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Abstract. Magic angles in the chiral model of twisted bilayer graphene are param-

eters for which the chiral version of the Bistritzer–MacDonald Hamiltonian exhibits

a flat band at energy zero. We compute the sums over powers of (complex) magic

angles and use that to show that the set of magic angles is infinite. We also pro-

vide a new proof of the existence of the first real magic angle, showing also that the

corresponding flat band has minimal multiplicity for the simplest possible choice of

potentials satisfying all symmetries. These results indicate (though do not prove) a

hidden integrability of the chiral model.

1. Introduction and statement of results

When two sheets of graphene are stacked on top of each other and twisted, it has

been observed that at certain angles, coined the magic angles, the composite system

becomes superconducting. In this article, we study the chiral limit of the Bistritzer-

MacDonald Hamiltonian [BiMa11, CGG22, Wa*22]

H(α) =

(
0 D(α)∗

D(α) 0

)
with D(α) =

(
Dz̄ αU(z)

αU(−z) Dz̄

)
where the parameter α is proportional to the inverse relative twisting angle. After a

simple rescaling, the potential is a smooth and periodic function satisfying

U(z + a`) = ω̄U(z), U(ωz) = ωU(z), and U(z̄) = U(z), (1.1)

where ω = e2πi/3 and a` = 4
3
πiω`. The simplest example of such a potential and our

canonical choice of U is

U0(z) =
2∑

k=0

ωke
1
2

(zω̄k−z̄ωk). (1.2)

Even though the potential U(z) is only periodic with respect to Γ = 4πi(ωZ⊕ω2Z)

the first property implies that the matrix potential, and thus D(α), commutes with

the translation operator

Law(z) :=

(
ωa1+a2 0

0 1

)
w(z + a), a ∈ 1

3
Γ, (1.3)

where w ∈ C2 and a = 4
3
πi(ωa1 + ω2a2), aj ∈ Z. We note that if Γ∗ is the dual

(reciprocal) lattice of Γ, then 3Γ∗ is the dual lattice of 1
3
Γ.
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Figure 1. Plots of the first 5 non-negative eigenvalues of Hk(0.3) act-

ing on H (see (1.4) and (1.5)), as function of k = (k1ω
2 − k2ω)/

√
3

in in a fundamental cell of 3Γ∗, parametrized by (k1, k2) |kj| < 3
2
. See

also [BHZ22, Figure 4] for more information and comparison with band

structure of other models.

When moving to functions with values in C4 = C2 × C2 (on which H(α) acts) we

extend the action of La to an action on each C2 component. We then consider the

Floquet spectrum of

Hk(α) =

(
0 D(α)∗ − k̄

D(α)− k 0

)
with k ∈ 3Γ∗, (1.4)
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defined by (Hk(α) − Ej(α, k))wj(α, k) = 0, where eigenvalues of positive energy are

labelled with j ≥ 1 in ascending order, as a self-adjoint operator on

H := {v ∈ L2(C/Γ) : Lav = v, a ∈ 1
3
Γ}, (1.5)

with the domain given by H ∩H1(C/Γ) such that

SpecL2(C;C4)(H(α)) =
⋃
k∈C

SpecH (Hk(α)).

This Hamiltonian is an effective one-particle model which exhibits perfectly flat

bands at magic angles. This appearance of perfectly flat bands in the chiral limit was

explained by Tarnopolsky, Kruchkov and Vishwanath [TKV19] with the help of Jacobi

theta functions1. An equivalent spectral theoretic characterization of magic angles

was then provided in [Be*22]: if we define the following compact Birman-Schwinger

operator

Tk = (2Dz̄ − k)−1

(
0 U(z)

U(−z) 0

)
. (1.6)

then (see [Be*22, Theorem 2] we have the following equivalence [BHZ22, §2.3])

0 ∈
⋂
k∈C

SpecH (Hk(α)) ⇐⇒
{
α−1 ∈ SpecH (Tk0)

for some k0 ∈ C \ (3Γ∗ − {0, i}), (1.7)

where H is defined in (1.5). In other words, the spectrum of Tk0 is independent of

k0 ∈ C \ (3Γ∗−{0, i}) and characterizes the values of α ∈ C at which the Hamiltonian

exhibits a flat band at zero energy. Since the parameter α is inherently connected with

the twisting angle, we shall refer to α’s at which (1.7) occurs as magic and denote their

set by A ⊂ C.

The analysis of magic angles is therefore reduced to a spectral theory problem involv-

ing a single compact non self-adjoint operator. Since even non-trivial non self-adjoint

compact operators do not necessarily have non-zero eigenvalues, the existence of a pa-

rameter α at which the Hamiltonian exhibits a flat band at zero energy is non-trivial.

In [Be*22] the existence of such a complex parameter α ∈ C \ {0} was first concluded

by showing that trH (T 4
k ) = 8π/

√
3 which implied existence of a non-zero eigenvalue2.

This result was improved by a computer-assisted proof [WaLu21] in which Watson

and Luskin used the complex-analytic characterization of magic angles from [TKV19]

to prove existence of the first real magic angle and obtained explicit bounds on its

position.

In this article, we exhibit a general form of traces of powers of Tk. This suggests a

hidden integrability of the Hamiltonian H(α) for potentials satisfying (1.1), as all traces

1As was pointed out to us by Alex Sobolev a similar argument appeared in the work of Dubrovin

and Novikov [DuNo80] who studied magnetic Hamiltonians on tori.
2In [Be*22] we considered the trace on L2(C/Γ;C2) which gave this answer multiplied by 9.
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Figure 2. The set A of magic α’s for which (1.7) holds, that is, the

first band is flat. The positive elements of A are the reciprocals of

the “physically relevant” positive angles. Potential (1.2) is responsi-

ble for the regularity of the set which seems to indicate hidden inte-

grability. For more general potentials the distribution is more com-

plicated – see https://math.berkeley.edu/~zworski/multi.mp4 for

Uθ(z) = (cos2 θ)U(z) + (sin2 θ)
∑2

k=0 ω
kez̄ω

k−zω̄k which satisfies the re-

quired symmetries (1.1). The animation also indicates changing multi-

plicities.

exhibits special arithmetic properties. With our current techniques, we do not have

explicit control on the full set of traces which would imply a complete understanding

of all magic angles. These are already visible in the regular but evasive structure of

the set of of magic α, A ⊂ C – see Figure 2.

Theorem 1. For ` ≥ 2 and U = U0 with U0 as in (1.2)

tr(T 2`
k ) =

∑
α∈A

α−2` =
π√
3
q` with q` ∈ Q. (1.8)

In addition, we are able to express the rational numbers q` ∈ Q in terms of a finite

sum involving residues of rational functions which is fully presented in Theorem 4. A

generalization of Theorem 1 which extends this result to more general potentials U

https://math.berkeley.edu/~zworski/multi.mp4
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(1.1) is presented in Theorem 5. As we show in §6, it is already possible to conclude

directly from Theorem 1 that

Theorem 2. Let U = U0 with U0 as in (1.2). There exist infinitely many magic α’s,

that is,

|A| =∞.

This theorem will follow from the more general Theorem 6 and the observation that

by the aforementioned explicit computation trH (T 4
k ) = 8π/

√
3 for U = U0 there is

at lest one complex magic angle. We then focus on real magic angles. Since the

operator T 2
k is Hilbert-Schmidt, we can use the regularized determinant to study real

magic α. Compared with the initial approach proposed in [TKV19], this approach has

two advantages. Unlike the series expansion in [TKV19, WaLu21], the regularized

determinant is an entire function with explicit error bounds in terms of the Hilbert-

Schmidt norm. In addition, the Taylor coefficients of the determinant are polynomials

of traces as in Theorem 1. This leads to

Theorem 3. The chiral Hamiltonian with U = U0 and U0 as in (1.2), exhibits a flat

band of multiplicity 2 at a real magic α∗ ∈ (0.583, 0.589), which is minimal, in the

sense that the Hamiltonian does not possess a flat band for any α satisfying |α| < |α∗|,
that is,

|A ∩ (0.583, 0.589)| = 1, A ∩DC(0, α∗) = ∅,

where the counting |•| respects multiplicities. In particular, the flat bands of multiplicity

2 are uniformly gapped from all other bands.

Remark. Compared with results in [WaLu21] which require floating-point arithmetic,

our proof of existence relies only on exact symbolic computations, the exact evaluation

of residues to compute traces of powers of Tk and the summation of finitely many

matrix entries to estimate the Hilbert-Schmidt norm.

2. Preliminaries

From now on, we consider a potential U ∈ C∞(C/Γ;C) satisfying the first two

symmetries of (1.1). The last symmetry U(z̄) = U(z) will only be needed in Corollary

5 to ensure that all traces are real. We recall that an orthonormal basis of L2(C/Γ;C)

is given by setting

eν(z) := e
i
2

(ν̄z+νz)/
√

Vol(C/Γ), ν ∈ Γ∗ =
1√
3

(
Z + ωZ

)
.

We can express the potential U in this basis. A straightforward calculation gives
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Proposition 2.1. Let a = 4πi
3

(ωa1 +ω2a2) ∈ Γ/3, aj ∈ Z. Then u ∈ L2(C/Γ) satisfies

u(z + a) = ω̄(a1+a2)u(z), u(ωz) = ωu(z),

if and only if

u(z) =
∑
n∈Z2

cnekn (2.1)

where for n ∈ Z2

cn = (u, ekn)L2(C/Γ), kn =
ω2(2 + 3n1)− ω(2− 3n2)√

3
,

satisfies

cn = ωc(−n2)(n1−n2−1) = ω2c(n2−n1+1)(−n1).

If in addition u(z̄) = u(z) then

cn = c(−n2)(−n1) = ωcn1(n1−n2−1) = ω2c(n2−n1−1)n2 .

Our aim is to obtain trace formulae for the powers of the compact operator Tk
defined by in (1.6). Since odd powers of Tk have only off-diagonal components, it is

clear that the traces of odd powers vanish. Thus, it is sufficient to compute the traces

of powers of

T 2
k =

(
(2Dz̄ − k)−1U(z)(2Dz̄ − k)−1U(−z) 0

0 (2Dz̄ − k)−1U(−z)(2Dz̄ − k)−1U(z)

)
.

(2.2)

The invariance of the trace under cyclic permutations shows that it is sufficient to

compute traces of powers of

Ak := (2Dz̄−k)−1U(z)(2Dz̄−k)−1U(−z) : L2(C/Γ;C)→ L2(C/Γ;C), k /∈ Γ∗. (2.3)

We shall study traces of powers of Ak on smaller L2 spaces, which we define below,

for (p1, p2) ∈ Z2
3, by

L2
(p1,p2)(C/Γ;C) :=

{
u ∈ L2 : u(z + 2i(ωa1 + a2ω

2)) = ei(a1p1+a2p2)u(z);

aj ∈ 2π
3
Z
} (2.4)

whose C2-valued analogues are defined, using (1.3), as

L2
(p1,p2)(C/Γ;C2) :=

{
u ∈ L2 : Lau(z) = ei(a1p1+a2p2)u(z); aj ∈ 2π

3
Z
}
. (2.5)

We remark that the operator (2Dz̄ − k)−1 acts diagonally on the Fourier basis and

thus preserves the L2
(p1,p2) spaces. On the other hand, multiplication by U(±z) does

not preserve the space but one has by the translational symmetry defined in (1.1)

U(±z) : L2
(p1,p2) → L2

(p1∓1,p2∓1), (p1, p2) ∈ Z2
3.
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In total, we have

L2
(p1,p2)

U(−z)−−−→ L2
(p1+1,p2+1)

(2Dz̄−k)−1

−−−−−−→ L2
(p1+1,p2+1)

U(z)−−→ L2
(p1,p2)

(2Dz̄−k)−1

−−−−−−→ L2
(p1,p2).

This shows that we can restrict the operator Ak to the subspaces L2
(p1,p2). From now

on, we will denote by Ak the restriction of Ak to L2
(1,1). We then define the unitary

multiplication operator

U(p1,p2) : L2
(0,0)(C/Γ,C2)→ L2

(p1,p2)(C/Γ,C2),

U(p1,p2)v(z) := e
i
2

(zp̄+z̄p)v(z), p = 1√
3
(ω̄p1 − ωp2), pj ∈ Z3,

U(p1,p2)TkU
∗
(p1,p2) = Tk−p, k /∈ Γ∗.

The k-independence of the spectrum of Tk implies then

SpecL2
(0,0)

(C/Γ,C2)(T
2
k ) \ {0} = SpecL2

(1,1)
(C/Γ,C2)(T

2
k ) \ {0}

= SpecL2
(1,1)

(C/Γ,C)(Ak) \ {0},
(2.6)

where k ∈ D(0, r)\{0}, and the last equality is meant in the sense of sets: multiplicities

of elements in the top row are twice the multiplicities of elements in the bottom row.

We also note that Ak is defined for k ∈ D(0, r) since D−1
z̄ is defined on L2

(p,p), p 6≡ 0

mod 3. Since C 3 k → Ak|L2
(1,1)

is an analytic family of operators with compact

resolvents and the spectrum is independent of k ∈ C \ 3Γ∗, it follows that Spec(Ak) =

Spec(A0) [Ka80, Theorem 1.10]. From (2.6) we obtain, as sets,

SpecL2
(0,0)

(T 2
p ) \ {0} = SpecL2

(1,1)
(Ak) \ {0}, p ∈ D(0, r) \ {0}, k ∈ D(0, r), (2.7)

with multiplicities on the left, twice the multiplicities on the right. Since k = 0 is

included in the set of possible k for Ak. Indeed, the set of possible values of k is

C \
(
(3Γ∗ − i) ∪ (3Γ∗ + i)

)
. We conclude together with [BHZ22, Theorem 6] that

dim kerH (D(α)) = dim kerL2
(1,1)

(A0 − α−2). (2.8)

We end this preliminary section by stating and proving the main three properties we

will use for our calculation.

Lemma 2.2. Consider a potential U ∈ C∞(C/Γ;C) satisfying the first two symmetries

of (1.1) with a finite number of non zero Fourier mode in its decomposition (2.1).

Define the operator Ak for k /∈ (3Γ∗ − i) ∪ (3Γ∗ + i), where i := −(ω2 − ω)/
√

3, to be

the restriction of Ak defined in (2.3) on the space L2
(1,1). For ` ≥ 2, one has:

• The trace is constant in k

tr(A`k) = τ` independent of k ∈ C \ (3Γ∗ − i) ∪ (3Γ∗ + i). (2.9)

• The function C \ (3Γ∗ − i) ∪ (3Γ∗ + i) 3 k 7→ 〈A`kem, em〉L2 is a finite sum of

rational fractions on the complex plane C with degree equal to −2` and with (a

finite number of) poles contained in (3Γ∗ − i) ∪ (3Γ∗ + i).
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• For any γ ∈ Γ∗ and for any k /∈ (3Γ∗ − i) ∪ (3Γ∗ − 2i), we have

〈A`ke3γ+i, e3γ+i〉L2 = 〈A`k−3γei, ei〉L2 .

Proof. The first point is a consequence of the independence of the spectrum of Tk in k

(see [BHZ22, §2.3]) as well as the relation (2.7).

For the last two points, we prove by induction that k 7→ A`ke3γ+i, where γ ∈ Γ∗, is of

the form

A`ke3γ+i =
∑
ν∈F

Rν+3γ(k)eν+3γ, (2.10)

where F ⊂ (3Γ∗ + i) is a finite set and Rν(k) is a sum of rational fraction of degree

−2` with poles located on (3Γ∗ − i) ∪ (3Γ∗ + i). Moreover, we will prove that the one

has the relation Rν+3γ(k) = Rν(k − 3γ).

The result is clear for ` = 0. Suppose the result true for `, let’s prove it holds for

` + 1. The main observation is that multiplication by U(±z) acts as a shift on the

Fourier basis. The multiplication by U(−z) sends eν to a linear combination of e` for

` ∈ (3Γ∗+2i). Then applying (D(0)−k)−1 multiplies the coefficient of e` by (`−k)−1.

Multiplying by U(z) gives back a linear combination of eν with ν ∈ (3Γ∗ + i). Finally,

applying (D(0) − k)−1 multiplies the coefficient of eν by (ν − k)−1. This means that,

using the induction hypothesis (2.10),

A`+1
k e3γ+i =

∑
ν∈F

Rν+3γ(k)
∑
η∈L

∑
β∈L

aη
k − (ν + β − η + 3γ)

aβ
k − (ν + β + 3γ)

eν+β−η+3γ,

where L ⊂ 3Γ∗+i is a finite subset that depends only on U and a• are constants. Thus,

it is clear from this formula that the induction carries on to `+ 1. This concludes the

proof of the Lemma. �

3. Trace computations

We prove the following result.

Theorem 4. Let Ak : L2
(1,1) → L2

(1,1) be a meromorphic family of Hilbert-Schmidt

operators defined for k /∈ (3Γ∗ − i) ∪ (3Γ∗ + i). We suppose that Ak satisfies the three

properties stated in Lemma 2.2. Then one has, for any ` ≥ 2,

τ` =
2iπω

3
√

3

∑
n∈Z

n

[∑
m∈Z

Res
(
〈A`kei, ei〉L2 ,

√
3(mω2 − nω) + i

)
+
∑
m∈Z

Res
(
〈A`kei, ei〉L2 ,

√
3(mω2 − nω) + 2i

)]
,

(3.1)

where the all infinite sums are in fact finite.
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Proof. We want to give a semi-explicit formula for τ` in terms of the residue of the

rational fraction (second point in Lemma 2.2)

k ∈ C \
(
3Γ∗ − i

)
∪
(
3Γ∗ + i

)
7→ 〈A`kei, ei〉L2 .

We first start by writing, using that A`k is trace-class for ` ≥ 2,

τ` =
∑
γ∈Γ

〈A`ke3γ+i, e3γ+i〉L2 .

We start with the relation which follows directly from (2.9),

3τ` =

∫ 3

0

tr
(
A`
tω2/

√
3

)
dt =

∫ 3

0

∑
n∈Z2

〈A`
tω2/

√
3
e3γn+i, e3γn+i〉L2dt.

Here, we wrote γn := 1√
3
(n1ω

2 − n2ω) ∈ Γ∗. We now use the third property stated in

Lemma 2.2 to write

3τ` =

∫ 3

0

∑
n∈Z2

〈A`
tω2/

√
3−3γn

ei, ei〉L2dt.

The second property in Lemma 2.2 implies that

〈A`kei, ei〉L2 = O
(
k−2`

)
. (3.2)

Since we assume that ` ≥ 2, this justifies the exchange of integration and summation

such that

3τ` =
∑
n∈Z2

∫ 3

0

〈A`
(t+3n1)ω2/

√
3−3n2ω/

√
3
ei, ei〉L2dt.

We make the change of variable s = t+ 3n1 and sum in n1 to get

3τ` =
∑
n∈Z

∫
R
〈A`

tω2/
√

3−3nω/
√

3
ei, ei〉L2dt. (3.3)

We now consider∫
R
〈A`

tω2/
√

3−3nω/
√

3
ei, ei〉L2 dt−

∫
R
〈A`

tω2/
√

3−3(n+1)ω/
√

3
ei, ei〉L2dt, n ∈ Z.

This is equal to the limit of the integral over a parallelogram Γn,R with sides 1√
3
[−Rω2−

3nω,Rω2−3nω], 1√
3
[Rω2−3nω,Rω2−3(n+1)ω], 1√

3
[Rω2−3(n+1)ω,−Rω2−3(n+1)ω]

and 1√
3
[−Rω2−3(n+1)ω,−Rω2−3nω]. Here, we used (3.2) to prove that the integral

over the small parallel sides tends to 0. In particular, because there is only a finite

number of poles, we see that, for |n| large enough, one has∫
R
〈A`

tω2/
√

3−3nω/
√

3
ei, ei〉L2dt−

∫
R
〈A`

tω2/
√

3−3(n+1)ω/
√

3
ei, ei〉L2dt = 0.
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Using formula (3.3) as well as a partial summation, this allows us to rewrite the full

trace as a telescopic sum

3τ` =
∑
n∈Z

n

[∫
R
〈A`

tω2/
√

3−3nω/
√

3
ei, ei〉L2 dt−

∫
R
〈A`

tω2/
√

3−3(n+1)ω/
√

3
ei, ei〉L2dt

]
. (3.4)

The residue theorem shows that for n ∈ Z and R large enough,∫
Γn,R

〈A`zei, ei〉L2dz =

∫
R
〈A`

tω2/
√

3−3nω/
√

3
ei, ei〉L2

ω2

√
3
dt

−
∫
R
〈A`

tω2/
√

3−3(n+1)ω/
√

3
ei, ei〉L2)

ω2

√
3
dt.

(3.5)

Applying the residue theorem and using (3.4) gives (3.1). �

The consequences of this formula are summarized in the following theorem:

Theorem 5. Consider a potential U ∈ C∞(C/Γ;C) satisfying the first two symmetries

of (1.1) with finitely many non-zero Fourier modes cn ∈ Q(ω/
√

3) appearing in the

decomposition (2.1). Then for any ` ≥ 2, one has τ` ∈ πQ(ω/
√

3). If U also has the

third symmetry of (1.1) then the traces are real and thus τ` ∈ πQ/
√

3. In particular,

for all potentials satisfying all three symmetries in (1.1), including U = U0 defined in

(1.2), one has

∀` ≥ 2, tr(T 2`
k ) =

∑
α∈A(U)

α−2` =
π√
3
q`, q` ∈ Q,

where A(U) is the set of magic angles counting multiplicity for a potential U.

Proof. Under the hypothesis of the corollary, the function k 7→ 〈A`kei, ei〉L2 is a rational

fraction with coefficients in Q(ω/
√

3). This ring is actually a field as ω/
√

3 is algebraic

on Q. Now, taking partial fraction expansion of k 7→ 〈A`kei, ei〉L2 in Q(ω/
√

3)(X) (the

space of rational fractions with coefficients living in Q(ω/
√

3)(X)) gives coefficients in

Q(ω/
√

3). In particular, the residues of k 7→ 〈A`kei, ei〉L2 live in the field Q(ω/
√

3)(X).

But the uniqueness of the partial fraction expansion now gives that these are also the

residues of k 7→ 〈A`kei, ei〉L2 in C(X). Using the trace formula stated in Theorem 4,

this yields

∀` ≥ 2, τ` ∈ πQ(ω/
√

3).

If we add the last symmetry of (1.1), the trace is real so that

∀` ≥ 2, τ` ∈ πQ(ω/
√

3) ∩ R⇒ τ` =
π√
3
q`, q` ∈ Q.

�

This rationality condition suffices to prove that there is an infinite number of magic

angles as long as there exists at least one magic angle.
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Theorem 6. Under the assumptions and with the same notation as in Theorem 5 one

has the implication

|A(U)| > 0⇒ |A(U)| = +∞.

In particular, the set of magic angles for our canonical potential U0 defined in (1.2) is

infinite.

Let N ≥ 0, for a tuple a = (an){n;‖n‖∞≤N}, define Ua to be the potential defined by

(2.1). Then the above implication holds for a generic (in the sense of Baire) set of

coefficients a = (an){n;‖n‖∞≤N} ∈ C(2N+1)2
that contains (Q(ω/

√
3))(2N+1)2

.

Proof. We start by observing that since π is transcendental on Q, it is also transcen-

dental in Q(ω/
√

3). Now, assume by contradiction, that there exist only finitely many

eigenvalues λi ∈ C for i = 1, .., N of A2
k. Then we define the n-th symmetric polynomial

en(λ1, . . . , λN) =
∑

1≤j1<j2<···<jn≤N

λj1 · · ·λjn .

Newton identities show that this polynomial can be expressed as

en(λ1, . . . , λN) = (−1)n
∑

m1+2m2+···+nmn=n
m1≥0,...,mn≥0

n∏
i=1

(− trA2i
k )mi

mi!imi
(3.6)

where en = 0 for n > N. Theorem 1 shows that

n∏
i=1

(trA2i
k )mi ∈ Q

(
ω√
3

)
πm1···mn .

The power m1 · · ·mn from sequences allowed in (3.6) is maximized by the unique choice

m = (n, 0, . . . , 0). The Newton identities for n > N then imply that the transcendental

number π is a root of a polynomial with coefficients in Q
(
ω/
√

3
)
. But then all these

coefficients vanish, this is equivalent to the fact that the spectrum is empty (because

of the determinant function, see (4.4)). For our particular choice of potential U0, the

fact that trA2
k = 0 contradicts [Be*22, Theorem 3] so the set of magic angles is non

empty, and thus infinite.

Now, let a = (an){n;‖n‖∞≤N} ∈ C(2N+1)2
and assume that A(Ua) 6= ∅. Then, we can find

an open neighbourhood of a, Ωa 3 a, such that for coefficients b = (bn){n;‖n‖∞≤N} ∈ Ωa

we have A(Ub) 6= ∅. Take q = (qn){n;‖n‖∞≤N} ∈ (Q(ω/
√

3))(2N+1)2 ∩ Ωa for which we

then have |A(Uq)| = ∞. Continuity of eigenvalues of Tk as the potential U changes

shows that the Vm,a := {b ∈ Ωa : |A(Ub)| ≥ m} is open and dense in Ωa. Hence, the

set coefficients for which 0 < |Ab| <∞ is given by
⋃
m∈N

⋃
q∈(Q+iQ)2N+1 Ωq \ Vm,q. It is

then meagre and does not contain (Q(ω/
√

3))(2N+1)2
. �
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4. Fredholm determinants and the first magic angle

In this section, we explain how to compute the first few traces from our formula and

show the existence of a simple real magic angle, i.e. prove Theorem 3. From now on,

our choice of potential is given by U = U0 defined in 1.2. Here we recall some facts

from [Be*22, BHZ22] needed in this paper.

4.1. Fourier coordinates. For our numerics, it is convenient to use rectangular co-

ordinates z = 2i(ωy1 +ωy2), see [Be*22, §3.3] for details. In these coordinates, we may

introduce
Dk := ω2(Dy1 + k1)− ω(Dy2 + k2),

V(y) :=
√

3(e−i(y1+y2) + ωei(2y1−y2) + ω2ei(−y1+2y2)),
(4.1)

with periodic periodic boundary conditions (for y 7→ y+2πn, n ∈ Z2). In the following,

we shall write V±(y) := V(±y). The operator Ak, defined in (2.3), reads in the new

coordinates

D−1
k V+D−1

k V− : L2(C/2π(Z + iZ);C)→ L2(C/2π(Z + iZ);C).

On the Fourier transform side we introduce the equivalent of operators (4.1)

D̂k := ω2(D + k1)− ω(D + k2), with D = diag(`)`∈Z

V̂±(y) :=
√

3
(
J± ⊗ J± + ωJ∓2 ⊗ J± + ω2J± ⊗ J∓2

)
,

(4.2)

where J is the right-shift J((an)n) = (an+1)n – see [Be*22, (3.17)]. The spaces

L2
(p1,p2)(C/Γ;C), introduced in (2.4), correspond to

`2
(p1,p2) := {f ∈ `2(Z2) : ∀n /∈ (3Z + p1)× (3Z + p2) , fn = 0}.

As in [Be*22, §3.3], we introduce auxiliary operators Jp,q := Jp ⊗ Jq, p, q ∈ Z. For a

diagonal matrix Λ = (Λi,j)i,j∈Z acting on `2(Z2), we define a new diagonal matrix

Λp,q := (Λi+p,j+q)i,j∈Z.

We recall the following properties [Be*22, (3.24)]

Jp,qΛJp
′,q′ = Λp,qJ

p+p′,q+q′ = Jp+p
′,q+q′Λ−p′,−q′ . (4.3)

Denoting the inverse of D̂−1
k by

Λ = Λk := D̂−1
k , Λm,n =

1

ω2(m+ k1)− ω(n+ k2)
, (k1, k2) /∈ Z2,

we see that Ak reads in the new Fourier coordinates

1

3
Âk = ΛΛ1,1 + ωΛΛ1,−2 + ω2ΛΛ−2,1 + ωΛΛ1,1J

3,0 + ω2ΛΛ1,1J
0,3

+ωΛΛ−2,1J
−3,0 + ω2ΛΛ1,−2J

0,−3 + ΛΛ−2,1J
−3,3 + ΛΛ1,−2J

3,−3

with Âk the analogous restriction to `2
(1,1).
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4.2. Fredholm determinants. We start by defining the regularized Fredholm deter-

minant

det2(1− α2Âk) =
∏

λ∈Spec(Ak)

E1(α2λ) with E1(z) = (1− z)ez (4.4)

where the product respects multiplicities. We find from (2.6) that det2(1 − α2Âk) =

0⇔ α−1 ∈ Spec(Tk)\{0}. The symmetry of the spectrum of Âk, Spec(Âk) = Spec(Âk),

implies that α 7→ det2(1−α2Âk) is real-valued on the real axis. To show existence and

simplicity of magic angles, in the representation, we therefore use the following Lemma

which provides ab initio bounds on the Fredholm determinants and its derivatives.

Lemma 4.1. The determinant C 3 α 7→ det2(1−α2Âk) in (4.4) is an entire function,

independent of k ∈ C, which for any n,m ∈ N0 satisfies∣∣∣∣∣∂mα det2(1− α2Âk)− ∂mα
n∑
j=0

µj
(−α2)j

j!

∣∣∣∣∣ ≤
∞∑

j=n+1

∂m|α|

(√
e infk∈C ‖Âk‖2|α|2√

j

)j

with ‖A0‖2 ≤ 2, where

µj := det


0 j − 1 0 · · · 0

σ2 0 j − 2 · · · 0
...

...
. . . . . .

...

σj−1 σj−2 · · · 0 1

σj σj−1 σj−2 · · · 0

 , with σj = tr Âjk. (4.5)

Proof. The expression (4.4) is well-defined since Âk is a Hilbert-Schmidt operator and

the Taylor coefficients µj are for example stated in [Si77, (6.13)]. Indeed, since |E1| ≤
e
|z|2

2 for z ∈ C and
∑

λ∈Spec(Âk) |λ|2 ≤ ‖Âk‖2
2, we conclude that

| det2(1− α2Âk)| ≤ exp

(
|α|4‖Âk‖2

2

2

)
. (4.6)

Cauchy estimates for the entire function f(z) := det2(1 + zÂk) show by using the

growth bound (4.6)

|µj| ≤
j!

|α|2j
exp

(
|α|4‖Âk‖2

2

2

)
which is optimized at |α|2 =

√
j

‖Âk‖2
, such that

|µj| ≤
‖Âk‖j2ej/2j!

jj/2
.

The Taylor coefficients µj are then given by the Plemelj-Smithies formula [Si77] stated

in (4.5). Since they only depend on traces σj which are independent of k, it follows that
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the regularized Fredholm determinant is an entire function independent of k. Hence,

it suffices to study the determinant for k = 0.

If we write Â0 = (Â0(n))n∈Z2 and let Pm be the projection onto (3{−m,−m +

1, ...,m}+ 1)2, then

‖Â0‖2 ≤ ‖PM Â0‖2 + ‖(id−PM)Â0‖2. (4.7)

The first term constitutes the Hilbert-Schmidt norm of a finite matrix which can be

explicitly computed from the matrix elements using symbolic calculations, indeed

‖PM Â0‖2 =

√
tr(PM Â0Â∗0PM) ≤ 5 for M = 760.

To estimate the second term, we may use that the operator norm of V± satisfies

‖V±‖ = 3
√

3, therefore one has

‖(id−PM)Â0‖2 ≤ 9‖(id−PM)(D−1
0 )`2

(1,1)
→`2

(1,1)
‖4‖(D−1

0 )`2
(2,2)
→`2

(2,2)
‖4. (4.8)

We recall that by definition

‖(D−1
0 )`2

(1,1)
→`2

(1,1)
‖4 =

( ∑
m∈(3Z+1)2

|ω2m1 − ωm2|−4

)1/4

.

A simple change of variables shows that ‖(D−1
0 )`2

(1,1)
→`2

(1,1)
‖4 = ‖(D−1

0 )`2
(2,2)
→`2

(2,2)
‖4.

Then, a direct computation shows that in terms of

g(m) =
3((m1 + 1)2 + (m2 + 1)2 + (m1 +m2)2)

2
− 2

we have

‖(D−1
0 )`2

(2,2)
→`2

(2,2)
‖4 =

1√
3

( ∑
m∈Z2

1

g(m)2

)1/4

.

While an explicit computation shows using exact symbolic calculations∑
|m|∞≤6

1

g(m)2
≤ 24

7
(4.9)

Then, we may use for |m|∞ > 6 that g(m) ≥ |m|2 + 52, such that we can estimate the

remainder ∑
|m|∞≥7

1

g(m)2
≤
∫ ∞

6

2πr

(r2 + 52)2
dr =

π

61

⇒ ‖(D−1
0 )`2

(2,2)
→`2

(2,2)
‖4 ≤

(
8

21
+

π

549

)1/4

.

(4.10)
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p σp
√

3
π

1 2/3

2 4

3 96/7 ≈ 13.71

4 40

p σp
√

3
π

5 28680/247 ≈ 116.14

6 2206080/6517 ≈ 338.51

7 1957475168/1983163 ≈ 987.05

8 39948260880/13882141 ≈ 2877.67

Table 1. First eight exact traces of Apk, σp = tr(Apk), with floating point

approximation, where σ1 := limn→∞
∑
|i|≤n〈Akei, ei〉 is not absolutely

summable as Ak is not of trace-class, computed using Theorem 4 in the

version stated as Theorem 7 in the appendix. One sees that the ratio

of σp/σp−1 ≈ 1/0.58572 = 2.91507, for p large, where 0.5857 is the first

magic angle.

Inserting this estimate into (4.8), we find along the lines of (4.10)

‖(id−PM)Â0‖2 ≤
213

10
‖(id−PM)(D−1

0 )`2
(1,1)
→`2

(1,1)
‖4

≤ 213

10

1√
3

(∫ ∞
760

2πr

(r2 + 7592)2
dr

)1/4

<
1

2
,

(4.11)

which shows that ‖Â0‖2 <
11
2
. �

Using the preceding error estimate with the explicit traces in Table 1, we conclude

the existence of a first real magic angle in the next Proposition. The Proposition

also completes the proof of Theorem 3. Indeed, (2.8) implies together with [BHZ22,

Theorem 6] the existence of a 0 gap between the two flat bands of the Hamiltonian

and the remaining bands.

Proposition 4.2. There exists a simple real eigenvalue 1
α2
∗

to the operator Âk, inde-

pendent of k ∈ C, with α∗ ∈ (0.583, 0.589) such that ( 1
α2
∗
,∞) ⊂ R \ Spec(Âk).

Proof. To see that this is the first real magic angle, we first notice that the operator

norm of Â0 is bounded by

‖Â0‖ ≤ (3
√

3)2‖(D−1
0 )`2

(1,1)
→`2

(1,1)
‖2 = 9.

This estimate shows that α ∈ R+ with 1/(α2) ∈ Spec(Â0) satisfies α ≥ 1
3
. A finite

number of traces as explicitly computed in Table 1 are then relevant to prove the

existence of a magic angle.
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For ν ∈ R+ we find

ri ≤
(

2ν

α

)i ( ν√
N

)N−i
1− ν√

N

for r0 :=
∞∑
k=N

(
ν√
k

)k
and r1 :=

∞∑
k=N

2k

α

(
ν√
k

)k
.

Evaluating the bound for N = 17 and ν =
√
e‖Â0‖2α

2, as in the error bound stated

in Lemma 4.1, with upper bound ‖Â0‖2 = 5.5, we obtain for α = 3
5

that r0 ≤ 1
50

and

r1 ≤ 1
2
. The existence of a root follows from studying

f(α) :=
16∑
k=0

µk
(−α2)k

k!
, sup

α∈(1/3,β)

f ′(α) ≤ g(β = 0.6) :=
20∑
k=2

ak(β),

where the summation starts at k = 2 since µ1 = 0, with

ak(β) =

2µk
(−1)k

(
1
3

)2k−1

(k−1)!
, if µk(−1)k < 0

2µk
(−1)k( 3

5
)2k−1

(k−1)!
, if µk(−1)k ≥ 0.

One then checks (using computations involving integers only)

f(0.583) >
1

40
, f(0.589) < − 1

40
, and g(

3

5
) < − 7

10
.

We conclude that there is α∗ ∈ (0.583, 0.589) such that det2(1 − α2
∗Âk) = 0 and

∂α|α=α∗ det2(1 − α2Âk) < 0. The non-existence of any other α ∈ (1
3
, α∗) at which the

determinant vanishes follows from the monotonicity of f. �

Appendix: Trace formula in Fourier coordinates.

In this section we give an auxiliary version of Theorem 4 that we used for our

computer assisted computation of traces. Using the relation (4.3), the diagonal part

of A`k is of the form

((A`k)ii)i∈Z = 3`
∑
π∈Θ`

ωmπ
∏̀
i=1

Λα̃i,β̃i
Λγ̃i,δ̃i

,

π := [(α1, β1), (γ1, δ1), (α2, β2), ..., (γ`, δ`)] ,

(A.1)

where

α̃i =
i−1∑
j=1

αj + γj β̃i =
i−1∑
j=1

βj + δj, γ̃i = αi +
i−1∑
j=1

αj + γj,

δ̃i = βi +
i−1∑
j=1

βj + δj, mπ := 2
3

∑̀
i=1

(γi + βi).

(A.2)
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In (A.1), the sum is over elements of the finite set

Θ` :=

{
π = [(α1, β1), (γ1, δ1), (α2, β2), ..., (γ`, δ`)] ,

∑̀
j=1

αj + γj =
∑̀
j=1

βj + δj = 0,

(αi, βi) ∈ {(1, 1), (−2, 1), (1,−2)}, (γi, δi) ∈ {(−1,−1), (2,−1), (−1, 2)}

}
.

(A.3)

Using (A.1), the diagonal part of A`k, is of the form

3`
∑
π∈Θ`

ωmπ
∏̀
i=1

Λ′αi,βiΛ
′
γi,δi

, π = [(α1, β1), (γ1, δ1), (α2, β2)..., (γ`, δ`)] ,

where Λ′ corresponds to the matrix where we only kept the coefficients (n,m) where

(n,m) ∈ (3Z + 1)× (3Z + 1) i.e

Λ′m,n =
1

ω2(3m+ 1 + k1)− ω(3n+ 1 + k2)
.

Theorem 4 then reduces to

Theorem 7. Let ` ≥ 2 and Θ` be as in (A.3) with coefficients α̃i, .., δ̃i,mπ as in (A.2).

Then the traces are given by

tr
(
A`k
)

= −2iωπ

3

∑
π∈Θ`

∑
(ηi,εi)∈{(α̃i,β̃i),(γ̃i,δ̃i),16i6l}

Res(fπ,−γ(ηi,εi))εi,

where with γ(a,b) = ω2a− ωb

fπ(k) := 3`ωmπ
∏̀
i=1

1

(k + γ(α̃i,β̃i)
+ µ)(k + γ(γ̃i,δ̃i)

+ µ)
, µ := ω2 − ω.

Proof. This is just a re-writing of formula of Theorem 4 in these rectangular coor-

dinates. Indeed, the (0, 0)-th entry of the matrix A`k is, in these notation, equal to∑
π∈Θ`

fπ(k). Because we work in a the Hilbert space L2(C/Γ,C), this entry is also

equal to 〈A`kei, ei〉L2 . Now, the poles of this function are exactly described by γ(α̃i,β̃i)
+µ

and γ(γ̃i,δ̃i)
+µ (this is a consequence of formula A.1) . Note however that in these coor-

dinates, the poles get rescaled by
√

3, this is why µ = −i
√

3 replaces −i. On the level

of residues, this explains why a
√

3 does not appear in this formula. Finally, we remark

that in this decomposition, γ(α̃i,β̃i)
+ µ ∈

√
3
(
3Γ∗ − i

)
and γ(γ̃i,δ̃i)

+ µ ∈
√

3
(
3Γ∗ − 2i

)
thus corresponding to the splitting appearing in the formula of stated in Theorem

4. �
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ENS Paris, Département de Mathématiques et Applications, Rue d’Ulm, Paris, France

Email address: zworski@math.berkeley.edu

Department of Mathematics, University of California, Berkeley, CA 94720, USA.

http://arxiv.org/abs/2208.01628
http://arxiv.org/abs/2206.05685
http://arxiv.org/abs/2207.13767

	1. Introduction and statement of results
	2. Preliminaries
	3. Trace computations
	4. Fredholm determinants and the first magic angle
	4.1. Fourier coordinates
	4.2. Fredholm determinants

	References

