ERRATUM

We provide a small correction to the statement and proof of [1, Proposition 2.1]. The key component is the Ingham inequality [3]. Suppose that $\lambda_{n}, n=1,2, \cdots$ is a sequence of real numbers satisfying

$$
\begin{equation*}
\lambda_{n+1}-\lambda_{n} \geq \gamma>0, \quad n=1,2, \cdots \tag{1}
\end{equation*}
$$

Then there exists a constant A depending only on γ such that for any $\left\{a_{n}\right\}_{n=1}^{\infty} \in \ell^{2}(\mathbb{N} ; \mathbb{C})$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\sum_{n=1}^{\infty} a_{n} e^{i \lambda_{n} t}\right|^{2} d t \leq A \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \tag{2}
\end{equation*}
$$

If γ in (1) satisfies $\gamma>1$ then we also have

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\sum_{n \in \mathbb{N}} a_{n} e^{i \lambda_{n} t}\right|^{2} d t \geq B \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}, \tag{3}
\end{equation*}
$$

for some constant B depending only on γ. Here we will only need (2) but we note that both inequalities are very important in control theory - see for instance [2].

Going back to [1] we now correct the proposition and its proof:
Proposition 2.1 For any $W \in L^{2}\left(\mathbb{T}^{1}\right)$, there exists $C>0$ such that for any $k \in[0,1)$, and $u_{0} \in L^{2}\left(\mathbb{T}^{1}\right)$ the solution to the Schrödinger equation

$$
\begin{equation*}
\left(i \partial_{t}+\left(\partial_{x}+i k\right)^{2}-W\right) u=0,\left.\quad v\right|_{t=0}=u_{0} \tag{4}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(\mathbb{T}_{x}^{1} ; L^{2}(0, T)\right)} \leq\left(C_{0}+T\right)\left(C_{1}+\|W\|_{L^{2}\left(\mathbb{T}^{1}\right)}^{2}\right)\left\|u_{0}\right\|_{L^{2}\left(\mathbb{T}^{1}\right)}, \quad T>0 \tag{5}
\end{equation*}
$$

where the constants C_{0}, C_{1} are independent of k.
Proof. For $W \equiv 0$ we put $T=2 \pi$ so that, with $c_{n}=\hat{u}_{0}(n)$, we have

$$
\begin{align*}
\left\|e^{i t\left(\partial_{x}+i k\right)^{2}} u_{0}\right\|_{L_{x}^{\infty} L_{t}^{2}}^{2} & =\sup _{x} \int_{0}^{2 \pi}\left|\sum_{n \in \mathbb{Z}} c_{n} e^{-i t|n+k|^{2}+i n x}\right|^{2} d t \\
& \leq 3 \sup _{x}\left(2 \pi\left|c_{0}\right|^{2}+\sum_{ \pm} \int_{0}^{2 \pi}\left|\sum_{n=1}^{\infty} c_{ \pm n} e^{-i t|n \pm k|^{2} \pm i n x}\right|^{2} d t\right) \tag{6}
\end{align*}
$$

Since for $k \in[0,1)$,

$$
|n+1 \pm k|^{2}-|n \pm k|^{2}=\underset{1}{2 n+1 \pm 2 k \geq 1,} n=1,2, \cdots,
$$

we can apply (2) to get

$$
\left.\left\|e^{i t\left(\partial_{x}+i k\right)^{2}} u_{0}\right\|_{L_{x}^{\infty} L_{t}^{2}([0, T])}^{2} \leq C\left\|u_{0}\right\|_{L^{2}}^{2}, \quad\right), \quad 0 \leq T \leq 2 \pi .
$$

with the constant C is independent of k.
For a non-zero potential $W \in L^{2}\left(\mathbb{T}^{1}\right)$ we use Duhamel's formula and write

$$
\left.u(t)=e^{i t\left(\partial_{x}+i k\right)^{2}} u_{0}+\frac{1}{i} \int_{0}^{T} \mathbb{1}_{s<t} e^{i(t-s)\left(\partial_{x}+i k\right)^{2}}(W u(s))\right) d s .
$$

Applying (6) (now with $T>0$ to be chosen later) and the Minkowski inequality we obtain

$$
\begin{align*}
\|u\|_{L_{x}^{\infty} L_{t}^{2}([0, T])} & \leq C\left\|u_{0}\right\|_{L_{x}^{2}}+\int_{0}^{T}\left\|\mathbb{1}_{s<t} e^{i(t-s)\left(\partial_{x}+i k\right)^{2}}(W u(s))\right\|_{L_{x}^{\infty} L_{t}^{2}([0, T])} d s \\
& \leq C\left\|u_{0}\right\|_{L_{x}^{2}}+\int_{0}^{T}\left\|e^{i(t-s)\left(\partial_{x}+i k\right)^{2}}(W u(s))\right\|_{L_{x}^{\infty} L_{t}^{2}([0, T])} d s \tag{7}\\
& \leq C\left\|u_{0}\right\|_{L_{x}^{2}}+C \int_{0}^{T}\|W u(s)\|_{L_{x}^{2}} d s \\
& \leq C\left\|u_{0}\right\|_{L_{x}^{2}}+C \sqrt{T}\|W\|_{L_{x}^{2}}\|u\|_{L_{x}^{\infty} L_{t}^{2}([0, T])} .
\end{align*}
$$

Hence,

$$
\begin{equation*}
\|u\|_{L_{x}^{\infty} L_{t}^{2}([0, T])} \leq 2 C\left\|u_{0}\right\|_{L_{x}^{2}}, \quad \text { if } \quad C \sqrt{T}\|W\|_{L^{2}} \leq \frac{1}{2} . \tag{8}
\end{equation*}
$$

To obtain the estimate for multiples of $T=K T_{0}, T_{0}=1 /\left(1+4\|W\|^{2} C^{2}\right)$, we note that, by the invariance of the L_{x}^{2} norm of $u(t), \int_{(k-1) T_{0}}^{k T_{0}}\|u(t)\|_{L_{x}^{\infty}}^{2} d t \leq 2 C\left\|u\left((k-1) T_{0}\right)\right\|_{L_{x}^{2}}=$ $2 C\left\|u_{0}\right\|_{L_{x}^{2}}$. Iterating this inequality gives (5).

References

[1] J. Bourgain, N. Burq and M. Zworski, Control for Schrdinger operators on 2-tori: rough potentials. J. Eur. Math. Soc. 15(2013), 1597-1628.
[2] Y. Privat, E. Trélat, E. Zuazua, Optimal observability of the multi-dimensional wave and Schrdinger equations in quantum ergodic domains. J. Eur. Math. Soc. 18(2016), 1043-1111.
[3] A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41(1936), 367-379.

