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This talk will be concerned with very classical objects:

Eigenfuctions of the Dirichlet (or Neumann) Laplacian on a

bounded domain, Ω, in the plane:

−∆uj = λ2
j uj , uj |∂Ω = 0 ,

∫
Ω
|uj(x)|2dx = 1 .

λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj →∞ .

This is a theoretical and experimental model for the study

of the classical/quantum correspondence.



Napoleon asked Chladni what can be said of more

complicated domains.



The Shnirelman Theorem.

Suppose that the billiard flow on a bounded domain with

boundary, Ω, is ergodic.

Here is an example:

The Sinai billiard



The Shnirelman Theorem.

Suppose that the billiard flow on a bounded domain with

boundary, Ω, is ergodic.

Here is an example:

A quantum coral made in the shape of the Bunimovich

stadium by Crommie, Eigler et al.



The Shnirelman Theorem.

Suppose that the billiard flow on a bounded domain with

boundary, Ω, is ergodic.

Then there exists a sequence {jk}∞k=1 ⊂ N of density one,

lim
N→∞

(max
jk≤N

k)/N = 1,

such that for any nice open subset V , of Ω,

lim
k→∞

∫
V

|ujk(x)|
2dx =

Area(V )

Area(Ω)
.



This theorem has a long history.

It was announced by Shnirelman 1974, and first proved for

closed manifolds by Zelditch and Colin de Verdière 1986,

semiclassical case by Helffer-Robert-Martinez 1989,

for a class of billiards in any dimension (incl. Bunimovich)

by Gérard-Leichtnam 1993, and for arbitrary manifolds with

piecewise smooth boundaries by Zelditch-Zworski 1996.

There exist versions for quantum maps with a lot of recent

progress on the concentration and non-concentration: De

Bièvre, Faure, Nonnenmacher, Rudnick....



The asymptotics

lim
k→∞

∫
V

|ujk(x)|
2dx =

Area(V )

Area(Ω)
.

can be observed.

Here are the experimental images of the first 24

eigenfunctions in a Bunimovich cavity:





Can there exist exceptional sequences?

That is, can we have a sequence jk →∞ and an open set

R ⊂ Ω such that

lim
k→∞

∫
R

|ujk(x)|
2dx = 1 >

Area(R)

Area(Ω)
?

We have a candidate sequence:

The open set R is the rectangle obtained by “sawing off”

the wings of the table.



Can there exist exceptional sequencies?

That is, can we have a sequence jk →∞ and an open set

R ⊂ Ω such that

lim
k→∞

∫
R

|ujk(x)|
2dx = 1 >

Area(R)

Area(Ω)
?

We have a candidate sequence:

Note that 4 in 24 is a “density zero” sequence!



Theorem 1.

Suppose that u is an eigenfuction of the Laplacian on the

Bunimovich stadium. Let V be any open neighbourhood of

the “wings”.

Then ∫
V

|u(x)|2dx ≥
1

CV
> 0 .

More generally, if

(−∆− z)v = f , v|∂Ω = 0 ,

then ∫
Ω
|f(x)|2dx +

∫
V

|u(x)|2dx ≥
1

CV

∫
Ω
|u(x)|2dx .



Remark: By using control theory results à la

Bardos-Lebeau-Rauch we can reduce V to a control set.

For instance

The control set V is the red set on the left.

Both this and the relevance of the picture on the right will

hopefully become clear in a moment.



Theorem 1.

Suppose that u is an eigenfuction of the Laplacian on the

Bunimovich stadium. Let V be any open neighbourhood of

the “wings”.

Then ∫
V

|u(x)|2dx ≥
1

CV
> 0 .



Can we have a concentration in the rectangle?

Trivial quasi-mode concentrating in the interior of the

rectangle:

(−∆− µk)vk = O(1) , vk|∂Ω = 0 ,

∫
R

|vk|2 → 1 .

Since in Theorem 1 we had

(−∆− z)v = f , v|∂Ω = 0

=⇒∫
Ω
|f(x)|2dx +

∫
V

|u(x)|2dx ≥
1

CV

∫
Ω
|u(x)|2dx

this best possible if we demand that vk’s concentrate in a

set smaller than R.



Can we have a concentration in the rectangle?

A highly probable statement:

(−∆− µk)vk = o(1) , vk|∂Ω = 0 , µk →∞ ,∫
Ω
|vk|2 = 1 ,

∫
R

|vk|2 → 1 .

I will offer a dinner in a restaurant in Paris to the first

person in this audience who shows me, within five years

from now, a proof of this, possibly elementary, result.



Can we have a concentration in the rectangle?

A more dubious statement:

(−∆− µk)vk = O(µ−∞k ) , vk|∂Ω = 0 , µk →∞ ,∫
Ω
|vk|2 = 1 ,

∫
R

|vk|2 → 1 .

I will offer a dinner in a restaurant in Paris to the first

person in this audience who shows me, within five years

from now, a proof of this result.



Can we have a concentration in the rectangle?

An impossible statement:

(−∆− µk)vk = 0 , vk|∂Ω = 0 , µk →∞ ,∫
Ω
|vk|2 = 1 ,

∫
R

|vk|2 → 1 .

I will offer a dinner in a restaurant in Paris to the

first person in this audience who shows me, within five years

from now, a proof of this result.

To encourage everybody I will now show how elementary is

the proof of Theorem 1!



We need the following result motivated by control theory:

Proposition.(Burq 1993)

Let ∆ = ∂2
x + ∂2

y be the Laplace operator on the rectangle

R = [0,1]x × [0, a]y.

Then for any open ω ⊂ R of the form ω = ωx × [0, a]y , there

exists C such that for any solution of

(−∆− λ2)u = f on R , u|∂R = 0 ,

we have

‖u‖L2(R) ≤ C

(
‖f‖

L2
yH−1

x (R)
+ ‖u‖L2(ω)

)



Partially rectangular billiards

No concentration possible on single bouncing ball orbits

We expect, in some cases, concentration in the entire

rectangle.



What about the Sinai billiard?



Bouncing ball trajectories:

The same argument as before shows that no concentration

is possible on a rectangle which does not touch the

obstacle.

A refinement shows that for any neighbourhood, V , of the

obstacle we have ∫
V

|u(x)|2dx ≥
1

CV
> 0 .



Hyperbolic trajectories:

Theorem 2. Let V be a neighbourhood of the hyperbolic

trajectory above. Then∫
Ω\V

|u(x)|2dx ≥
c

logλ
, c > 0 .

The proof is based on ideas from scattering in the presence

of one trapped hyperbolic orbit: Ikawa, Gérard, Sjöstrand,

... , J.F.Bony-Michel.



The bound
∫
Ω\V |u(x)|2dx ≥ c/logλ is in some sense optimal.

Colin de Verdière-Parisse 1994 considered a truncated

hyperbolic cylinder:

γ

1

They showed the lower bound for surfaces containing this

type of “neck” and for the truncated cylinder itself showed

that the weak concentration is possible. The methods were

based on the reduction to one dimension (cf. Paul-Uribe,

Fujiie-Ramond).

Theorem 2 works for any closed (real) hyperbolic orbit

which does not intersect the boundary.



General point of view:

Studying an effect of a black box in a closed system by

putting that black box in an open system (or a system with

an absorbing barrier).

Reversal of the black box strategy of Sjöstrand-Zworski

1991 in the study of resonances.

A different approach to Burq 1993.



General point of view:

Studying an effect of a black box in a closed system by

putting that black box in an open system (or a system with

an absorbing barrier).

Reversal of the black box strategy of Sjöstrand-Zworski

1991 in the study of resonances.

A hyperbolic orbit.



General point of view:

Studying an effect of a black box in a closed system by

putting that black box in an open system (or a system with

an absorbing barrier).

Reversal of the black box strategy of Sjöstrand-Zworski

1991 in the study of resonances.

Rectangle as a black box for the Bunimovich stadium.



General point of view:

Studying an effect of a black box in a closed system by

putting that black box in an open system (or a system with

an absorbing barrier).

Reversal of the black box strategy of Sjöstrand-Zworski

1991 in the study of resonances.
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