖H ≤ CNh
N . We denote 〈x〉 :=

√
1 + |x|2.
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of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis (SB),

by the National Science Foundation under the grant DMS-1500852 and by the Simons

Foundation (MZ). We would also like to thank Nicolas Burq for useful discussions,

Semyon Dyatlov for help with MATLAB coding and insightful comments and Hari

Manoharan for introducing us to molecular graphene and for allowing us to use Figures

1 and 7(B).

2. Hexagonal quantum graphs

Quantum graphs provide a simple model for a graphene-like structure in which many

features can be rigorously derived with minimal technical effort. Hence we consider

a hexagonal graph, Λ, with Schrödinger operators defined on each edge [KP07]. The

graph Λ is obtained by translating its fundamental cell WΛ, consisting of vertices

r0 := (0, 0), r1 :=
(

1
2
,
√

3
2

)
(2.1)

and edges

f := conv ({r0, r1}) \ {r0, r1} ,
g := conv ({r0, (−1, 0)}) \ {r0, (−1, 0)} ,

h := conv
({
r0,
(

1
2
,−
√

3
2

)})
\
{
r0,
(

1
2
,−
√

3
2

)}
,

(2.2)

along the basis vectors of the lattice. The basis vectors are

b1 :=
(

3
2
,
√

3
2

)
and b2 :=

(
0,
√

3
)

(2.3)

and so the hexagonal graph Λ ⊂ R2 is given by the range of a Z2-action on the

fundamental domain WΛ

Λ :=
{
x ∈ R2;x = γ1b1 + γ2b2 + [x] for γ ∈ Z2 and [x] ∈ WΛ

}
. (2.4)

The set of edges of Λ is denoted by E = E(Λ), the set of vertices by V = V(Λ) and

the set of edges adjacent to a given vertex v ∈ V by Ev. We drop Λ in the notation if

no confusion is likely to arise.

When we say that u ∈ C(Λ) we mean that u is a continuous function on Λ, a closed

subset of R2 – see (2.4).

For any edge e ∈ E we denote by [e] ∈ E(WΛ) the unique edge (thought of as a

vector in R2) for which there is γ ∈ Z2 such that e = γ1b1 + γ2b2 + [e]. We impose a
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Figure 4. The fundamental cell and lattice basis vectors of Λ.

global orientation on the graph by orienting the edges in terms of initial and terminal

maps

i : E → V , t : E → V
where i and t map edges to their initial and terminal ends. It suffices to specify the

orientation on the fundamental domain

i(f) = i(g) = i(h) = r0, t(f) = r1, t(g) = r1 − b1, t(h) = r1 − b2.

For arbitrary e ∈ E , we then extend those maps by

i(e) := γ1b1 + γ2b2 + i([e]) and t(e) := γ1b1 + γ2b2 + t([e]). (2.5)

In the case of our special graph with orientations showed in Figure 4 a given vertex

is either initial or terminal and hence we wrote

V = V i t V t, V• := {v : v = •(e) for some e ∈ E}, • = i, t. (2.6)

The fundamental domain of the dual lattice can be identified, because the lattice is

spanned by a Z2-action, with the dual 2-torus

T2
∗ := R2/(2πZ)2. (2.7)

We assume every edge e ∈ E is of length one and has a standard chart

κe : e→ (0, 1), κe((1− s)i(e) + st(e)) = s. (2.8)

Thus, for n ∈ N0, the Sobolev space Hn(E) on Λ is given by the Hilbert space direct

sum

Hn(E) :=
⊕
e∈E

Hn(e). (2.9)
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On edges e ∈ E we define the maximal Schrödinger operator

He : H2(e) ⊂ L2(e)→ L2(e), Heψe := −ψ′′e + V ψe (2.10)

with potential V ∈ L2((0, 1)) ' L2(e) which is the same on every edge and even with

respect to the edge’s centre.

2.1. Relation to Hill operators. Using the potential introduced in the previous

section, we define the Z-periodic Hill potential Vper ∈ L2
loc(R)

Vper(x+ n) := V (x), n ∈ Z, x ∈ (0, 1). (2.11)

Next, we study the associated self-adjoint Hill operator on the real line

Hper : H2(R) ⊂ L2(R)→ L2(R) Hperψ := −ψ′′ + Vperψ.

There are always two linearly independent solutions cλ, sλ ∈ H2
loc(R) to Hperψ = λψ

satisfying

cλ(0) = 1, c′λ(0) = 0 and sλ(0) = 0, s′λ(0) = 1. (2.12)

Consider the Dirichlet operator on (0, 1)

ΛD
(0,1) : H1

0 (0, 1) ∩H2(0, 1) ⊂ L2(0, 1)→ L2(0, 1) ΛD
(0,1)ψ = −ψ′′ + Vperψ.

Any function ψλ ∈ H2(0, 1) satisfying −ψ′′λ +Vperψλ = λψλ with λ /∈ Spec(ΛD
(0,1)) (that

is with sλ(1) 6= 0) can be written as a linear combination of sλ, cλ:

ψλ(t) =
ψλ(1)− ψλ(0)cλ(1)

sλ(1)
sλ(t) + ψλ(0)cλ(t). (2.13)

For λ /∈ Spec(ΛD
(0,1)), we define the Dirichlet-to-Neumann map

m(λ) :=
1

sλ(1)

(
−cλ(1) 1

1 −s′λ(1)

)
,

(
ψ′λ(0)

−ψ′λ(1)

)
= m(λ)

(
ψλ(0)

ψλ(1)

)
. (2.14)

Remark 1. Since Vper is assumed to be symmetric with respect to 1
2

on the interval

(0, 1), cλ(1) = s′λ(1). The Dirichlet eigenfunctions are consequently either even or odd

with respect to 1
2
.

The monodromy matrix associated with Hper is the matrix valued entire function of

λ:

M(λ) :=

(
cλ(1) sλ(1)

c′λ(1) s′λ(1)

)
.

Its normalized trace

∆(λ) :=
tr(M(λ))

2
(2.15)

is called the Floquet discriminant. In the case when V ≡ 0 we have

∆(λ) = cos
√
λ, (2.16)

and this will serve as an example throughout the paper.



8 SIMON BECKER AND MACIEJ ZWORSKI

The spectrum of the Hill operator, Hper is purely absolutely continuous spectrum

and is given by

Spec(Hper) = {λ ∈ R : |∆(λ)| ≤ 1} =
∞⋃
n=1

Bn

Bn := [αn, βn], βn ≤ αn+1, ∆′|int(Bn) 6= 0,

(2.17)

see [RS78, §XIII].

3. Magnetic Hamiltonians on quantum graphs

The implementation of magnetic fields on quantum graphs is due to [KS03]. The

vector potential A is a one form on R2 and the magnetic field is given by B = dA.

For a homogeneous magnetic field

B := B dx1 ∧ dx2 (3.1)

we can choose a symmetric gauge, that is A given as follows:

B = dA, A = 1
2
B (−x2 dx1 + x1 dx2) . (3.2)

The scalar vector potential Ae ∈ C∞(e) along edges e ∈ E is obtained by evaluating

the form on the graph along the vector field generated by the respective edge [e]:

Ae(s) := A (i(e) + s[e]) ([e]1∂1 + [e]2∂2)

= A (i(e)) ([e]1∂1 + [e]2∂2) + sA([e]) ([e]1∂1 + [e]2∂2)︸ ︷︷ ︸
=0

= A (i(e)) ([e]1∂1 + [e]2∂2)

(3.3)

which is constant along any single edge.

In terms of the magnetic differential operator (DBψ)e := −iψ′e − Aeψe, the

Schrödinger operator modeling graphene in a magnetic field becomes

HB : D(HB) ⊂ L2(E)→ L2(E), (HBψ)e := (DBDBψ)e + V ψe, (3.4)

where D(HB) is defined as the set of ψ ∈ H2(E) satisfying

ψe1(v) = ψe2(v), e1, e2 ∈ Ev,
∑
e∈Ev

(
DBψ

)
e
(v) = 0.

Remark 2. The Hamiltonian HB for any magnetic field with constant flux per hexagon

is unitarily equivalent to the setting of a constant magnetic field with the same flux per

hexagon.

The unitary Peierls’ substitution is the multiplication operator

P : L2(E)→ L2(E), ψe(t) 7→ eiAetψe(t), t ∈ (0, 1). (3.5)
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The operator P transforms HB into

ΛB := P−1HBP, (ΛBψ)e = −ψ′′e + V ψe. (3.6)

The domain of ΛB consists of ψ ∈ H2(E) such that, in the notation of (2.6),

v ∈ V i =⇒ ψe1(v) = ψe2(v), e1, e2 ∈ Ev,
∑
e∈Ev

ψ′e(v) = 0,

v ∈ V t =⇒ eiAe1ψe1(v) = eiAe2ψe2(v), e1, e2 ∈ Ev,
∑
e∈Ev

eiAeψ′e(v) = 0.

Thus, the problem reduces to the study of non-magnetic Schrödinger operators with

the magnetic field moved into the boundary conditions. We note that the magnetic

Dirichlet operator,

HD :
⊕
e∈E(Λ)

(
H1

0 (e) ∩H2(e)
)
→ L2(E), (HDψ)e := (DBDBψ)e + Veψe, (3.7)

is (using Peierls’ substitution (3.5)) unitarily equivalent to the Dirichlet operator with-

out magnetic field

ΛD :=
⊕
e∈E(Λ)

ΛD
e = P−1HDP, (3.8)

where ΛD
e is the Dirichlet realization of −∂2

t + Ve on e. Thus, the spectrum of the

Dirichlet operator does not change under magnetic perturbations.

3.1. Effective Hamiltonian. We now follow Pankrashin [Pa06] and Brüning–Geyler–

Pankrashin[BGP07] and use the Krein resolvent formula to reduce the operator ΛB into

a term containing only parts of the Dirichlet spectrum and an effective operator that

will be further investigated afterwards. We will find that the contribution of Dirichlet

eigenvalues to the spectrum of HB is fully explicit and thus we will be left with an

effective operator which will be used to describe the density of states.

We define

H : D(H) ⊂ L2(E)→ L2(E), (Hψ)e := (DBDBψ)e + Veψe

where D(H) consists of ψ ∈ H2(E) satifying (using notation of (2.6))

v ∈ V i =⇒ ψe1(v) = ψe2(v), e1, e2 ∈ Ev,
v ∈ V t =⇒ eiAe1ψe1(t(e1)) = eiAe2ψe2(t(e2)), e1, e2 ∈ Ev.

(3.9)

With this domain H is a closed operator.

Then, we consider the map π : D(H)→ `2(V) defined by

π(ψ)(v) :=

{
ψe(v), v ∈ V i, e ∈ Ev,

eiAeψe(v), v ∈ V t, e ∈ Ev.
(3.10)



10 SIMON BECKER AND MACIEJ ZWORSKI

The operator π is well defined because of (3.9) and is an isomorphism from ker(H−λ)

onto `2(V) for any λ /∈ Spec(ΛD). This leads to the definition of the gamma-field

γ : { Spec(ΛD)→ L
(
`2(V), D(H)

)
, γ(λ) :=

(
π|ker(H−λ)

)−1
. (3.11)

In the notation of (2.12), the gamma-field is given by

(γ(λ)z)e(t) =
(sλ(1)cλ(t)− sλ(t)cλ(1)) z(i(e)) + e−iAez(t(e))sλ(t)

sλ(1)
. (3.12)

Using this we can then state Krein’s formula from [Pa06] and [BGP07]. For that we

define

M(λ) := sλ(1)−1(KΛ −∆(λ)) (3.13)

where

(KΛz)(v) := 1
3

 ∑
e∈E,i(e)=v

e−iAez(t(e)) +
∑

e∈E,t(e)=v

eiAez(i(e))

 (3.14)

defines an operator on `2(V) with ‖KΛ‖ ≤ 1.

Proposition 3.1 (Krein’s resolvent formula). Let ΛB and ΛD be given by (3.6) and

(3.8) respectively. For λ /∈ Spec(ΛD) ∪ Spec(ΛB) the operator M(λ) is invertible and

satisfies

(ΛB − λ)−1 = (ΛD − λ)−1 − γ(λ)M(λ)−1γ(λ)∗, (3.15)

where M(λ) is given by (3.13).

As a consequence of (3.15) we see that

Spec(ΛB)\ Spec(ΛD) = {λ ∈ { Spec(ΛD); 0 ∈ Spec(M(λ))}.

If λ /∈ Spec(ΛD) it follows that γ(λ) ker(M(λ)) = ker(ΛB − λ). This implies that both

null-spaces are of equal dimension.

Remark 3. The general theory of spectral triples gives the following formula for the

derivative for M ,

∂λM(λ) = γ(λ̄)∗γ(λ), (3.16)

see [Sch12, Proposition 14.5]. This will be important later.

3.2. Magnetic translations. The magnetic Schrödinger operator HB does not com-

mute with standard lattice translation operators

Tγψ(x) := ψ(x− γ1b1 − γ2b2). (3.17)

It does however commute with modified translations which do not commute with

each other in general. Those magnetic translations TBγ : L2(E) → L2(E) are unitary

operators defined by

TBγ ψ := uB(γ)Tγψ, ψ = (ψe)e∈E ∈ L2(E), γ ∈ Z2, (3.18)
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To define uB we first consider it as uB : Z2 → C(WΛ) where WΛ is the fundamental

domain defined in (2.1) and (2.2):

uB(γ)e(s i(e) + (1− s) t(e)) := eiαe(γ)s, e ∈ WΛ,

αe(γ) := A(γ1b1 + γ2b2)([e]1∂1 + [e]2∂2),

uB(γ)(r0) := 1, uB(γ) (r1) := eiαf (γ).

(3.19)

We then extend uB to the graph using translations. Using (3.3) we see that

αf (γ) =
B

2

√
3

2
(γ1 − γ2) =

h

6
(γ1 − γ2),

αg(γ) =
B

2

√
3

2
(γ1 + 2γ2) =

h

6
(γ1 + 2γ2),

αh(γ) = −B
2

√
3

2
(2γ1 + γ2) = −h

6
(2γ1 + γ2)

(3.20)

where

h := 3
√

3
2
B = B|b1 ∧ b2| (3.21)

is the magnetic flux through one hexagon of the graph. For any γ, δ ∈ Z2

uB(γ)[e]−δ1b1−δ2b2 := ei
hω(δ,γ)

2 uB(γ)[e] (3.22)

where ω(δ, γ) := δ1γ2 − δ2γ1 is the standard symplectic form on R2. A computation

shows that TB• satisfies the commutation relation

TBγ T
B
δ = eihω(γ,δ)TBδ T

B
γ . (3.23)

It also follows that TBγ
(
D(HB)

)
= D(HB), and that TBγ are unitary operators.

Since

TBγ H
B = HBTBγ . (3.24)

it follows that for every bounded measurable function f : R→ C

TBγ f(HB) = f(HB)TBγ . (3.25)

3.3. Dirac points and band velocities. It is well-known that the energy as a func-

tion of quasimomenta for graphene has two conical cusps at energies Dirac energies:

zD := ∆|−1
Bn

(0) (we drop the index n)

Those cones (see Figure 5) in the energy-quasimomentum representation are referred

to as Dirac cones. The name is derived from the linear energy-momentum relation for

relativistic massless fermions the Dirac equation predicts.

The Hamiltonian HB with B = 0 is translational invariant, that is, it commutes

with translation operators Tγ defined in (3.17). Using standard Floquet-Bloch theory,
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Figure 5. The first two bands of the Schrödinger operator with a Math-

ieu potential without magnetic perturbation showing the characteristic

conical Dirac points at energy level ≈ −π where the two bands touch.

one can then diagonalize the operator HB=0 as in Kuchment–Post [KP07] to write the

spectrum for quasimomenta (k1, k2) ∈ T2
∗ (see (2.7)) in terms of a two-valued function

T2
∗ 3 k 7→ λ±|Bn(k) := ∆|−1

Bn

(
±
∣∣1 + eik1 + eik2

∣∣
3

)
(3.26)

on every Hill band Bn (2.17). Expanding λ±|Bn in polar coordinates at the Dirac

points k = ±
(

2π
3
,−2π

3

)
yields the linearized energy level sets above (+) and below (−)

the conical point

λ±|Bn(r, ϕ) := zD ±
∆|−1′

Bn
(0)

3

√
1− sin(2ϕ)

2
r + o(r) (3.27)

where r is the distance from k = ±
(

2π
3
,−2π

3

)
.

Definition 3.2 (Band velocities). The Bloch state velocity associated with quasimo-

menta (k1, k2) 6= ±
(

2π
3
,−2π

3

)
is just

v±|Bn(k) = ∇λ±|Bn(k) (3.28)

and is fully explicit using (3.26).
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Figure 6. The Bloch state velocity of the upper cone near the Dirac

point located at (kx, ky) = 2π
3

(−1, 1) for zero potential Ve = 0. In partic-

ular, the Bloch state velocity is not rotationally invariant.

Remark 4. The notion of a Fermi velocity in the physics literature corresponds to a

Bloch state velocity at the conical points. From (3.27) and also Figure 6 we see that

such a limit (if taken in norm) would depend on the angle from which we approach the

conical points. Thus, this quantity is not well-defined in this model. Likewise, there

has been some controversy about the nature of this quantity in graphene [S17]. See

(7.5) for an approximation in our setting.

3.4. Different representations of the effective Hamiltonian. Since any vertex

is an integer translate of either of the two vertices r0, r1 ∈ WΛ by basis vectors b1, b2,

we indentify `2(V) ' `2(Z2;C2). Our next Lemma provides the equivalent form of KΛ

(3.14) under this identification.

Lemma 3.3. The operator KΛ given by (3.14) is unitarily equivalent to an operator

QΛ ∈ L(`2(Z2;C2))

QΛ := 1
3

(
0 1 + τ 0 + τ 1

(1 + τ 0 + τ 1)
∗

0

)
(3.29)

where τ 0, τ 1 ∈ L(`2(Z2;C)) are defined by

τ 0(r)(γ) := r(γ1 − 1, γ2) τ 1(r)(γ) := eihγ1r(γ1, γ2 − 1), γ ∈ Z2, r ∈ `2(Z2;C)
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and satisfy the Weyl commutation relation

τ 1τ 0 = eihτ 0τ 1. (3.30)

Proof. The unitary operator eliminating the vector potential along two of the three

non-equivalent edges is the multiplication operator

Uz := (ζvz(v))v∈V(Λ) (3.31)

with recursively defined factors

ζr0 := 1, ζγ1b1+γ2b2+r1 := eiAγ1b1+γ2b2+f ζγ1b1+γ2b2+r0

ζγ1b1+(γ2+1)b2+r0 := ei(−Aγ1b1+(γ2+1)b2+h−hγ1+Aγ1b1+γ2b2+f)ζγ1b1+γ2b2+r0

ζ(γ1+1)b1+γ2b2+r0 := ei(−A(γ1+1)b1+γ2b2+g+Aγ1b1+γ2b2+f)ζγ1b1+γ2b2+r0 .

Defining K#
Λ := U∗KΛU we see that

K#
Λ (z)(v) =

1

3

{
z(v + g) + z(v + f) + eihγ1z(v + h), v ∈ i (V(Λ))

z(v − g) + z(v − f) + e−ihγ1z(v − h), v ∈ t (V(Λ))
(3.32)

where γ1 is such that v = γ1b1 + γ2b2 + r0,1. In order to transform K#
Λ to QΛ we use

the unitary map T : `2(V(Λ))→ `2(Z2,C2) defined as

Tz (γ) :=
(
z(r0 + γ1b1 + γ2b2) , z(γ1b1 + γ2b2 + r1)

)T
. (3.33)

We conclude that, QΛ = (UT ∗)∗KΛ(UT ∗), proving the lemma. �

Consider the matrix-valued sequence a ∈ `2(Z2,C2) such that

a(0,0) :=
1

3

(
0 1

1 0

)
, a(0,1) :=

1

3

(
0 1

0 0

)
, a(1,0) :=

1

3

(
0 1

0 0

)
,

a(0,−1) :=
1

3

(
0 0

1 0

)
a(−1,0) :=

1

3

(
0 0

1 0

) (3.34)

and aβ := 0 for any other β ∈ Z2. Then, we can write (3.29) in the compact form

QΛ =
∑

β∈Z2;|β|≤1

aβ(τ 0)β1(τ 1)β2 . (3.35)

We will exhibit two representations of QΛ: the first as a magnetic matrix and then as

a pseudodifferential operator. For that we follow the presentation of Helffer-Sjöstrand

[HS90b]. We proceed by defining the set of rapidly decaying C2×2-valued functions on

Z2:

S (Z2) :=
{
f : Z2 → C2×2 : ∀N ∃CN ‖f(γ)‖ ≤ CN(1 + |γ|)−N

}
.
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Definition 3.4 (Magnetic matrices). A function f ∈ S (Z2) defines a magnetic matrix

Ah(f) ∈ L
(
`2(Z2,C2)

)
, Ah(f) :=

(
e−i

h
2
ω(γ,δ)f(γ − δ)

)
γ,δ∈Z2

(3.36)

which acts on `2(Z2;C2) by matrix-like multiplication

(Ah(f)u)γ =
∑
δ∈Z2

(
Ah(f)

)
γ,δ
uδ. (3.37)

We now consider discrete magnetic translations τBγ induced by the continuous mag-

netic translations (3.18) on the Z2-lattice τBγ ∈ L(`2(Z2)) that are given by

τBδ (f)(γ) := e−i
h
2
ω(γ,δ)f(γ − δ), ω(γ, δ) := δ1γ2 − δ2γ1. (3.38)

Just as HB commutes with the continuous magnetic translations (3.18), the magnetic

matrices commute with discrete translations(
Ah(f)u

)
γ

=
∑
δ∈Z2

(
Ah(f)

)
γ,δ
uδ =

∑
δ∈Z2

(
τBδ f

)
γ
uδ, (3.39)

which satisfy

τBγ τ
B
δ = eihω(γ,δ)τBδ τ

B
γ . (3.40)

Lemma 3.5. QΛ and Ah(a), with a given by (3.34), are unitary equivalent.

Proof. Let u ∈ `2(Z2;C2), then we have

(QΛu)(γ) =
∑

δ∈Z2;|δ|≤1

aδe
ihγ1δ2u(γ − δ) =

∑
δ∈Z2;|δ|≤1

aδe
−ih

2
δ1δ2eihγ1δ2u(γ − δ)

=
∑

δ∈Z2;|γ−δ|≤1

aγ−δe
−ih

2
(γ1−δ1)(γ2−δ2)eihγ1(γ2−δ2)u(δ)

=
∑

δ∈Z2;|γ−δ|≤1

ei
h
2

(γ1γ2−δ1δ2)ei
h
2

(γ2δ1−δ2γ1)aγ−δu(δ)

=
∑

δ∈Z2;|γ−δ|≤1

ei
h
2
γ1γ2Ahγ,δ(a)e−i

h
2
δ1δ2u(δ).

Hence, the unitary operator V ∈ L(`2(Z2;C2)) acting by V u(γ) := e−i
h
2
γ1γ2u(γ), yields

unitary equivalence QΛ = V ∗Ah(a)V . �

For f, g ∈ S (Z2) we define a (non-commutative) product

f#hg := Ah(f)(g) = A−h(g)(f) =
∑
γ∈Z2

f(γ)(τ−Bγ g)(•). (3.41)

If f ∈ S (Z2) then

Ah(f)−1 ∈ L
(
`2
(
Z2,C2×2

))
=⇒ ∃ g ∈ S (Z2), Ah(f)−1 = Ah(g), (3.42)
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and

f#hg = g#hf = idC2×2 δ0,

see the proof at the end of this section and [HS89, Proposition 5.1] for a slightly

different statement.

For f ∈ S (Z2), we define the Fourier transform as

f̂(x, ξ) :=
∑
γ∈Z2

f(γ)ei〈γ,(x,ξ)
T 〉, such that f̂ ∈ C∞(T2

∗).

In particular, for a ∈ S (Z2) given in (3.34) the Fourier transform is given by

â(x, ξ) := 1
3

(
0 1 + eix + eiξ

1 + e−ix + e−iξ 0

)
. (3.43)

We observe that for γ := (1, 0) and δ := (0, 1), equation (3.40) becomes

τ−Bγ τ−Bδ = e−ihτ−Bδ τ−Bγ . (3.44)

In semiclassical Weyl quantization (see [Zw12, Theorem 4.7]) the same commutation

relation is satisfied by

Opw
h

(
eix
)

Opw
h

(
eiξ
)

= e−ih Opw
h

(
eiξ
)

Opw
h

(
eix
)
. (3.45)

Looking at the product formula we see that when we replace τ−Bγ in (3.41) by

Opw
h

(
(x, ξ) 7→ ei〈γ,(x,ξ)

T 〉
)

we obtain a homomorphism

Θ : S (Z2)→ L
(
L2(R)

)
, Θ(f) :=

∑
γ∈Z2

f(γ) Opw
h

(
(x, ξ) 7→ ei〈γ,(x,ξ)

T 〉
)

= Opw
h (f̂),

Θ(f#hg) = Θ(f) ◦Θ(g), Θ(f(−•)∗) = Θ(f)∗.

Proof of (3.42). Invertibility of Ah(f) on `2 is equivalent to invertibility of Opw
h (f̂). A

semiclassical version of Beals’s lemma, due to Helffer–Sjöstrand (see [DS99, Chapter

8] or [Zw12, Theorem 8.3]), shows that Opw
h (f̂)−1 = Opw

h (G), G ∈ S(1). We also see

that G has to be periodic and that implies that G = ĝ for g ∈ S . �

4. Regularized traces

As recalled in §1 the density of states is defined using regularized traces of functions

of the Hamiltonian. We start with a general definition:

Definition 4.1. Put B(R) := {x ∈ R2 : |x| < R} and suppose that T ∈ L(L2(E)) has

the property for all R > 0 the operator 1lB(R) T 1lB(R) is of trace-class. Then we define

t̃rT := lim
R→∞

tr 1lB(R) T 1lB(R)

|B(R)|
(4.1)
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provided this limit exists.

Similarly, for a lattice Γ ⊂ R2 and A ∈ L(`2(Γ,C2)) given by

A(s)(γ) :=
∑
β∈Z2

k(γ, β)s(β)

with k(γ, β) ∈ C2×2, we define

t̂rΓA := lim
R→∞

1

|B(R)|
∑

γ∈Γ∩B(R)

trC2 k(γ, γ) (4.2)

provided the limit exists.

Remark 5. Most of the results of this section hold for both HB and HD and the proofs

do not differ for the two operators. In such case we consider HB only.

We start with some general comments about t̂r:

Lemma 4.2. Let g ∈ S (Z2) and let Ah(g) be the corresponding magnetic matrix

(Definition 3.4). Then the regularized trace t̂rZ2(Ah(g)) exists and is given by

t̂rZ2(Ah(g)) = trC2(g(0)) = 1
(2π)2

∫
T2
∗

trC2 ĝ(x, ξ) dxdξ. (4.3)

Proof. Since the kernels of the magnetic matrix satisfy on the diagonal Ah(g)γ,γ = g(0)

the proof of this equality is immediate. �

In view of this lemma we will abuse the notation slightly and introduce

Definition 4.3. Let f ∈ C∞(R2) be (2πZ)2 periodic. Then we define the regularized

trace

t̂r(Opwh (f)) := 1
(2π)2

∫
T2
∗

trC2 f(x, ξ) dxdξ. (4.4)

We now show that for f ∈ Cc(R) the operators f(HB) and f(HB,D) have regularized

traces. Because we are essentially in dimension one, we have stronger trace class

properties:

Lemma 4.4. For z ∈ C \ R the regularized traces of (H• − z)−1 exist and

t̃r(H• − z)−1 = 2
3
√

3
tr 1lE(WΛ)(H

• − z)−1, • = B,D. (4.5)

Proof. We considerHB only. SinceD(HB) ⊂ H2(E), we see that for ψ ∈ C∞c (BR2(0, 2R)),

ψ(HB − z)−1 : L2(E) → H2(E ∩ BR2(0, 2R)) is of trace class. (We are in dimension

one here and the trace class property in dimension n is obtained for maps L2(Rn) →
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Hs(B(0, r)), s > n; hence H2 is sufficient – see for instance [DyZw2, Proposition

B.20].) In addition, we have the trace norm estimate:

‖ψ(HB − z)−1‖L1 ≤ Cψ‖(HB − z)−1‖L2→D(HB) ≤ Cψ sup
x∈R
|x− z|−1(1 + |x|)

≤ Cψ(1 + |Re z|)| Im z|−1.
(4.6)

If we choose ψ ≡ 1 on a neighbourhood of BR2(0, R) then

1lBR2 (0,R)(H
B − z)−1 = 1lBR2 (0,R) ψ(HB − z)−1 ∈ L1(L2(E)).

We now choose mR,MR ⊂ Z2 such that

ΩmR ⊂ BR2(0, R) ∩ E ⊂ ΩMR
,

ΩQ :=
⋃
γ∈Q

(E(WΛ) + γ1b1 + γ2b2), |MR \mR| ≤ CR. (4.7)

In particular, since the area of a hexagonal cell is given by 3
√

3
2

, we have

|mR| = 2
3
√

3
|BR2(0, R)|+O(R). (4.8)

We now write

tr 1lBR2 (0,R)(H
B − z)−1 = tr 1lΩmR (HB − z)−1 + tr 1lBR2 (0,R)\ΩmR (HB − z)−1. (4.9)

Using (3.22) we get

TBγ 1lE(WΛ) T
B
−γf = TBγ 1lE(WΛ) u

B(−γ)f(•+ γ1b1 + γ2b2)

= 1lE(WΛ)+γ1b1+γ2b2 f
(4.10)

so that we can expand the first term on the right hand side of (4.9) as follows

tr 1l ΩmR(HB − z)−1 =
∑
γ∈mR

tr 1lE(WΛ)+γ1b1+γ2b2(HB − z)−1

=
∑
γ∈mR

trTBγ 1lE(WΛ) T
B
−γ(H

B − z)−1

= |mR| tr 1lE(WΛ)(H
B − z)−1.

(4.11)

Here we used (3.24) and the cyclicity of the trace.



MAGNETIC OSCILLATIONS IN GRAPHENE 19

To estimate the second term in (4.9) we write

‖ 1lBR2 (0,R)\ΩmR (HB − z)−1‖L1 ≤ ‖ 1lΩMR\ΩmR (HB − z)−1‖L1

≤
∑

γ∈MR\mR

‖ 1lE(WΛ)+γ1b1+γ2b2(HB − z)−1‖L1

≤
∑

γ∈MR\mR

‖TBγ 1lE(WΛ) T
B
−γ(H

B − z)−1‖L1

= |MR \mR|‖ 1lE(WΛ)(H
B − z)−1‖L1

≤ CR(1 + |Re z|)| Im z|−1,

(4.12)

where we used (4.6) and (4.7). Returning to (4.9) we see that (4.5) follows from (4.8),

(4.11), and (4.12). �

We now consider regularized traces of f(HB) and f(HD) and we will use the func-

tional calculus of Helffer–Sjöstrand. For that we recall that for any f ∈ C∞c (R) can be

extended to f̃ ∈ S (C) such that f̃ |R = f and ∂z̄f̃ = O(| Im z|∞). The function f̃ is a

then called an almost analytic extension of f . A compact formula for f̃ was given by

Mather and Jensen–Nakamura:

f̃(x+ iy) = 1
2π
χ(y)ψ(x)

∫
R
χ(yξ)f̂(ξ)ei(x+iy)ξdξ,

χ, ψ ∈ C∞c (R), ψ|supp f+(−1,1) = 1, χ|(−1,1) = 1,

(4.13)

see for instance [DS99, Chapter 8]. The relevance of this construction here comes from

the Helffer-Sjöstrand formula: for any self-adjoint operator P ,

f(P ) = 1
π

∫
C
∂zf̃(z)(P − z)−1dm(z) (4.14)

where m is the Lebesgue measure on C. The integral on the right hand side is well-

defined as ∂zf̃(z) = O(| Im z|∞) and ‖(P − z)−1‖ = O(1/| Im z|), by self-adjointness.

The proof of Lemma 4.4 and the dominated convergence theorem based on (4.6),(4.11)

and (4.12), immediately give

Lemma 4.5. Let f ∈ Cc(R) then t̃r(f(H•)) exist and

t̃rf(H•) = 2
3
√

3
tr 1lE(WΛ) f(H•). (4.15)

The lemma allows a rigorous definition of the density of states measure: the func-

tional Cc(R) 3 f 7→ t̃r(f(HB)) is positive. Thus, by the Riesz-Markov theorem, it

defines a Radon measure:

Definition 4.6 (Density of states measure). The density of states ρB ∈ D ′0(R) is the

Radon measure such that

t̃r(f(HB)) =

∫
R
f(x)ρB(x)dx,
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where we use the informal notation for the action of distributions of order zero on

function (see [Ho03, §2.1]) The distribution function of the measure ρB is called the

integrated density of states.

In Krein’s resolvent formula (3.15) the auxiliary operators ΛB and ΛD appear instead

of HB and HD. The following Lemma shows that their regularized traces coincide.

Lemma 4.7. For f ∈ Cc(R),

t̃r(f(Λ•)) = t̃r(f(H•)), • = B,D. (4.16)

Proof. By the functional calculus, the unitary Peierls’ substitution P satisfies (3.6)

f(ΛB) = P−1f(HB)P. (4.17)

Since P and P−1 are just multiplication operators

tr(1lB(R) f(ΛB) 1lB(R)) = tr(P 1lB(R) f(ΛB) 1lB(R) P
−1)

= tr(P 1lB(R) P
−1f(HB)P 1lB(R) P

−1)

= tr(1lB(R) f(HB) 1lB(R)). (4.18)

Lemma 4.5 shows the existence of the regularized trace then. �

We now combine (4.14) with Krein’s formula (3.15) to see that

f(ΛB) = 1
π

∫
C
∂zf̃(z)

(
(ΛD − z)−1 − γ(z)M(z)−1γ(z)∗

)
dm(z)

= f(ΛD)− 1
π

∫
C
∂zf̃(z)γ(z)M(z)−1γ(z)∗dm(z). (4.19)

Using Lemma 4.7, we can apply the operator t̃r to the preceding equation and obtain

t̃rf(HB) = t̃rf(ΛD)− 1
π
t̃r

∫
C
∂zf̃(z)γ(z)M(z)−1γ(z)∗dm(z). (4.20)

In the following, we will systematically analyze the terms on the right side. We start

with the term containing operator ΛD.

Lemma 4.8. The contribution t̃r(f(ΛD)) of the Dirichlet operator ΛD is given by

t̃rf(ΛD) = 2√
3

∑
λ∈Spec(ΛD

(0,1)
)

f(λ) (4.21)

where ΛD
(0,1) : H1

0 (0, 1) ∩H2(0, 1) ⊂ L2(0, 1)→ L2(0, 1) with ΛD
(0,1)ψ := −ψ′′ + V ψ.

Proof. Let ΛD =
∑∞

λ∈Spec(ΛD
(0,1)

) λPker(ΛD−λ) be the spectral decomposition of ΛD where

Pker(ΛD−λ) is the orthogonal projection onto the infinite dimensional space ker(ΛD−λ).

The spectral theorem implies f(ΛD) =
∑∞

λ∈Spec(ΛD
(0,1)

) f(λ)Pker(ΛD−λ), which is a finite
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sum, as the eigenvalues of the Dirichlet operator tend to infinity. Thus, since each edge

carries precisely one non-degenerate eigenfunction for every eigenvalue λ ∈ Spec(ΛD),

t̃rf(ΛD) = lim
R→∞

tr
(
1lB(R) f(ΛD) 1lB(R)

)
|B(R)|

=
∑

λ∈Spec(ΛD
(0,1)

)

f(λ) lim
R→∞

tr
(
1lB(R) Pker(ΛD−λ) 1lB(R)

)
|B(R)|

= 2√
3

∑
λ∈Spec(ΛD

(0,1)
)

f(λ),

with 2√
3

being the ratio of edges per unit volume. �

We now move to the second term in (4.20). In particulare we eliminate the gamma

field in our expressions.

Lemma 4.9. With M(z) defined in (3.13) we have

t̃r

∫
C
∂zf̃(z) γ(z)M(z)−1γ(z)∗dm(z) =

∫
C
∂zf̃(z) t̂rV(Λ) ∂zM(z)M(z)−1dm(z).

Proof. The estimates in the proof of Lemma 4.4 show that we can move t̃r inside of

the integral on the left hand side. Together with (3.16) this means that it suffices to

prove that

t̃r
(
γ(z)M(z)−1γ(z)∗

)
= t̂rV(Λ)

(
γ(z)∗γ(z)M(z)−1

)
, z ∈ C \ R. (4.22)

This identity can now be shown by verifying the conditions of the third statement in

[HS89, Proposition 7.1] with

C := γ(z)M(z)−1, D := γ(z)∗ (4.23)

but we present a different argument.

Using the unitary Peierls operator P (3.5) magnetic translations (3.18), and opera-

tors π and γ(z) from (3.10),(3.11) we define modified magnetic translations (note that

z /∈ R) as the following unitary operators:

SBδ := P−1TBδ P ∈ U(L2(E)), σBδ := πSBδ γ(z) ∈ U(`2(V)),

where we note that σBδ does not depend on z.

To see that σBδ is unitary we first note that (σBδ )−1 = σB−δ and that it is an isometry

(see (3.18) and (3.22) for definitions of TBγ and uB(γ)):∥∥σBδ w∥∥2
=
∑

v∈V(Λ)

∣∣(πSBδ γ(z)w)(v)
∣∣2 =

∑
v∈V(Λ)

∣∣(P−1TBδ Pγ(z)w)(v)
∣∣2

=
∑

v∈V(Λ)

∣∣(uB(δ)Pγ(z)w)(v − δ1b1 − δ2b2)
∣∣2 =

∑
v∈V(Λ)

|(γ(z)w)(v)|2

=
∑

v∈V(Λ)

|w(v)|2 = ‖w‖2 .
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We now claim that M(z)−1 commutes with σBγ . In fact, since HB (3.4) and HD

(3.7) commute with magnetic translations TBδ , we see that (3.5), ΛB and ΛD commute

then with SBδ . The Krein formula (3.15) then implies that SBδ (γ(z)M(z)−1γ(z)∗) =

(γ(z)M(z)−1γ(z)∗)SBδ . Multiplying with the inverse of γ(z) and γ(z)∗ from both sides

respectively, it follows that

σBδ M(z)−1 =
(
πSBδ γ(z)

)
M(z)−1 = M(z)−1

(
γ(z)∗SBδ π

∗) = M(z)−1σBδ . (4.24)

In the notation of (4.23) we then see that

SBδ C = SBδ γ(z)M(z)−1 = γ(z)σBδ M(z)−1 = γ(z)M(z)−1σBδ = CσBδ (4.25)

and

σBδ D =
(
γ(z)σB−δ

)∗
=
(
γ(z̄)πSB−δγ(z̄)

)∗
=
(
SB−δγ(z̄)

)∗
= γ(z)∗SBδ = DSBδ (4.26)

As in the proof of Lemma 4.4,

t̃rCD = 2
3
√

3
trL2(E) 1lE(WΛ) CD = 2

3
√

3
tr`2(V) D 1lE(WΛ) C

= 2
3
√

3

∑
γ∈Z2

∑
v∈V(WΛ)

[
σBγ D 1lE(WΛ) Cσ

B
−γ
]

(v),

where for an operator A on `2(V) we write Au(γ) =
∑

α∈V [A](γ, α)u(α). Using (4.25),

(4.26) and (3.22) we then obtain

t̃rCD = 2
3
√

3

∑
γ∈Z2

∑
v∈V(WΛ)

[D 1lE(WΛ)+γ1b1+γ2b2 C](v, v)

= 2
3
√

3

∑
v∈V(WΛ)

[DIL2(E)C](v, v) = 2
3
√

3

∑
v∈V(WΛ)

[DC](v, v).

Since DC commutes with σBδ it is unitarily equivalent to a magnetic matrix which in

view of Lemma 4.2 and a lattice identification means that

t̂rV(Λ)DC = 2
3
√

3

∑
v∈V(WΛ)

[DC](v, v).

This proves (4.22) which as explained in the beginning concludes the proof. �

We can now combine Lemmas 4.8,4.9 and the Krein formula to obtain

Lemma 4.10. Using (3.13) and (3.14) define.

W(z) := sz(1)M(z) = KΛ −∆(z). (4.27)

Then for f ∈ C∞c (R) with an almost analytic extension (4.13), f̃ ∈ C∞c (C),

t̃r(f(HB)) = − 1
π

∫
C
∂zf̃(z)t̂rV ∂zW(z)W(z)−1 dm(z) + 2

3
√

3

∑
λ∈Spec(ΛD

(0,1)
)

f(λ). (4.28)
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Proof. Since t̂r I`2(V) = 4
3
√

3
(the number of vertices per unit volume) we have

t̂r ∂zM(z)M(z)−1 = − 4
3
√

3
∂zsz(1)sz(1)−1 + t̂r ∂zW(z)W(z)−1. (4.29)

Since the zeros of z 7→ sz(1) are given by the eigenvalues of ΛD
(0,1), the Cauchy formula

[Ho03, (3.1.11)] shows that

1
π

∫
C
∂zf̃(z)∂zsz(1)sz(1)−1dm(z) =

∑
λ∈Spec(ΛD

(0,1)
)

f(λ).

Combining this with (4.20), (4.21), (4.9) and (4.29) proves (4.28). �

Remark 6. The Dirichlet spectrum contribution has a straightforward interpretation in

the absence of magnetic fields. In that case, there is precisely one hexagonal eigenstate

per fundamental cell. The ratio of fundamental cells per ball B(R) scales exactly like
2

3
√

3
in the R→∞ limit which coincides with the pre-factor determined in (4.28).

We now proceed to the reduction to the effective Hamiltonian,

Qw(x, hD)−∆(z), Qw(x, hD) :=
1

3

(
0 1 + eix + eihDx

1 + e−ix + e−ihDx 0

)
, (4.30)

which is the semiclassical quantization of

Q(x, ξ) := 1
3

(
0 1 + eix + eiξ

1 + e−ix + e−iξ 0

)
(4.31)

The regularized trace, t̂rV , in (4.28) can be expressed in terms of the regularized

trace from Definition 4.3 of pseudodifferential operators Qw:

Lemma 4.11. In the notation of Definition 4.3, Lemma 4.10 and (4.30) we have

t̂rVW ′(z)W(z)−1 = − 2
3
√

3
∆′(z) t̂r (Qw(x, hD)−∆(z))−1, z ∈ C \ R. (4.32)

Proof. The explicit unitary transformation in Lemma 3.5 shows that we can identify

W(z) with a magnetic matrix Ah(a −∆(z)) where a is given by (3.34). The limiting

density of vertices in the hexagonal lattice is given by 4
3
√

3
and half of this number

corresponds to translates of each of r0 and r1. Hence,

t̂rV
(
W ′(z)W(z)−1

)
= −∆′(z) 2

3
√

3
t̂rZ2

((
Ah(a−∆(z))

)−1
)

We note that by (3.42) for z /∈ R, (Ah(a−∆(z)))−1 is also a magnetic matrix. Formula

(4.32) then follows from Lemma 4.2 and Definition (4.3). �

Putting all this together we obtain the main result of this section:
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Proposition 4.12. For f ∈ C∞c (R) with an almost analytic extension (4.13), f̃ ∈
C∞c (R), we have

t̃r(f(HB)) = 2
3
√

3π

∫
C
∂zf̃(z)∆′(z) t̂r (Qw(x, hD)−∆(z))−1dm(z)

+ 2
3
√

3

∑
λ∈Spec(ΛD

(0,1)
)

f(λ),
(4.33)

where Q(x, ξ) is given by (4.31) and ∆(z) by (2.15).

5. Analysis of the effective Hamiltonian

We now study the effective Hamiltonian (4.30) for z near z0 with ∆(z0) = 0. The

goal is to obtain asymptotics of of the renormalized trace of (Qw − ∆(z))−1 – see

Theorem 6.1 where for the moment we replace ∆(z) by z. For that we use the strategy

of Helffer–Sjöstrand outlined in [HS90b, §8] but rather than follow [HS88, §2] and other

numerous references cited in [HS90b, §8] we present direct arguments.

We start with some elementary analysis of the symbol Q given in (4.31). Its deter-

minant is given by −|1 + eix + eiξ|2/9, and it vanishes at

(x, ξ) ∈ Z2
∗ ±

(
2π
3
,−2π

3

)
,

that is, at the Dirac points.

We consider neighbourhoods of ±(2π
3
,−2π

3
) and make a symplectic change of vari-

ables:

y = a(x+ ξ), η = b

(
ξ − x± 4π

3

)
, 2ab = 1,

we see that

1 + eix + eiξ = c(η ∓ iy) +O(y2 + η2),

1 + e−ix + e−iξ = c(η ± iy) +O(y2 + η2),
(5.1)

where c = 3
1
4 2−

1
2 and we chose a = ±2−

1
2 3−

1
4 and b = ±2−

1
2 3

1
4 .

To study regularized traces of the resolvent of Q(x, hD) we introduce a localized

operator with discrete spectrum near 0: Its Weyl symbol is given by

Q0(x, ξ) := Q(x, ξ) +

(
−1 + χ0(x, ξ) 0

0 1− χ0(x, ξ)

)
,

χ0 ∈ C∞c (R2; [0, 1]), χ0(ρ) = χ0(−ρ), χ0(ρ) =

{
1, ‖ρ‖∞ < π + 1

10
,

0, ‖ρ‖∞ > π + 2
10
,

(5.2)

where ρ = (x, ξ).
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We observe that for any δ > 0, there exists ε > 0 such that

detQ0(x, ξ) < −ε for

∣∣∣∣x∓ 2π

3

∣∣∣∣+

∣∣∣∣ξ ± 2π

3

∣∣∣∣ > δ. (5.3)

This means that det(Q0(x, ξ) − z) ∈ S(1) is elliptic (in the sense of [Zw12, §4.7.1])

away from neighbourhoods of ±(2π
3
,−2π

3
) and for z in a neighbourhood of 0.

We also use microlocal weights defined as follows (see [Zw12, §8.2]):

G(x, ξ) =
1

2
log(1 + ξ2 + x2), Gw = Gw(x, hD),

e±NG
w

= sN(x, hD, h), sN ∈ S((1 + ξ2 + x2)±N/2).
(5.4)

Proposition 5.1. For δ0 > 0 small enough, the spectrum of Qw
0 (x, hD) in [−δ0, δ0] is

discrete and

Spec(Qw
0 (x, hD)) ∩ [−δ0, δ0] = {κ(nh, h) +O(h∞) : n ∈ Z} ∩ [−δ0, δ0], (5.5)

with eigenvalues of multiplicity 2, κ(−ζ, h) = −κ(ζ, h), and

F (κ(ζ, h)2, h) = |ζ|+O(h∞), F (ω, h) ∼ F0(ω) +
∞∑
j=2

hjFj(ω), Fj ∈ C∞(R),

F0(ω) =
1

4π

∫
γω

ξdx, γω =

{
(x, ξ) ∈ T2

∗ :
|1 + eix + eiξ|2

9
= ω

}
, Fj(0) = 0,

(5.6)

where γω is oriented clockwise in the (x, ξ) plane.

Moreover, the orthonormal set of eigenfunctions, (u+
n (h))n∈Z ∪ (u−n (h))n∈Z, satisfies

Qw
0 (x, hD, z0)u±n (h) = κ(nh, h)u±n (h), WFh(u

±
n ) ⊂ nbhd

(
±
(

2π

3
,−2π

3

))
, (5.7)

and, for all N ,

‖(1− χw
0 (x, hD))eNG

w(x,hD)u±n (h)‖ = ON(h∞),

‖eNGw(x,hD)(1− χw
0 (x, hD))u±n (h)‖ = ON(h∞),

(5.8)

where χ0 is defined in (5.2) and G in (5.4).

Proof. We start by showing that for δ0 small enough the spectrum of Qw
0 in [−δ0, δ0]

is discrete and that the eigenfunctions are localized to neighbourhoods in the sense

of (5.7) and (5.8). For that we define Q1 := Q + diag(−1, 1). Then Q0 = Q1 +

diag(χ0,−χ0) and Q1− z is elliptic in S(1) for |z| small enough. That implies that for

0 < h < h0, (Qw
1 − z)−1 = O(1)L2→L2 in h – see [Zw12, §4.7.1]. It follows that

Qw
0 − z = (Qw

1 − z)(id +K(z)), K(z) := (Qw
1 − z)−1diag(χw

0 ,−χw
0 ).

Since χw
0 is a compact operator on L2 (see [Zw12, Theorem 4.26]) we can use analytic

Fredholm theory (see [Zw12, Theorem D.4]) to show that (id +K(z))−1 is meromorphic.
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That shows that (Qw
0 − z)−1 is meromorphic for |z| small, that it has a discrete set of

poles there, which in turn means that the spectrum near 0 is discrete.

The comment after (5.3) and [Zw12, §8.4] give the localization of eigenfunctions in

(5.7). To see (5.8) we consider the conjugated operator

Qw
G − z := eNG

w

(Qw
0 − z)e−NG

w

.

From [Zw12, Theorems 4.18 and 8.6] we see that QG ∈ S(1) and that QG = Q0 +

ON(h)S(1). Hence QG − z is elliptic where Q0 − z is elliptic and in particular near

the support of 1 − χ0. Since (Qw
G − z)eNG

w
u = 0, z ∈ Spec(Qw

0 ), u an eigenfunction,

the first estimate in (5.8) follows. To see the second estimate we use the wave front

set estimate (5.7) and the fact that the essential support (see [Zw12, §8.4]) of the

commutator of χw
0 and esG

w
is supported away from WFh(u

±
n ).

This means that to approximate eigenvalues of Qw
0 (x, hD) we need to find all mi-

crolocal solutions (u, z) (that is solutions modulo O(h∞)) such that u satisfies (5.8)

and

(Qw − z)u = O(h∞), WFh(u) ⊂ nbhd

(
±
(

2π

3
,−2π

3

))
. (5.9)

Here we replaced Q0 by Q since the corresponding operators are microlocally the same

near ±(2π
3
,−2π

3
) (see [Zw12, §8.4.5] for a discussion of this concept). Since Qw

0 is self-

adjoint the uniqueness of microlocal solutions gives uniquess of eigenfunctions as they

have to be orthogonal.

We have

Qw =

(
0 Λw

+

Λw
− 0

)
, Λ±(x, ξ) :=

1 + e±ix + e±iξ

3
, (Λw

±)∗ = Λw
∓.

Because of the symmetry (x, ξ)→ (−x,−ξ) we will work microlocally near (2π
3
,−2π

3
).

At that point (5.1) shows that the Poisson brackets of Λ± satisfy

{Re Λ+, Im Λ+} < 0, {Re Λ−, Im Λ−} > 0,
1

i
{Λ+,Λ−} > 0. (5.10)

The last inequality is also known as Hörmander’s hypoellipticity condition. Using

[Zw12, §§12.4 and 12.5] we see that the first two inequalities in (5.10) show that there

exist microlocally unique solutions

Λw
+u0 = O(h∞), WFh(u) ⊂ nbhd

((
2π

3
,−2π

3

))
. (5.11)

On the other hand the last inequality in (5.10) shows that

WFh(u) ⊂ nbhd

((
2π

3
,−2π

3

))
=⇒ 〈Λw

+Λw
−u, u〉 ≥ c0h‖u‖2, (5.12)

see for instance the proof of [Zw12, Theorem 7.5]. This characterizes the microlocal

kernel of Qw near (2π
3
,−2π

3
). Since (Qw)∗Qw = diag(Λw

−Λw
+,Λ

w
+Λw
−), this means that all
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solutions to (5.9) other than the unique solution (0, u0) satisfy |z| ≥ c
√
h. That gives

the correspondence with microlocal solutions w (satisfying (5.8)) to

H+w = λw, WFh(w) ⊂ nbhd

((
2π

3
,−2π

3

))
, H+ := Λw

+Λw
−,(

0 Λw
+

Λw
− 0

)(
u1

u2

)
= z

(
u1

u2

)
, WFh(uj) ⊂ nbhd

((
2π

3
,−2π

3

))
,

z = ±
√
λ, u1 = w, u2 = z−1Λw

−w.

(5.13)

Recalling (5.1) we see that H+, microlocally near (2π
3
,−2π

3
) has the structure of a po-

tential well and the distribution of eigenvalues near 0 has been extensively studied.

Following earlier works of Weinstein [We77] and Colin de Verdière [CdV80] the semi-

classical version was given by Helffer–Robert [HR84] and a clear outline can be found

in [Sj89, §8, Case II, p.292]. In particular, there exists a function F with an expansion

F (ω, h) ∼ F0(ω) + hF1 + h2F2(ω) · · · , where F1 is a constant (see [HR84, Corollaire

(3.15)]) such that O(h∞) quasimodes of H+ are given by the quantization condition

F (λn(h), h) = nh, n = 0, 1, · · · . Since we have shown that λ0(h) = O(h∞) we obtain

that Fj(0) = 0 for all j. That gives (5.6). �

The spectrum and eigenfunctions of Qw
0 will now be used to describe (Qw− z)−1 for

| Im z| > hM for any fixed M .

We first show that away from the spectrum of Qw
0 , Qw − z is invertible. The proof

is a simpler version of the proof of Proposition 5.4 and the estimates are similar.

Lemma 5.2. Let 0 < δ1 < δ0 and suppose that z ∈ [−δ1, δ1]− i[−1, 1] satisfies

d(z, Spec(Qw
0 (x, hD))) > hN0 ,

for some fixed N0. Then for 0 < h < h0,

(Qw(x, hD)− z)−1 = O(d(z, Spec(Qw
0 (x, hD)))−1)L2→L2 .

Proof. In addition to Qw
0 we define another auxiliary operator with the symbol

Q1(x, ξ) := Q0(x, ξ) +

(
−χ1(x, ξ) 0

0 χ1(x, ξ)

)
,

χ1 ∈ C∞c (R2; [0, 1]), χ1(ρ) = χ1(−ρ), χ1(ρ) =

{
1, ‖ρ‖∞ < π − 2

10
,

0, ‖ρ‖∞ > π − 1
10
,

(5.14)

noting that Q1(x, ξ) − z ∈ S(1) is now elliptic (in the sense that the determinant,

z2 − χ2
1 + detQ0, satisfies the conditions of [Zw12, §4.7.1] for z in a neighbourhood of

0). From [Zw12, Theorems 4.29, 8.3] we conclude that

(Qw
1 (x, hD)− z)−1 = Rw

1 (z;x, hD, h), R1 ∈ S(1), z ∈ [−δ1, δ1]− i[−1, 1]. (5.15)
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Using Qw
0 and Qw

1 we define

p = p(z;x, ξ) := Q(x, ξ)− z,
pγ0 = pγ0(z;x, ξ) := Q0(x− γ1, ξ − γ2)− z
pγ1 = pγ1(z;x, ξ) := Q1(x− γ1, ξ − γ2)− z.

(5.16)

We denote the Weyl quantizations by P = P (z), P γ
0 = P γ

0 (z) and P γ
1 = P γ

1 (z) and

note that

P γ
0 = rγ(Q

w
0 − z)r−γ, P γ

1 = rγ(Q
w
1 − z)r−γ, rγu(x) := e

i
h
γ2xu(x− γ1). (5.17)

We always assume that z ∈ [−δ1, δ1]− i[−1, 1].

We now choose χ, χ̃ ∈ C∞c (R2) so that

χ̃|nbhd(suppχ) = 1, χ0|nbhd(supp χ̃) = 1,∑
γ∈Z2

∗

χγ = 1, χγ(x, ξ) := χ(x− γ1, ξ − γ2). (5.18)

We also define translations χ̃γ(x, ξ) := χ̃(x − γ1, ξ − γ2) and note that for all N and

with semi-norms independent of γ,

χγ, χ̃γ ∈ S(m−Nγ ), mγ(x, ξ) := (1 + (x− γ1)2 + (ξ − γ2)2)
1
2 (5.19)

The properties of the cut-off functions guarantee that

(p− pγ0)|nbhd(supp χ̃γ) = 0, (pγ0 − p
γ
1)|nbhd(supp∇χ̃γ) = 0. (5.20)

Combined with (5.15) the composition formula for pseudodifferential operators [Zw12,

Theorem 4.18] gives

ew
1,γ := (P − P γ

0 )χ̃w
γ , ew

2,γ := χ̃w
γ χ

w
γ − χw

γ ,

ew
3,γ := [P γ

0 , χ̃
w
γ ]P̃−1

γ χw
γ , ew

4,γ := [P γ
0 , χ̃

w
γ ] (P γ

0 )−1 (P γ
1 − P

γ
0 ),

(5.21)

where ej,γ ∈ hNS(m−Nγ ), for all N .

If d(z, Spec(Qw
0 )) > hN0 we define F 0 :=

∑
γ∈Z2

∗
χ̃w
γ (P γ

0 )−1 χw
γ , where the inverse of

P γ
0 exists in view of (5.17). We claim that

F 0 :=
∑
γ∈Z2

∗

χ̃w
γ (P γ

0 )−1 χw
γ = O(d(z, Spec(Qw

0 ))−1)L2→L2 . (5.22)

In fact, in view of (5.19)

χ̃w
γ (χ̃w

β )∗ = (a1
γβ)w, χw

γ (χw
β )∗ = (a2

γβ)w, ajγβ ∈ S(m−Nγ m−Nβ ). (5.23)

From [Zw12, Theorem 4.23]

‖(ajγβ)w‖L2→L2 ≤ C sup
R2

m−Nγ m−Nβ ≤ CN〈γ − β〉−N , (5.24)
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for all N ∈ N. If we put Aγ := χ̃w
γ (P γ

0 )−1 χw
γ , if follows that

A∗γAβ, AγA
∗
β = O(d(z, Spec(Qw

0 ))−2〈γ − β〉−N)L2→L2 , (5.25)

and (5.22) follows from an application of the Cotlar–Stein Lemma – see [Zw12, Theo-

rem C.5].

Using the notation of (5.21) we have

PF 0 =
∑
γ∈Z2

∗

P γ
0 χ̃

w
γ (P γ

0 )−1 χw
γ + e1,γ (P γ

0 )−1 χw
γ

=
∑
γ∈Z2

∗

χw
γ + ew

1,γ (P γ
0 )−1 χw

γ + ew
2,γ + [P γ

0 , χ̃
w
γ ] (P γ

0 )−1 χw
γ

= id +
∑
γ∈Z2

∗

ew
1,γ (P γ

0 )−1 χw
γ + ew

2,γ + [P γ
0 , χ̃

w
γ ] (P γ

1 )−1 χw
γ

+
∑
γ∈Z2

∗

[P γ
0 , χ̃

w
γ ]((P γ

0 )−1 − (P γ
1 )−1)χw

γ

= id +
∑
γ∈Z2

∗

ew
1,γ (P γ

1 )−1 χw
γ + ew

2,γ + ew
3,γ + [P γ

0 , χ̃
w
γ ] (P γ

1 )−1 (P γ
1 − P

γ
0 ) (P γ

0 )−1 χw
γ

= id +
∑
γ∈Z2

∗

ew
1,γ (P γ

0 )−1 χw
γ + ew

2,γ + ew
3,γ + ew

4,γ (P γ
0 )−1 χw

γ

= id +r, r = O(h∞d(z, Spec(Qw
0 ))−1)L2→L2 ,

where the bound on r follows from (5.21) and (5.24) and an application of the Cotlar–

Stein Lemma as in the proof of (5.22).

Hence for h small enough,

(Qw(x, hD)− z)−1 = F 0(id +r)−1 = O(d(z, Spec(Qw
0 ))−1)L2→L2 ,

for z ∈ [−δ1, δ1]− i[−1, 1], d(z, Spec(Qw
0 )) > hN0 . �

The proof gives a stronger weighted estimate on the inverse with similar estimates

being crucial later. Under the assumption of Lemma 5.2 we have, for any s ∈ R and

Gw defined in (5.4)

e−sG
w

(Qw − z)−1esG
w

= O(d(z, Spec(Qw
0 (x, hD)))−1)L2→L2 . (5.26)

Proof of (5.26). We first check that F 0 defined in (5.22) satisfies this estimate. (We

note that (5.26) does not seem to follow easily from conjugating Qw−z by the weight.)

For that we make the following observations:

esG
w

χ̃w
γ = (χ̃sγ)

w, χw
γ e

sGw

= (χsγ)
w,

χ̃sγ, χ
s
γ ∈

⋂
N

S(esGm−Nγ ) = 〈γ〉s
⋂
N

S(m−Nγ ), (5.27)
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where the equality of symbols spaces follows from the fact that esG(ρ) = 〈ρ〉s and

〈ρ〉s〈ρ− γ〉−N ≤ 〈γ〉s〈ρ− γ〉−N+|s| ≤ 〈ρ〉s〈ρ− γ〉−N+2|s|. (5.28)

Proceeding as in (5.23) and (5.24) and putting Asγ := e−sG
w
Aγe

sGw
we see that es-

timates (5.25) hold for Asγ. That shows that e−sG
w
F 0esG

w
is bounded on L2 for any

s ∈ R. The same argument applies to r in (5.26) and that concludes the proof of

(5.26). �

We now use the translates of w±n from Proposition 5.1 to construct a Grushin problem

for Qw − z for z near Spec(Qw
0 )). For that we take z1 and ε0 such that

{κ(nh, h)}n∈Z ∩ [z1 − 2ε0h, z1 + 2ε0h] = {κ(n1h, h)}, n1 = n1(z1, h). (5.29)

The interval [−δ0, δ0] can be covered by intervals of this form and intervals of size h,

disjoint from Spec(Qw
0 ).

For γ ∈ Z2
∗ we use translation (5.17) and put

wγ = wγ(h) :=
(
w+
γ (h), w−γ (h)

)
=
(
rγu

+
n1

(h), rγu
−
n1

(h)
)
∈ C2 ⊗ C2, (5.30)

where n1 is defined by (5.29).

The following lemma will be useful in several places:

Lemma 5.3. With w±γ defined by (5.30) and G given in (5.4) we have, for every s ∈ R,

〈esGw

w±γ , e
sGw

w±β 〉 = O(〈γ〉2sδγβ + h∞〈γ〉2s〈γ − β〉−∞),

〈esGw

w+
γ , e

sGw

w−β 〉 = O(h∞〈γ〉2s〈γ − β〉−∞),

〈esGw

(1− χw
γ )wεγ, e

sGw

(1− χw
β )wε

′

β 〉 = O(h∞〈γ〉2s〈γ − β〉−∞), ε, ε′ ∈ {+,−}.
(5.31)

Proof. This follows from (5.7), (5.8) and arguments presented in the remark above. As

an example we prove the first estimate in (5.31) (dropping ± in the notation):

〈esGw

wγ, e
sGw

wβ〉 = 〈esGw

(1− χw
γ )wγ, e

sGw

(1− χw
β )wβ〉+ 〈esGw

χw
γwγ, e

sGw

χw
βwβ〉

+ 〈esGw

χw
γwγ, e

sGw

(1− χw
β )wβ〉+ 〈esGw

(1− χw
γ )wγ, e

sGw

χw
βwβ〉

With Gγ(ρ) := G(ρ− γ),

esG
w−NGw

γ eNG
w
γ (1− χw

γ )wγ = bw
γ (x, hD)eNG

w
γ (1− χw

γ )wγ,

where as in (5.28),

bγ ∈ S(〈ρ〉s〈ρ− γ〉−N) ⊂ S(〈γ〉s〈ρ− γ〉−N+|s|).

Putting

w̃γ := eNG
w
γ (1− χw

γ )wγ = O(h∞)L2 ,
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and M = N − |s| � 1, we see that

〈esGw

(1− χw
γ )wγ, e

sGw

(1− χw
β )wβ〉 = 〈(bw

β )∗bw
γ w̃γ, w̃β〉 = ‖(bw

β )∗bw
γ ‖L2→L2O(h∞)

≤ C sup
ρ∈R2

〈γ〉s〈β〉s〈ρ− γ〉−M〈ρ− β〉−MO(h∞)

≤ O(h∞〈γ〉2s〈γ − β〉−M+s).

The other terms are treated in the same way. �

We then define R+ : L2(R,C2) → `2(Z2
∗;C2) and R− = `2(Z2

∗;C2) → L2(R,C2) as

follows

(R+u) (γ) := 〈u,wγ〉 :=

(
〈u,w+

γ 〉
〈u,w−γ 〉

)
∈ C2, R−u−(x) :=

∑
γ∈Z2

∗

wγ(x)u−(γ), (5.32)

where u−(γ) =
(
u+
−(γ), u−−(γ)

)t ∈ C2 and wγ(x) = (w+
γ , w

−
γ ) ∈ C2 ⊗ C2.

To see the boundedness of R− we use the almost orthogonality of w±γ given in (5.31)

with s = 0: Hence,∥∥∥∥∥∑
γ∈Z∗

wγ(•)u−(γ)

∥∥∥∥∥
2

L2

.
∑
γ∈Z∗

∑
β∈Z∗

|u−(γ)||u−(γ + β)|〈β〉−N

. ‖u−‖`2

∑
γ∈Z∗

(∑
γ∈Z∗

|u−(γ + γ)|〈γ〉−N
)2
 1

2

. ‖u−‖`2
(∑
γ∈Z∗

∑
γ∈Z∗

∑
γ′∈Z∗

|u−(γ + γ)|2〈γ〉−N〈γ′〉−N
) 1

2

. ‖u−‖2
`2 .

(5.33)

(This is a version of Schur’s argument, see for instance [Zw12, Proof of Theorem

4.21, Step 2,]; later on we will again need the Cotlar–Stein Lemma as in the proof of

boundedness of F 0 in the proof of Lemma 5.2.) Since R+ = R∗− the boundedness of

R+ also follows. We note that R+R− = id`2(Z2
∗;C2).

Proposition 5.4. Assume that (5.29) holds and that R± are defined by (5.32). Then

the Grushin problem(
Qw(x, hD)− z R−

R+ 0

)
: L2(R,C2)× `2(Z2

∗;C2) −→ L2(R,C2)× `2(Z2
∗;C2), (5.34)

is well posed for z ∈ (z1 − ε0h, z1 + ε0h) + i(−1, 1), with the inverse(
E(z, h) E+(z, h)

E−(z, h) E−+(z, h)

)
=

(
O(1/h)L2→L2 O(1)`2→L2

O(1)L2→`2 O(h)`2→`2

)
. (5.35)



32 SIMON BECKER AND MACIEJ ZWORSKI

In addition,

(E−+(z, h)v+)(γ) =
∑
β∈Z2

∗

E−+(γ − β)v+(β),

E−+(γ) = δγ0(z − κ(n1h, h)) idC2 +O(h∞〈γ〉−∞)

(5.36)

where κ is given by (5.5) and n1 by (5.29).

Before proceeding with the proof of Proposition 5.4 we explain the basic idea in

a simple example. Suppose P is a self-adjoint operator on a Hilbert space H, say a

matrix, with Spec(P )∩ [−δ, δ] = {0}, where 0 is a simple eigenvalue, Pw = 0, ‖w‖ = 1.

Then for z ∈ ([−δ, δ] + iR) \{0},

(P − z)−1 = −w〈•, w〉
z

+ S(z), (P − z)S(z) = id−w〈•, w〉,

and S(z) is holomorphic.

We then define R− : C→ H, R+ : H → C: R−u− = u−w, R+u = 〈u,w〉. One easily

checks z ∈ [−δ, δ] + iR,(
P − z R−
R+ 0

)−1

=

(
S(z) R−
R+ z

)
=:

(
E(z) E+(z)

E−(z) E−+(z)

)
: H × C→ H × C. (5.37)

We now follow a similar procedure for P = Qw−z using approximate eigenfunctions wγ
and a partition of {χγ}γ∈Z2

∗ as in (5.22). The approximate inverse (5.41) is then similar

to (5.37). To obtain the localization result in (5.36) we upgrade L2 × `2 estimates to

weighted estimates (5.42) and (5.43), as in the remark after the proof of Lemma 5.2.

We also record translation symmetries of our Grushin problem:

Lemma 5.5. Suppose that γ ∈ Z2
∗, rγ : L2(R2) → L2(R2) is defined by (5.17) and

sγ : `2(Z2
∗)→ `2(Z2

∗) by (sγf)(δ) := f(δ − γ). Then in the notation of (5.34),(
rγ 0

0 sγ

)(
Qw(x, hD)− z R−

R+ 0

)
=

(
Qw(x, hD)− z R−

R+ 0

)(
rγ 0

0 sγ

)
, γ ∈ Z2

∗.

(5.38)

Proof of Proposition 5.4. We follow the same procedure as in the proof of Lemma 5.2

and we use the notation from there.

To start we note that in our range of z’s with κ(n1h, n1) excluded,

P−1
γ =

wγ〈•, wγ〉
κ(n1h, h)− z

+ Sγ, PγSγ = id−wγ〈•, wγ〉, Sγ = O(1/h)L2→L2 , (5.39)

where the estimate on Sγ follows from the holomorphy of Sγ and the maximum prin-

ciple: we can find ε1 > ε0 such that on the boundary of (z1− ε1h, z1 + ε1h) + i(−2, 2),

‖P−1
γ ‖ = 1/d(z, Spec(Pγ)) = O(1/h) and |κ(n1h, h)− z|−1 = O(1/h).
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For future reference will also note that

Sγu = P̃−1
γ (u− wγ〈u,wγ〉) + P̃−1

γ (P̃γ − Pγ)Sγu. (5.40)

In the notation of (5.22) and (5.39) we define E0
• = E0

•(z):

E0 :=
∑
γ∈Z2

∗

χ̃w
γ Sγχ

w
γ ,

E0
+ := R−, E0

− := R+, E0
−+ = (z − κ(hn1, n1)) id`2 .

(5.41)

Lemma 5.5 shows that rγE
0
+ = E0

+Tγ and E0
−rγ = TγE

0
−. We now check that rγE

0r−γ =

E0. In fact, (5.17) shows that

rγE
0r−γ =

∑
γ∈Z2

∗

rγχ̃
w
γ Sγχ

w
γ r−γv =

∑
γ∈Z2

∗

χ̃w
γ+γSγ+γχ

w
γ+γv = E0v.

As in the proof of (5.26) we also see that for G given by (5.4) and

(gu)(γ) := log〈γ〉u(γ),(
e−sG

w
0

0 e−sg

)(
E0 E0

+

E0
− E0

−+

)(
esG

w
0

0 esg

)
=

(
O(1/h)L2→L2 O(1)`2→L2

O(1)L2→`2 O(h)`2→`2

)
. (5.42)

We claim that(
Qw − z R−
R+ 0

)(
E0 E0

+

E0
− E0

−+

)
= idL2×`2 +

(
r r+

r− 0

)
,

where for all s ∈ R,(
e−sG

w
0

0 e−sg

)(
r r+

r− 0

)(
esG

w
0

0 esg

)
= O(h∞)L2×`2→L2×`2 . (5.43)

As in (5.26) (with (5.40) used to pass from the third line to the fourth line in (5.26))

and the proof of (5.26) we see that

PE0v +R−E
0
−v =

∑
γ

Pχ̃w
γ Sγχ

w
γ v + wγ〈v, wγ〉

= v +
∑
γ

wγ(〈v, wγ〉 − 〈v, χw
γwγ〉) + r1v

= (id +r1 + r2)v, r2 :=
∑
γ

wγ ⊗ (1− χw
γ )w̄γ.

where e−sG
w
r1e

sGw
= O(h∞)L2→L2 . To show that e−sG

w
r2e

sGw
= O(h∞)L2→L2 we use

(5.31) and the bound follows again from the Cotlar–Stein Lemma (or from a direct

estimate).
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The other estimates in (5.43) are proved similarly using the localization properties

of wγ. We start with r+v+ = PE0
+v+ + E−+v+ =

∑
γ(P − Pγ)wγv+(γ). Hence,(

e−sG
w

r+e
sg
)
v+ =

∑
γ

〈γ〉se−sGw

e−NrγG
wr−γrγ((P − P0)eNG

w

w0)v+(γ)

=
∑
γ

cw
γ uγv+(γ), cγ ∈ S(1), uγ := rγ((P − P0)eNG

w

w0).

As in the proof of Lemma 5.3 〈uγ, uβ〉 = O(h∞〈γ − β〉−∞) and from this the bound

e−sG
w
r+e

sg = O(h∞) easily follows (see (5.33) for a similar argument).

For r− we write

〈γ〉−s(r−esG
w

v)(γ) = 〈γ〉−s(R+(E0
−e

sGw

v))(γ) = 〈v, ũγ〉,

ũγ :=
∑
γ

χw
γ S
∗
γχ̃

w
γ 〈γ〉−swγ.

We claim that 〈ũγ, ũβ〉 = O(h∞〈β − γ〉−∞). This follows similarly to previous argu-

ments using χ̃w
γwγ = O(h∞|γ − γ|−∞), γ 6= γ, and S∗γwγ = 0.

This concludes the proof of (5.43) and in turn that estimate shows that(
Qw − z R−
R+ 0

)−1

=

(
E0 E0

+

E0
− E0

−+

)(
idL2×`2 +

(
r̃ r̃+

r̃− r̃−+

))
,

where (
e−sG

w
0

0 e−sg

)(
r̃ r̃+

r̃− r̃−+

)(
esG

w
0

0 esg

)
= O(h∞)L2×`2→L2×`2 (5.44)

This and Lemma 5.5 imply (5.35) and (5.36). �

6. Density of states

We now use the analysis of §5 to describe the renormalized trace of the resolvent of

Qw(x, hD). This will lead us to an explicit semiclassical description of the density of

states of the Hamiltonian HB stated in (4.33).

The Schur complement formula and (5.35) gives for |z − z1| ≤ ε0h,

(Qw(x, hD)− z)−1 = E(z, h)− E+(z, h)E−+(z, h)−1E−(z, h).

Hence, by (4.3),

t̂r(Qw(x, hD)− z)−1 = Gz1(z, h) + Jz1(z, h), (6.1)

where

Gz1(z, h) :=
1

4π2

∫
T2
∗

trC2 σ(E(z, h))dxdξ
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is holomorphic in (z1 − ε0h, z1 + ε0h) + i(−1, 1) and

Jz1(z, h) :=
1

4π2

∫
T2
∗

trC2 σ(E+(z, h)E−+(z, h)−1E−(z, h))dxdξ. (6.2)

Dropping (z, h) and writing A := E+E
−1
−+E−, we are seeking σ(A) for the operator

with the Schwartz kernel, KA, given by

KA(x, y) =
∑
γ,β∈Z2

∗

E+(x, γ)E−1
± (γ − β)E−(β, y). (6.3)

From (5.36) we see that

E−+(γ) = δγ0E
0
−+(γ) +O(h∞〈γ〉−∞)

= δγ0(z − κ(n1h, h)) idC2 +O(| Im z|−1h∞〈γ〉−∞).
(6.4)

We recall that z ∈ (z1 − ε0h, z1 + ε0h) + i(−1, 1), n = n1(z1, h), and that (5.29) holds.

It follows that for

| Im z| > hM , (6.5)

where M is arbitrary and fixed, we have

E−1
−+(γ) = (z − κ(n1h, h))−1δγ,0 idC2 +O(h∞〈γ〉−∞). (6.6)

We now want to use this expression of E−1
−+ to analyse the symbol of A.

The leading term. To obtain the leading term in (6.2) we define

J0
z1

(z, h) :=
1

4π2

∫
T2
∗

(z − κ(n1h, h))−1 trC2 σ(E0
+(z, h)E0

−(z, h))dxdξ, (6.7)

where the approximations of E±, E0
±, are defined in (5.41):

E0
+(z, h)v+(x) =

∑
γ

wγ(x)v+(γ), (E0
−(z, h)v)(γ) = 〈v, wγ〉 =

(
〈v, w+

γ 〉
〈v, w−γ 〉

)
,

wγ = (w+
γ , w

−
γ ) = (rγu

+
n1
, rγu

−
n1

), v+ ∈ `2(Z2
∗,C2), v ∈ L2(R,C2).

The inverse E−1
−+ was replaced by the first term on the right hand side of (6.6).

To analyse J0
z1

we use the formula for the Weyl symbol in terms of the Schwartz

kernel:

Au(x) =

∫
R2

K(x, y)u(y)dy, K(x, y) =
1

2πh

∫
R
a(x+y

2
, ξ)e

i
h

(x−y)dξ,

a(x, ξ) =

∫
K(x− w

2
, x+ w

2
)e

i
h
wξdw,

(6.8)
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see [Zw12, §4.1]. In our case A = E0
+(z, h)E0

−(z, h), where (see (5.41)) E0
+ = R−,

E0
− = R+ = R∗−, where R± are given in (5.32). That is,

E0
+f(x) =

∑
α

E0
+(x, α)f(α), E0

+(x, α) = wα(x) = (w+
α (x), w−α (x)) ∈ C2 ⊗ C2,

where f(α) = (f+(α), f−(α))t ∈ C2, and

E0
−u(γ) =

∫
R
E−(γ, x)u(x)dx, E0

−(γ, x) = wγ(x)∗ =

(
w̄+
γ (x)

w̄−γ (x)

)
, u ∈ L2(R;C2).

This means that

K(x, y) =
∑
α

E0
+(x, α)E0

−(α, h) =
∑
α

wα(x)wα(y)∗,

which in turn gives,

σ(E0
+(z, h)E0

−(z, h))(x, ξ) =
∑
α

∫
R
wα(x− w

2
)w∗α(x− w

2
)e

i
h
wξdw

=
∑
α

∫
R
e
i
h
w(ξ−α2)w0(x− w

2
− α1)w0(x+ w

2
− α1)∗dw.

Hence, ∫
T2
∗

σ(E0
+(z, h)E0

−(z, h))
dxdξ

4π2
=

∑
α

∫
T2
∗

∫
R
e
i
h
w(ξ−α2)w0(x− w

2
− α1)w0(x+ w

2
− α1)∗dw

dxdξ

4π2
=∫

R2

∫
R
e
i
h
wξw0(x− w

2
)w0(x+ w

2
)∗dw

dxdξ

4π2
=

1

2π

∫
R
w0(x)w0(x)∗dx =

h

2π
IC2

(6.9)

Inserting this in (6.7) gives

J0
z1

(z, h) =
h

π
(z − κ(n1h, h))−1.

To analyze the remaining contribution to (6.2) we use (5.36) to write

(E−+(z, h)−1 − (z − κ(n1h, h))−1IC2)v+(γ) =
∑
α

e(γ − α)v+(α),

e(γ) = e(z, h, γ) = O(h∞〈γ〉−∞), | Im z| > hM .

(6.10)

Hence Jz1(z, h) = J0
z1

(z, h) + J1
z1

(z, h) where,

J1
z1

(z, h) =

∫
T2
∗

trC2 σ(E+(z, h)(E−+(z, h)−1 − (z − κ(n1h, h))−1IC2)E−(z, h))
dxdξ

4π2
.
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Lemma 5.5 and (5.44) give

E+(z, h)v+(x) =
∑
γ

rγW+(x)v+(γ), W+ = w0 + e0, e0 = O(h∞)S ,

(E−(z, h)v)(γ) = 〈v, rγW−〉, W− = w0 + f0, f0 ∈ O(h∞)S ,

so that, using (6.8) again,

J1
z1

(z, h) =
∑
γ,β

∫
T2
∗

∫
R

trC2 E+(x− w

2
, γ)e(γ − β)E−(β, x+

w

2
)e

i
h
wξdw

dxdξ

4π2h

=
∑
γ,β

∫
T2
∗

∫
R
rγ+βW+(x− w

2
)e(γ)rβW−(x+

w

2
)∗e

i
h
wξdw

dxdξ

4π2
.

As in (6.9) we now use the sum over β2 to change integration in ξ from T1
∗ to R and

then integrate in w and ξ. This and (6.10) give

J1
z1

(z, h) =
h

2π

∑
γ

∑
β1

∫
T1
∗

eixγ2W+(x− β1 − γ1)e(γ)W−(x− β1)dx

= O(h∞)
∑
γ

∫
R
|W+(x− γ1)|〈γ〉−∞|W−(x)|dx = O(h∞‖W−‖‖W+‖).

The following proposition summarizes what we have done in this section so far:

Proposition 6.1. Suppose that Q is given by (4.30) and that t̂r is defined in (4.3).

Let z1 be chosen as in (5.29). Then

t̂r(Qw(x, hD)− z)−1 :=
h

π

∑
n∈Z

(z − κ(hn;h))−1 + Fz1(z, h) +O(h∞),

| Im z| > hM , |z − z0| ≤ ε0h,

(6.11)

where Fz1(z, h) is holomorphic in |z − z0| ≤ ε0h, M is arbitrary and κ(nh, n) defined

by (5.7).

Remark 7. Using one variable complex analysis, a crude estimate Gz1(z, h) = O(h−M0)

and maximum principle similar to [DyZw2, Lemma D.1] one can show that (6.11)

holds in a fixed neighbourhood of the Dirac point ∆|−1
Bk

(0) with F independent of z1

and holomorphic. As in [HS90b] we opt for a simpler version of piecing together local

expressions (6.11) using a partition of unity.

We are now in the position to prove the main theorem describing the semiclassical

density of states formula for our model of graphene:
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Theorem 1. Let zD := ∆|−1
Bk

(0) be the energy of the Dirac points located on the k-th

band. If I is a sufficiently small neighbourhood of zD, then for f ∈ Cα
c (I)

t̃rf(HB) =
h

π |b1 ∧ b2|
∑
n∈Z

f(zn(h)) +O(‖f‖Cαh∞), ∆(zn(h)) = κ(nh, h), (6.12)

where κ(nh, h) is given by (5.7).

Proof. We cover I by intervals of type I1
z1

:= (∆|Bk)−1((z1− ε0h, z1 + ε0h)) where z1 is

as in (5.29), and intervals I2
z2

:= (∆|Bk)−1((z2 − ε1h, z2 + ε1h)) where (z2 − 2ε1h, z2 +

2ε1h) ∩ Spec(Q0(x, hD)) = ∅ (Q0 is defined in (5.2)). Lemma 5.2 shows that near

intervals ∆(I2
z2

), t̂r(Qw(x, hD) − z)−1 is holomorphic. Since we are also away from

κ(hn;h)′s, that means that (6.11) holds also near I2
z2

.

Following [HS90b, §10] we proceed in two steps. First we recall that for f ∈ C∞c (R)

satisfying

f (k) = O(h−N0) for a fixed N0 and 0 ≤ k ≤ 4. (6.13)

we can find an extension of f , f̃ ∈ C∞c (C) satisfying

f̃ , f̃ ′ = O(h−N0), ∂z̄f̃ = O(h−N0| Im z|), (6.14)

In fact, Mather’s construction of f̃ – see (4.13) – shows that

∂z̄f̃ = | Im z|O(‖ξ2f̂(ξ)‖L1(dξ)) = | Im z|O(| supp f | sup
k≤4
|f (k)|),

and (6.13) implies (6.14).

Using a partition of unity with functions supported in intervals of type Ijzj , j = 1, 2,

covering I, we only need to consider f supported in Ijzj and satisfying (6.13).

If I is a sufficiently small neighbourhood of the Dirac point zD = ∆|−1
Bk

(0), we

obtain no Dirichlet contribution in (4.33). (The Dirichlet spectrum is located at the

band edges ∆(z) = ±1.) We observe further that ∆ has a non-vanishing derivative

inside the k-th band and 1/|Im ∆(z)| ∼ 1/|Im z|. Inserting (6.11) into (4.33) and using

a generalized version of the argument principle, as in the proof of Lemma 4.10, we

obtain

t̃r(f(HB)) =
h

|b1 ∧ b2|π2

∫
C
∂z̄f̃(z)∆′(z)

∑
n∈Z

(z − κ(hn, n))−1dm(z)

+
1

π

∫
| Im z|<hM

∂z̄f̃(z)O(1/| Im z|)dm(z)

=
h

π |b1 ∧ b2|
∑
n∈Z

f(zn(h)) +O(hM−N0), zn(h) = ∆|−1
Bk

(κ(nh, h)).

(6.15)
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We now approximate f ∈ Cα
c (I) by

fh(x) = h−M0

∫
R
f(y)ψ(h−M0(x− y))dy, ψ ∈ C∞c (R; [0, 1]),

∫
ψ(y)dy = 1.

The condition (6.13) is then satisfied with N0 = 4M0. Since f ∈ Cα we also have

sup
x
|f(x)− fh(x)| ≤ ‖f‖CαhαM0 . (6.16)

By using (6.15) with f replaced by fh and then using (6.16)

t̃rf(HB) =
h

π |b1 ∧ b2|
∑
n∈Z

f(zn(h)) +O(‖f‖CαhαM0−1) +O(‖f‖CαhM−4M0).

By choosing M = 5M0 and then M0 arbitrarily large we obtain (6.12). �

Things become much simpler when f is smooth. For completeness we include

Theorem 2. Suppose that f ∈ C∞c (I) where I is a small neighbourhood of a Dirac

energy zD. Then for any N

t̃r f(HB) =
N∑
j=1

Aj(f)hj +O(hN+1), A0(f) = ρ0(f), A1(f) = 0. (6.17)

Proof. We use the method of [DS99, Chapter 7] and consider an almost analytic exten-

sion of f defined by (4.13). Then, avoiding again the Dirichlet eigenvalues by taking

I small enough,

t̃r f(HB) =
2

(2π)23
√

3π

∫
R2/2πZ2

(∫
C
∂λ̄f̃(λ)∆′(λ) trC2 σ

(
(Qw −∆(λ))−1

)
dm(λ)

)
dxdξ,

which follows from Definition 4.3 and (4.33). From [DS99, Proposition 8.6] we have,

for z ∈ D(0, C) \ R (and any fixed C),

(Qw − z)−1 = Rw(z;x, hDx, h),

|∂αx∂
β
ξR(z, x, ξ, h)| ≤ Cαβ max(1, h/| Im z|)3| Im z|−1−|α|−|β|.

Hence in the formula for t̃r f(HB) we can replace σ(Qw−∆(λ))−1 by R(∆(λ), x, ξ, h).

As in [DS99, (8.14)] we see that for | Im ∆(λ)| ' | Imλ| ≥ hδ, 0 < δ < 1
2
, we have an

expansion

trC2 R(∆(λ), x, ξ, h) ∼ trC2(Q(x, ξ)−∆(λ))−1 + h2 trC2 q2(∆(λ), x, ξ)(Q(x, ξ)−∆(λ))−5

+ h3 trC2 q3(∆(λ), x, ξ)(Q(x, ξ)−∆(λ))−7 + · · · ,

where qj(z, x, ξ) ∈ C2⊗C2 are polynomials in z of degree ≤ 2j and the coefficients are

(2πZ)2 periodic.
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Adapting the calculation in [DS99, (8.16)] gives the expansion (6.17) with

Aj(f) =
∑
±

2

(2π)23
√

3

1

(2j)!

∫
R2/2πZ2

trC2 ∂2j
z (qj(z, x, ξ)f(z))|z=z±(x,ξ) dxdξ

where

z±(x, ξ) := ∆−1(±1
3
|1 + eix + eiξ|).

In particular,

A0(f) =
∑
±

2

(2π)23
√

3

1

(2j)!

∫
R2/2πZ2

f(z±(x, ξ))dxdξ,

which is ρ0(f) for f supported near zD. �

7. Magnetic oscillations

In this section we show how Theorem 1 can be used to describe low temperature

magnetic oscillations in the (smoothed-out) density of states and in magnetization.

In the physics literature they are known as the Shubnikov-de Haas (SdH) and the de

Haas-van Alphen (dHvA) effects, respectively.

We stress the asymmetry with respect to the Dirac energy levels which comes from

semiclassical quantization conditions and the dispersion relations. It is not seen when

a “perfect cone” (that is, a harmonic oscillator) approximation is used – see (1.2). We

note that an asymmetry is already present in the case when there is no magnetic field.

An experimental result in the setting molecular graphene [G∗12, Figure 4d] is shown

in Figure 7. The corrections to the perfect cone approximation are due to the modified

linear dispersion relation as energies move away from the Dirac points. The perfectly

linear dispersion relation of the QED2+1-model has been a ubiquitous assumption in

the physics literature – see Gusynin–Sharapov [SGB04], [GS05], [GS06] and references

therein. The approach presented here leads to modified Landau levels showing the well

known
√
nB-scaling only to leading order.

7.1. Shubnikov-de Haas oscillations in DOS. The Shubnikov-de Haas (SdH) ef-

fect is the occurrence of oscillations in the density of states, with periods proportional

to the inverse strength of the magnetic field. These oscillations can be experimentally

measured in terms of longitudinal conductivity or resistivity [W11] and [Tan11]. For a

theoretical discussion of the relation between oscillations in electric and also thermal

conductivities on the one hand and the density of states on the other hand, see also

[GS05].

We start with an approximation for the semiclassical Landau levels zh of HB intro-

duced in Theorem 6.1. For that we consider an approxiate Bohr-Sommerfeld condition:

g(z(1)
n (h)) = |n|h, g(x) := F0

(
∆(x)2

)
|Iδ,k , (7.1)
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(a) The DOS of the operator HB=0 (3.4)

per hexagonal cell volume with zero mag-

netic field potential (Ve) = 0 on the first

Hill band [0, π2] as described in (2.17).

(b) An experimental plot of the den-

sity of states for a molecular model of

graphene obtained using scanning tunnel-

ing microscopy [G∗12].

Figure 7. Comparing numerical and experimental no-magnetic field

DOS in the quantum graph model and molecular graphene, respectively.

where F0 is the normalized phase space area of one potential well in the Brouillon zone

defined in Proposition 5.1 and Iδ,k as in Theorem 1. Since F ′0(0) 6= 0, ∆(zD) = 0,

∆′(zD) 6= 0 (see (2.17)), we have g(zD) = g′(zD) = 0, g′′(zD) > 0. This means that we

have two branches of the inverse of g defined for small x ≥ 0: ±(g−1
± (x) − zD) ≥ 0.

Then

z
(1)
±|n|(h) = g−1

± (|n|h), z
(1)
0 (h) = 0. (7.2)

Remark 8. Because of the asymmetry of the cones which are the solutions to |Q(x, ξ)−
∆(z)| = 0 in a neighbourhood of the Dirac point ∆|−1

Bk
(0), we observe that although

κ(nh, h) = −κ(−nh, h) we have z
(1)
n (h) 6= −z(1)

−n(h) + O(h∞) in general. That can

already be seen in the simplest case (2.16).

We recall from (5.6) that

F (∆(zn(h))2) = F0(∆(zn(h))2) +O(h2∆(zn(h))2) = |n|h+O(h∞),

which gives ∆(zn(h))2 = ∆(z
(1)
n (h))2 +O(|n|h3) +O(h∞). Hence,

zn(h) = z(1)
n (h) +O

(
h

5
2 |n|

1
2

)
, n 6= 0 (7.3)
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Figure 8. Landau levels located on the Dirac cone of the first Hill band

with zero potential derived from the Bohr-Sommerfeld condition and

normalized phase space area g (7.1) and its perfect cone approximation

(7.5) for magnetic flux h = 0.01.

For f ∈ Cα(I), 0 < α ≤ 1, we then have

ρB(f) = ρ̃B(f) +O(‖f‖Cαh2α), ρ̃B(f) :=
h

π |b1 ∧ b2 |
∑
n∈Z

f(z(1)
n (h)). (7.4)

The error term came from the approximation (7.3) and the fact that the number of

terms contributing on the support of f is bounded by O(1/h):

h
∑
n6=0

|f(zn(h))− f(z(1)
n (h))| ≤ ‖f‖Cαh1+ 5

2
α
∑

0<n≤C/h

n
1
2
α = O(‖f‖Cαh2α).

The leading term in (7.4) provides a refinement of (1.2) which is easy to investigate

numerically. To compare it with (1.2) we calculate vF (the value used here differs by

the area factor) by using the leading term in the Taylor expansion of g (and (5.1) to

calculate F ′0(0)):

g(x) = ∆′(zD)2F ′0(0)x2 +O(x3), F ′0(0) = 3
3
2 =⇒ vF = 3−

3
4 ∆′(zD)−1.
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Figure 9. The plots of µ 7→ ρ̃B(exp((•−µ)2/2σ2)/
√

2πσ) for different

values of h and σ = h (hence pushing the validity of (7.4); see also

Figure 2). We note the asymmetry when compared to the density of

states obtained using the perfect cone approximation (7.5).

In other words, a “perfect cone” quantization condition reads,

gc(z
c
n(h)) = |n|h, gc(x) = v−2

F (x− zD)2, vF = 3−
3
4 ∆′(zD)−1,

zc
n = zD + vF sgn(n)

√
|n|h,

(7.5)

and the comparison with (7.1) is shown in Figure 8.

To plot the density of states we use ρ̃B(f) in (7.4) with fµ(x) = e−(x−µ)2/2σ2
/
√

2πσ

and plot µ 7→ ρ̃B(fµ). Since ‖fµ‖C1 = O(σ−2) we obtain valid approximation for σ � h

– see Figure 9

7.2. De Hass–van Alphen oscillations. As first discovered by de Haas and van

Alphen in 1930, magnetization and magnetic susceptibility of three dimensional metals

oscillate as functions of 1/B. They were not aware that Landau had just predicted

presence of such oscillations. The frequencies are proportional to the areas of the

extremal cross sections of the Fermi surface in the direction of the magnetic field. This
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explanation was provided by Onsager [O52] and a rigorous mathematical proof was

given by Helffer and Sjöstrand [HS90b].

In the case of graphene, the dHvA effect does not seem to be well understood neither

experimentally nor theoretically [L11]. This is partly due to difficulties in accounting

for all the parameters of the system: for instance, in the grand-canonical ensemble is

frequently used to model the dHvA effect [SGB04], the chemical potentials are assumed

to be independent of the external magnetic field. For a thorough discussion of this

assumption, also made in this paper, we refer to [CM01]. (We comment that the

assumption of having a constant chemical potential is also assumed in the 3D Lifshitz-

Kosevich theory [KF17] for the study of magnetic oscillations in the susceptibility of

metals at low temperatures. A 2D analogue of the theory for metals has been developed

by Shoenberg [S84] and was discussed in the context of graphene in [L11].)

Compared to previous discussions of magnetic oscillations – see for instance [SGB04]

and [L11] – where the limit of infinitely many “perfect cone” Landau levels was consid-

ered, we are only going to assume that there are finitely many semiclassically corrected

Landau levels.

To introduce magnetization, we first define the grand-canonical potential at temper-

ature T = 1/β. Since we are interested in chemical potentials (energy) near the Dirac

energy, we choose a smooth function η ∈ C∞c (I) which is equal to 1 in a neighbourhood

of the Dirac energy and replace ρB by ηρB we then define

Ωβ(µ, h) := ρB(η(•)fβ(µ− •)), fβ(x) := −β−1 log(eβx + 1). (7.6)

We note that f∞(x) = −x+ and we define Ω∞ using that function. Since f∞ is a

Lipschitz function, Theorem 1 implies that

Ωβ(µ, h) =
h

π |b1 ∧ b2|
∑
n∈Z

fβ(µ− zn(h))η(zn(h)) +O(h∞), (7.7)

which holds true for Ω∞ defined using f∞ = −x+. The function x 7→ fβ(µ − x) is

uniformly smooth away from x = µ. For µ’s near zD, changing η gives uniformly

smooth contributions (in µ and h) – see Theorem 2.

Remark 9. The grand-canonical potential at non-zero temperatures (finite values of

β) can be recovered from Ω∞ using the Fermi distribution nβ:

Ωβ(µ, h) =
(
−n′β ∗ Ω∞(•, h)

)
(µ), nβ(x) := (1 + eβx)−1. (7.8)

Indeed, we easily check that
(
−(• − x)+ ∗ n′β

)
(µ) = fβ(x).

Magnetization is defined as

Mβ(µ, h) := − |b1 ∧ b2|
∂

∂h
Ωβ(µ, h). (7.9)
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If we consider the full expansion of the levels zn(h) (obtained from F (ω, h) in Propo-

sition 5.1) we could analyse Mβ for β < h−M0 for any fixed M0 – see the remarks after

[HS90b, Theorem 10.2].

To avoid technical complications, we will instead, similarly to [HS90b], consider

formal magnetization obtained using leading term DOS, ρ̃B, from (7.4). That already

shows the sawtooth pattern derived in [SGB04] using the “perfect cone” approximation

– see Theorem 3 and Figure 10. Remarkably it also agrees with the “exact” spectral

numerical calculation explained in §7.3 – see Figure 13.

Let us now consider chemical potentials located on the upper cone of the first Hill

band, i.e. µ ∈
[
zD,∆|−1

B1

(
−1

3

) ]
. Formal grand-canonical potential and formal magne-

tization are obtained from (7.7) and (7.9) by replacing (zn(h)) with the semiclassical

Landau levels (z
(1)
n ) given by the leading order Bohr–Sommerfeld condition (7.1), and

thus defined as follows

ωβ(µ, h) :=
h

π |b1 ∧ b2|
∑
n∈Z

fβ(µ− z(1)
n (h))η(z1

n(h)),

mβ(µ, h) := − |b1 ∧ b2|
∂

∂h
ωβ(µ, h),

(7.10)

and

η(x) = Θ 1
2
(x) :=


0 x < zD
1
2

x = zD

1 zD < x < ∆|−1
B1

(
−1

3

)
0 x ≥ ∆|−1

B1

(
−1

3

)
.

(7.11)

(This non-smooth η is convenient for spectral calculations and hence comparing semi-

classical and exact numerics. The energy ∆|−1
B1

(
−1

3

)
corresponds to the energetic upper

end of the upper cone.)

The construction for chemical potentials on the lower cone of the first Hill band, i.e.

µ ∈
[
∆|−1

B1

(
1
3

)
, zD

]
, is similar. Using the cut-off function

η = 1l[∆|−1
B1

( 1
3),zD]

(
1−Θ1

2

)
,

we obtain the semiclassical approximation from Landau levels located on the lower

cone at zero temperature

ω∞(µ, h) := h
π|b1∧b2|

∑
n∈Z

(µ− g−1(nh))−η(g−1(nh)). (7.12)

We compare the oscillations on the upper (7.10) and lower cone (7.12) at zero temper-

ature showing the asymmetry between the two different cones in Figure 13.
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Figure 10. The magnetization (7.10) for different temperatures for a

Hamiltonian with zero potential on the first Hill band. The sawtooth

profile is clearly visible in the zero temperature limit β = ∞ and the

oscillation period is approximately proportional to the inverse Fermi

surface. As temperature increases, the oscillations become more smooth

as predicted in (7.8) and the oscillation amplitude decreases. For zero

temperature we see that the oscillation period increases linearly in µ.

This is no longer true when non-zero temperatures are considered.

The following asymptotic result shows the presence of “sawtooth” oscillations in

magnetization.

Theorem 3. The formal magnetization for chemical potentials on the upper cone at

zero temperature (defined in (7.10)) satisfies

m∞(µ, h) =
1

π
σ

(
g(µ)

h

)
g(µ)

g′(µ)
+O(h

1
2 ), (7.13)

where g(x) = F0(∆(x)2), with F0 given in (5.6), is the leading term in the Bohr–

Sommerfeld condition (7.1) and σ is the sawtooth function,

σ(y) := y − [y]− 1
2
. (7.14)
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Proof. Since in (7.10) z
(1)
n (h) = g−1

+ (nh) (we drop + in what follows) and η = Θ 1
2
,

ω∞(µ, h) = − h

π|b1 ∧ b2|

(
1
2
(µ− zD) +

∑
n≥1

(µ− g−1(nh))+

)
. (7.15)

We rewrite the sum appearing in (7.15) as follows:∑
n≥1

(µ− g−1(nh))+ = −1
2
h(µ− zD) +

∫ µ

zD

(
g(x)

h
− σ

(
g(x)

h

))
, (7.16)

where σ is defined by (7.14). In fact, both sides are 0 at µ = ∆|−1
Bk

(0) and the derivative

of the left hand side is∑
n≥0

(µ− g−1(nh))0
+ =

[
g(µ)

h

]
=
g(µ)

h
− σ

(
g(x)

h

)
− 1

2
.

This gives the following expression for ω:

ω∞(µ, h) = − 1

π|b1 ∧ b2|

∫ µ

∆|−1
Bk

(0)

(
g(x)− hσ

(
g(x)

h

))

= G(µ) +
h2

π|b1 ∧ b2|

∫ g(µ)/h

0

σ(z)(g−1)′(zh)dz,

(7.17)

where G(µ) is independent of h. Hence,

m∞(µ, h)− 1

π
σ

(
g(µ)

h

)
g(µ)

g′(µ)
= h

∫ g(µ)/h

0

σ(z)
(
(g−1)′′(zh)zh+ 2(g−1)′(zh)

)
dz

= h
1
2

∫ g(µ)/h

0

σ (z)z−
1
2a(zh)dz,

where a(ξ) := (g−1)′′(ξ)ξ
3
2 + 2(g−1)′(ξ)ξ

1
2 . The function a is smooth since g(x) =

(G−1(x−∆|−1
Bk

(0)))2 where G(0) = 0, G′(0) 6= 0. That means that g−1(ξ) = ∆|−1
Bk

(0) +

ξ
1
2ϕ(ξ), ϕ ∈ C∞ so that a(ξ) = 3

4
ϕ(ξ) + 3ξϕ′(ξ) + ξ2ϕ′′(ξ) ∈ C∞. We then write∫ g(µ)/h

0

σ (z)z−
1
2a(zh)dz = h

1
2

[g(µ)/h]−1∑
n=0

∫ n+1

n

σ (z)z−
1
2a(zh)dz +O(h

1
2 ). (7.18)

For 1 ≤ n ≤ c/h,∫ n+1

n

σ (z)z−
1
2a(zh)dz =

∫ 1

0

σ(z)(z + n)−
1
2a(h(z + n))dz

= n−
1
2

∫ 1

0

σ(z)(1 + z/n)−
1
2a(nh(1 + z/n))dz

= n−
1
2a(nh)

∫ 1

0

σ(z)dz +O(n−
3
2 ) = O(n−

3
2 ).
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Hence the sum on the right hand side of (7.18) is bounded and that concludes the

proof of (7.13). �

The leading term in (7.13) encapsulates the classical features of the dHvA effect:

the function σ(x) is periodic and its jump discontinuities coincide with the location of

the Landau levels visible as the valleys in the lower Figure 10. The sawtooth profile

shown in Figures 12 and 13 of the oscillations agrees with the results obtained in

[SGB04] and [CM01] in which a sawtooth shape for magnetic oscillations in graphene

was predicted. The quantity g(µ) is precisely the area enclosed by the Fermi curve as

in the description of dHvA effect given by Onsager [O52]. In particular, this shows

that the dHvA effect can be used as a test to study deviations from the perfect cone

shape in graphene. Finally, the scaling factor g(µ)/g′(µ) implies a (at leading order)

linear growth of the magnetic oscillations as a function of the chemical potential shown

in Figure 10.

7.3. A Spectral approach to magnetic oscillations. It is well known that when

the magnetic flux h satisfies h/2π ∈ Q, modified Floquet theory can be used to describe

the spectrum of HB and the density of states. In particular, when h = 2πp
q

, p, q ∈ N,

then the Floquet spectrum as a function of quasi-momentum k can be calculated using

2q × 2q matrices – see [BHJ18].

More precisely, for k ∈ T2
∗ we follow [BHJ18] and define

Tq(k) := 1
3

(
0 idCq +eik1Jp,q + eik2Kq

idCq +e−ik1J∗p,q + e−ik2K∗q 0

)
(7.19)

where

(Jp,q)j` = e
2πp
q
i(`−1)δj`, (Kq)j` =

{
1 ` ≡ j + 1 mod q

0 otherwise,
1 ≤ j, ` ≤ q.

Then λ ∈ Spec(HB)\ Spec(HD) if and only if ∆(λ) ∈
⋃
k∈T2

∗
Spec(Tq(k)). Thus, on

each Hill band HB has 2q non-overlapping bands that touch at the conical point. In

particular, there are q bands above and below the conical point.

The density of state is given in the following

Lemma 7.1. Let h = 2πp/q then for any f ∈ Cc(R \ Spec(HD))

t̃r(f(HB)) =
1

q |b1 ∧ b2|

∫
T2
∗

∑
∆(λ)∈Spec(Tq(k))

f(λ)
dk

|T2
∗|
. (7.20)

Proof. Since the flux is of the form h = 2πp
q

there is a fundamental cell WB
Λ of measure

q |b1 ∧ b2| with respect to which the operator HB is translational invariant [BHJ18].

Thus, along the lines of Lemma 4.4 we find that

t̃r(f(HB)) = 1
q|b1∧b2| tr(1lWB

Λ
f(HB)). (7.21)
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By Floquet theory, f(HB) is unitary equivalent to the bounded decomposable operator∫ ⊕
T2
∗
f(HB)(k) dk

|T2
∗|

such that for any orthonormal basis, {ϕn}n∈N, of L2(WB
Λ )

t̃r(f(HB)) = 1
q|b1∧b2| tr 1lWB

Λ
f(HB)

= 1
q|b1∧b2|

∑
n∈N

〈
ϕn, f(HB)(k)ϕn

〉
L2

(
T2
∗,
dk
|T2
∗|

)
⊗L2(WB

Λ )

= 1
q|b1∧b2|

∫
T2
∗

trL2(WB
Λ ) f(HB)(k)

dk

|T2
∗|

= 1
q|b1∧b2|

∫
T2
∗

∑
λ∈Spec(HB(k))

f(λ)
dk

|T2
∗|
.

(7.22)

Away from Spec(HD) the spectrum of HB(k) is characterized by ∆(λ) ∈ Spec(Tq(k))

and (7.1) follows. �

In the semiclassical regime h → 0, the location of the energy bands of Spec(HB)

coincides with the location of the semiclassical Landau levels close to the conical point.

By using the actual spectrum of HB, the broadening of the Landau levels, known as

Harper broadening [KH14], is already part of the model and does not have to be

approximated as in [SGB04] or [CM01]. We should stress that Lemma 5.2 shows that

the width of the bands is O(h∞) and finer analysis of [HS88] could be used to show

that the width is in fact O(e−c/h).

The advantage of the representation of the density of states in Lemma 7.1 is that we

can calculate DOS numerically for larger values of h, that is, for strong magnetic fields.

This approach is similar to the study of magnetic oscillations in the tight-binding model

presented in [KH14].

Let the magnetic flux be of the form h = 2πp/q with p ∈ Z, q ∈ N, then we study

the grand-canonical potential localized to the spectrum on the first Hill band which

by Lemma 7.1 satisfies

Ωβ(µ, h) := (fβ ∗ ηρB)(µ)

= − 1
q|b1∧b2|

1
β

∫
T2
∗

∑
∆|B1

(λ)∈Spec(Tq(k))

log (exp (β(µ− λ)) + 1) dk
|T2
∗|
. (7.23)

Here η is one on A := ∆|−1
B1

(
⋃
k∈T2

∗
Spec(Tq(k)) and zero on Spec(HB)\A. In the zero

temperature limit this reduces to

Ω∞(µ, h) = − 1
q|b1∧b2|

∫
T2
∗

∑
∆|B1

(λ)∈Spec(Tq(k))

(µ− λ)+
dk
|T2
∗|
. (7.24)

Remarkably, Ω∞ satisfies Ω∞(µ, h) = (f∞∗ρB)(µ) without any cut-off for µ < inf Spec(HD).

The definition of the grand-canonical potential used here coincides with the expression

in [GA03] up to the regularizing pre-factor (q |b1 ∧ b2|)−1.
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Figure 11. The magnetization (7.9) for a Hamiltonian with zero Hill

potential at µ = π2

4
given by the Dirac energy. The magnetization

shows a decaying inverted saw-tooth profile with oscillations in 1/h and

additional high-frequency modulations. As 1/h increases we move to the

semiclassical regime in which no oscillations occur at the Dirac energy –

see Figure 12.

Magnetization is defined by (7.9) and we compute it numerically for (7.24) using

finite difference approximation at rational points. Results for computation using dif-

ference quotients for magnetic fluxes h = 2π p
150

and p ∈ {1, ..., 150} are shown in

Figure 11. The results we obtain are in good agreement with the oscillations obtained

in [KH14]. The magnetization shows a decaying inverted saw-tooth profile with os-

cillations in 1/h and additional high-frequency modulations. These type of magnetic

oscillations are an effect of strong magnetic fields. Unlike the dHvA oscillations dis-

cussed in §7.2, the magnetization for such strong magnetic fields deviates significantly

from the semiclassical approximation. In particular, the characteristic oscillatory pro-

file caused by the strong magnetic field decreases for sufficiently small magnetic fluxes

as we see in Figure 11. Moreover, there are no oscillations when the chemical potential

agrees with the energy of the Dirac point in the semiclassical limit.

Figure 12 shows the magnetization (7.9) computed using (7.24) for values of h in

the semiclassical regime.

7.4. Comparing spectral and semiclassical calculations. We now compare the

exact spectral calculations at magnetic fluxes of the form h = 2πp/q (7.23) with the
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Figure 12. The magnetization (7.9) as a function of the inverse flux

for specific chemical potentials (µ = π2

4
is the location of the Dirac point)

for a magnetic Hamiltonian with zero potential at zero temperature. It

is computed using the spectral method (7.24). The magnetization for all

chemical potentials is true to scale and calculated at zero temperature

from the full operator spectrum (i.e. no cut-off is used). We calculated

the magnetization for inverse fluxes 2π
q

with q ∈ {10, .., 600} . One clearly

sees the antisymmetry between the different magnetic oscillations with

respect to the conical point. The figures show (away from the Dirac

point) jump discontinuities caused by the crossing of chemical potential

and Landau levels.

results obtained from the semiclassical trace formula (7.10) where we approximate

zh(n) in (7.7) by z
(1)
h (n) := g−1(nh).

As explained in §7.3, the spectrum of HB away from the Dirichlet spectrum of HD

is fully determined by the eigenvalues of Tq as in (7.19). This matrix has for every

quasi-momentum k ∈ T2
∗ precisely 2q eigenvalues λ1(k) ≤ ... ≤ λ2q(k), of which, when

pulled back under ∆|Bk , precisely half are located below and above the conical point

∆|−1
Bk

(0). Moreover, it is easy to see that there are always two touching bands at the

conical point as discussed in [BHJ18], [HKL16], and [KL14].
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Figure 13. The magnetization for four different chemical potentials

above/below the Dirac point located at µ = π2

4
on the first Hill band

of the magnetic Hamiltonian with zero potential at zero temperature.

Continuous lines are computed from the operator spectrum precisely by

numerically differentiating (7.26) and dotted lines (grey) from numer-

ically differentiating the semiclassical expression (7.12). We evaluated

those expressions for steps 2π
q

with q ∈ {10, .., 600} . The magnetization

for all chemical potentials is true to scale. Both the spectral and semi-

classical oscillations show (away from the Dirac point) equally spaced

jump discontinuities caused by the crossing of chemical potential and

Landau levels. We see that both oscillations coincide up to large mag-

netic fields (small values of 1/h).

For chemical potentials µ ∈
[
zD,∆|−1

B1

(
−1

3

)]
on the upper cone of the first Hill band

we define the grand-canonical potential calculated from DOS of the operator spectrum

as in Lemma 7.1

Ω∞(µ, h) = (f∞ ∗ ηρB)(µ) = − 1
q|b1∧b2|

∫
T2
∗

∑
i∈{1,···q}

(
µ−∆|−1

B1
(λi(k))

)
+

dk
|T2
∗|
. (7.25)
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This is the grand-canonical potential calculated from the operator spectrum which

corresponds to the semiclassical potential (7.6) with β =∞ and η = Θ 1
2

from (7.11).

For µ ∈
[
∆|−1

B1

(
1
3

)
, zD
]

on the lower cone of the first Hill band, we proceed similarly:

in this case, the grand-conical potential, which is defined using the spectrum located

between the chemical potential and the conical point, reads

Ω∞(µ, h) = 1
q|b1∧b2|

∫
T2
∗

∑
i∈{q+1,···2q}

(
µ−∆|−1

B1
(λi(k))

)
−

dk
|T2
∗|
. (7.26)

This potential is the spectral analogue of the semiclassical potential (7.12).

We compare the computation of magnetization (7.9) calculated using finite difference

method from (7.25) and (7.26) with the formal semiclassical magnetizations from (7.10)

and (7.12) on both cones. The results are shown in Figure 13 and we see a remarkable

agreement of the semiclassical approximation with the spectral computation. The

sawtooth approximation given in Theorem 3 is also shown.
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[BGP07] J. Brüning, V Geyler, and K. Pankrashkin, Cantor and band spectra for periodic quantum

graphs with magnetic fields, Communications in mathematical physics, 269(1), 87–105, 2007.

[CU08] P. Carmier and D. Ullmo, Berry phase in graphene: a semiclassical perspective, Phys. Rev.

B 77, 245413, 2008.

[CM01] T. Champelde and VP. Mineev, The de Haas-van Alphen effect in two-and quasi-two-

dimensional metals and superconductors, Philosophical Magazine B, 81, 55–74, 2001.

[CdV80] Y. Colin de Verdière, Spectre conjoint d’opérateurs pseudo-différentiels qui commutent. II.
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de Harper. in Schrödinger operators (Sønderborg, 1988), 118–197 Lecture Notes in Phys.345,

Springer, Berlin, 1989.
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