ADDENDUM TO "MAGNETIC OSCILLATIONS IN A MODEL OF GRAPHENE"

SIMON BECKER AND MACIEJ ZWORSKI

In the proof of [BZ19, Proposition 5.1] we misquoted [HR84] when claiming that $F_{1} \equiv 0$. Results of [HR84] do however produce this conclusion and to see it we will use an elegant presentation of higher order Bohr-Sommerfeld rules from [CdV05]. The more recent paper [ILR18] can also be consulted for a different approach and for references on this old subject. The statement that $F_{1} \equiv 0$ is sometimes interpreted in the physics literature as the cancellation of the Maslov index by the Berry phase - see for instance [CU08]. Here we will confine ourselves to Bohr-Sommerfeld analysis as we will also discuss the next term.

We consider (compared to [BZ19] we remove $\frac{1}{3}$ as it does not change the calculations)

$$
P:=\lambda_{+}^{\mathrm{w}} \lambda_{-}^{\mathrm{w}}, \quad \lambda_{ \pm}(x, \xi):=1+e^{ \pm i x}+e^{ \pm i \xi}, \quad\left(\lambda_{ \pm}^{\mathrm{w}}\right)^{*}=\lambda_{\mp}^{\mathrm{w}}, \quad \lambda_{ \pm}^{\mathrm{w}}=\lambda_{ \pm}^{\mathrm{w}}(x, h D),
$$

and work microlocally near

$$
\left(x_{0}, \xi_{0}\right)=\left(\frac{2 \pi}{3},-\frac{2 \pi}{3}\right), \quad \lambda_{ \pm}\left(x_{0}, \xi_{0}\right)=0, \quad\left\{\lambda_{+}, \lambda_{-}\right\}\left(x_{0}, \xi_{0}\right)=\sqrt{3} i .
$$

We start by computing the full symbol of P :

$$
\begin{equation*}
P=P^{\mathrm{w}}(x, h D, h), \quad P(x, \xi, h)=p(x, \xi)+h p_{1}(x, \xi)+h^{2} p_{2}(x, \xi)+\cdots \tag{1}
\end{equation*}
$$

From the product formula $[\mathrm{Zw},(4.3 .10),(4.4 .18)]$ we immediately have

$$
\begin{equation*}
P=\lambda_{+}^{\mathrm{w}} \lambda_{-}^{\mathrm{w}}=\left(\lambda_{+} \lambda_{-}\right)^{\mathrm{w}}+\frac{h}{2 i}\left\{\lambda_{+}, \lambda_{-}\right\}^{\mathrm{w}}+\mathcal{O}\left(h^{2}\right) \tag{2}
\end{equation*}
$$

To see an exact formula we recall (see for instance [Zw, Theorem 4.7]) that $\left(e^{i(a x+b \xi)}\right)^{\mathrm{w}}=$ $e^{i(a x+b h D)}$ (where the right hand side is defined as an exponential of an anti-self-adjoint operator) and that $e^{i(a x+b h D)} e^{i(c x+d h D)}=e^{\frac{i}{2} h(c b-a d)} e^{i(a+c) x+(d+b) h D}$. Hence,

$$
\begin{aligned}
\lambda_{+}^{\mathrm{w}} \lambda_{-}^{\mathrm{w}} & =3+e^{i x}+e^{-i x}+e^{i h D}+e^{-i h D}+e^{i x} e^{-i h D}+e^{i h D} e^{-i x} \\
& =3+2 \cos x+2(\cos \xi)^{\mathrm{w}}+e^{\frac{i}{2} h}\left(e^{i(x-\xi)}\right)^{\mathrm{w}}+e^{-\frac{i}{2} h}\left(e^{-i(x-\xi)}\right)^{\mathrm{w}} \\
& =3+2 \cos x+2(\cos \xi)^{\mathrm{w}}+2 \cos (h / 2)(\cos (x-\xi))^{\mathrm{w}}-2 \sin (h / 2)(\sin (x-\xi))^{\mathrm{w}} .
\end{aligned}
$$

Returning to (1) we see that for $j \geq 0$,

$$
p_{2 j+1}(x, \xi)=\frac{(-1)^{j+1}}{(2 j+1)!4^{j}} \sin (x-\xi), \quad p_{2 j+2}(x, \xi)=\frac{1}{2} \frac{(-1)^{j+1}}{(2 j+2)!4^{j}} \cos (x-\xi) .
$$

Figure 1. On the left: level sets $p(x, \xi)=E$ for $0.02 \leq E \leq 0.8$ with the point $\left(x_{0}, \xi_{0}\right), p\left(x_{0}, \xi_{0}\right)=0$, indicated. On the right: the plot of $F_{2}(E), 0.02 \leq E \leq 0.8$.

As explained in the proof of [BZ19, Proposition 5.1] the quasimodes microlocalized to a neighbourhood of $\left(x_{0}, \xi_{0}\right)=(2 \pi / 3,-2 \pi / 3)$ have energies (approximate eigenvalues) given by the Bohr-Sommerfeld rule $F\left(\lambda_{n}(h), h\right)=n h, n=0,1, \cdots, F(\omega, h) \sim F_{0}(\omega)+$ $h F_{1}(\omega)+h^{2} F_{2}(\omega) \cdots$. General arguments there also show that $\lambda_{0}(h)=\mathcal{O}\left(h^{\infty}\right)$ from which we obtain that $F_{j}(0)=0$ for all j.

We now analyse F_{1} following [CdV05],[ILR18]. In the notation of those papers $F_{1}(E)=S_{1}(E) / 2 \pi$. The Bohr-Sommerfeld rules discussed there apply only to excited states, that is to $E>E_{0}>0$, for any fixed E_{0}, but the the formulas apply in our setting. The validity of the Bohr-Sommerfeld rules near 0 energy follows from [HR84], see also [Sj89, §8, Case II, p.292].

Let γ_{E} be the component of $p^{-1}(E)$ enclosing $\left(x_{0}, \xi_{0}\right)$ (see the figure). We denote by t the conjugate variable to the energy E so that $\kappa^{-1}:(x, \xi) \mapsto(t, E), 0 \leq t<T(E)$ (where $T(E)$ is the period of γ_{E}) is a local symplectomorphism near points on γ_{E}, $E>0$. For any function $f=f(x, \xi)$ we then have

$$
\begin{aligned}
\frac{\partial}{\partial E} \iint_{p(x, \xi) \leq E} f(x, \xi)|d x d \xi| & =\frac{\partial}{\partial E} \int_{0}^{E} \int_{0}^{T(\omega)} \kappa^{*} f(t, \omega)|d t d \omega| \\
& =\int_{0}^{T(E)} \kappa^{*} f(t, E)|d t|=\int_{\gamma_{E}} f|d t|
\end{aligned}
$$

We then quote [CdV05] to obtain

$$
\begin{equation*}
S_{1}(E)=\pi-\int_{\gamma_{E}} p_{1}|d t|=\pi-\frac{\partial}{\partial E} \int_{p(x, \xi) \leq E} p_{1}(x, \xi)|d x d \xi| . \tag{3}
\end{equation*}
$$

The right hand side is the same as in [HS90a, (6.2.14)] where it is derived from [HR84, Corollary 3.7]. To compute it we use (2) noting that

$$
\begin{equation*}
p=\left|\lambda_{+}\right|^{2}, \quad p_{1}=\frac{1}{2 i}\left\{\lambda_{+}, \lambda_{-}\right\}=-\left\{\operatorname{Re} \lambda_{+}, \operatorname{Im} \lambda_{+}\right\}, \quad\left\{\operatorname{Re} \lambda_{+}, \operatorname{Im} \lambda_{+}\right\}\left(x_{0}, \xi_{0}\right)=-\sqrt{3} \tag{4}
\end{equation*}
$$

If we put $y=\operatorname{Re} \lambda_{+}(x, \xi), \eta=\operatorname{Im} \lambda_{+}(x, \xi)$ then

$$
\left|\frac{\partial(y, \eta)}{\partial(x, \xi)}\right|=\left|\left\{\operatorname{Re} \lambda_{+}, \operatorname{Im} \lambda_{+}\right\}\right|=-\left\{\operatorname{Re} \lambda_{+}, \operatorname{Im} \lambda_{+}\right\}
$$

and we obtain

$$
\begin{aligned}
\frac{\partial}{\partial E} \int_{p(x, \xi) \leq E} p_{1}(x, \xi)|d x d \xi| & =-\frac{\partial}{\partial E} \int_{\left|\lambda_{+}\right|^{2} \leq E}\left\{\operatorname{Re} \lambda_{+}, \operatorname{Im} \lambda_{-}\right\}|d x d \xi| \\
& =\frac{\partial}{\partial E} \int_{y^{2}+\eta^{2} \leq E}|d y d \eta|=\pi
\end{aligned}
$$

Returning to (3) we see that $S_{1}(E) \equiv 0$ and hence the same is true for F_{1}.
We conclude with comments about $F_{2}(E)=S_{2}(E) / 2 \pi$. Following [CdV05, Theorem 2] we have

$$
S_{2}(E)=\frac{\partial}{\partial E}\left(\int_{\gamma_{E}}\left(-\frac{1}{24} \Delta+\frac{1}{2} p_{1}^{2}\right)|d t|\right)-\int_{\gamma_{E}} p_{2}|d t|, \quad \Delta:=\operatorname{det}\left[\begin{array}{rr}
p_{x \xi} & p_{x x} \\
-p_{\xi \xi} & -p_{x \xi}
\end{array}\right] .
$$

This function satisfies $S_{2}(0)=0$ but it does not seem to have a simple form. The figure shows its numerical evaluation (one can check, as is indicated by numerics, that, near $\left.0, S_{2}(E) \simeq c_{0} E, c_{0} \simeq 0.134\right)$.
Acknowledgements. We gratefully acknowledge support by the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/L016516/1 for the University of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis (SB) and by the National Science Foundation under the grant DMS-1500852 (MZ).

References

[BZ19] S. Becker and M. Zworski, Magnetic oscillations in a model of graphene, Comm. Math. Phys. 367(2019), 941-989.
[CU08] P. Carmier and D. Ullmo, Berry phase in graphene: a semiclassical perspective, Phys. Rev. B 77, 245413, 2008.
[CdV05] Y. Colin de Verdière, Bohr-Sommerfeld rules to all orders, Ann. Henri Poincaré (2005), 925-936.
[ILR18] A. Ifa, H. Louati and M. Rouleux, Bohr-Sommerfeld quantization rules revisited: the method of positive commutators. J. Math. Sci. Univ. Tokyo 25 (2018), 91-127.
[HR84] B. Helffer and D. Robert, Puits de potentiel généralisés et asymptotique semi-classique, Ann. Inst. H. Poincaré Phys. Théor. 41, 291-331, 1984.
[HS90a] B. Helffer and J. Sjöstrand, Analyse semi-classique pour l'équation de Harper. II. Comportement semi-classique près d'un rationnel. Mém. Soc. Math. France (N.S.) 40, 1990.
[Sj89] J. Sjöstrand, Microlocal analysis for periodic magnetic Schrödinger equation and related questions, in Microlocal Analysis and Applications, J.-M. Bony, G. Grubb, L. Hörmander, H. Komatsu and J. Sjöstrand eds. Lecture Notes in Mathematics 1495, Springer, 1989.
[Zw] Maciej Zworski, Semiclassical analysis, Graduate Studies in Mathematics 138 AMS, 2012.
Email address: simon.becker@damtp.cam.ac.uk
DAMTP, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WA, UK

Email address: zworski@math.berkeley.edu

Department of Mathematics, University of California, Berkeley, CA 94720, USA

