$\S 17.3$

1. From the first sentence, $0.6 k=100$, so $k=\frac{100}{3} N / m$. The system is thus modeled by the DE $3 y^{\prime \prime}+\frac{100}{3} y=0$. Its general solution is $y(t)=c_{1} \cos \frac{10}{3} t+c_{2} \sin \frac{10}{3} t$. From our initial conditions $y(0)=0$, and $y^{\prime}(0)=1.2$, we obtain that $y=0.36 \sin \frac{10}{3} t$.
2. Since $k=\frac{24.3}{1.3} N / m$, about $18.7 N / m$, if we let y represent the displacement from the equilibrium position, the system is modeled by the $\mathrm{DE} 4 y^{\prime \prime}+18.7 y=0$. Since $\sqrt{\frac{18.7}{4}}$ is about 2.16 , the general solution of this DE is $y=c_{1} \cos 2.16 t+c_{2} \sin 2.16 t$. From our initial conditions, $c_{1}=-0.2$ and $c_{2}=0$. Therefore $y=-0.2 \cos 2.16 t$.
3. Substituting $k=12 N / m, m=2 k g, c=14$ into equation 5 , the system is modeled by the DE $2 y^{\prime \prime}+14 y^{\prime}+12 y=0$. Its general solution (obtained via the methods of 17.1) is $y=c_{1} e^{-x}+c_{2} e^{-6 x}$. From our initial conditions, $y(0)=1, y^{\prime}(0)=0$, we get $c_{1}=1.2, c_{2}=-0.2$. Hence $y=1.2 e^{-x}-0.2 e^{-6 x}$.
4. We assume that our system can be modeled by the $\mathrm{DE} m y^{\prime \prime}+k y=F_{0} \cos \omega_{0} t$. The solution of the associated homogeneous equation $m y_{h}^{\prime \prime}+k y_{h}=0$ has solution $y_{h}=c_{1} \cos \omega t+c_{2} \sin \omega t$. If we use the method of undetermined coefficients and try $y_{p}=A \cos \omega_{0} t+B \sin \omega_{0} t$, we obtain $B=0$, and

$$
A=\frac{F_{0}}{k-m \omega_{0}^{2}}=\frac{F_{0}}{m\left(\frac{k}{m}-\omega_{0}^{2}\right)}=\frac{F_{0}}{m\left(\omega^{2}-\omega_{0}^{2}\right)}
$$

Therefore $y_{p}=\frac{F_{0}}{m\left(\omega^{2}-\omega_{0}^{2}\right)} \cos \omega_{0} t$, and the general solution is $y=c_{1} \cos \omega t+c_{2} \sin \omega t+\frac{F_{0}}{m\left(\omega^{2}-\omega_{0}^{2}\right)} \cos \omega_{0} t$.
10. Now we assume that our system can be modeled by the $\mathrm{DE} m y^{\prime \prime}+k y=F_{0} \cos \omega t$. We have the same solution to the associated homogeneous equation as above. Our usual attempt to find a solution to the inhomogeneous equation via the method of undetermined coefficients fails since $A \cos \omega t+B \sin \omega t$ is precisely the characteristic solution. Therefore we try multiplying everything by t, which works. If we try $y_{p}=A t \cos \omega t+B t \sin \omega t$, we get $A=0$, and $B=\frac{F_{0}}{2 m \omega}$. Hence we may take $y_{p}=\frac{F_{0} t}{2 m \omega} \sin \omega t$. Therefore the general solution to the inhomogeneous DE is $y=c_{1} \cos \omega t+c_{2} \sin \omega t+\frac{F_{0} t}{2 m \omega} \sin \omega t$.
11. By assumption, $\frac{\omega}{\omega_{0}}=\frac{p}{q}$ for integers p and q. Therefore we may rewrite equation 6 as

$$
x(t)=c_{1} \cos \frac{p \omega_{0}}{q} t+c_{2} \sin \frac{p \omega_{0}}{q} t+\frac{F_{0}}{m\left(\omega^{2}-\omega_{0}^{2}\right)} \cos \omega_{0} t .
$$

Using the fact that $\cos (t+2 \pi n)=\cos t$ and $\sin (t+2 \pi n)=\sin t$ for every integer n and every real number t,

$$
x\left(t+2 \pi n \frac{q}{\omega_{0}}\right)=x(t)
$$

for every integer n and every real number t. Therefore the solution is periodic.
13. We will use the differential equation

$$
L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)
$$

Substituting the information we are given in the first sentence, this becomes

$$
Q^{\prime \prime}+2 Q^{\prime}+500 Q=12
$$

The solution to the associated homogeneous equation (using the methods of 17.1) is $Q_{h}=e^{-10 t}\left(c_{1} \cos 20 t+\right.$ $\left.c_{2} \sin 20 t\right)$. Either by inspection or by using the method of undetermined coefficients on a degree zero polynomial (i.e. a constant), we find the particular solution $Q_{p}=0.024$. Now we have to determine coefficients of our general solution

$$
\begin{gathered}
Q(t)=e^{-10 t}\left(c_{1} \cos 20 t+c_{2} \sin 20 t\right)+0.024 \\
I(t)=-10 e^{-10 t}\left(c_{1} \cos 20 t+c_{2} \sin 20 t\right)+e^{-10 t}\left(-20 c_{1} \sin 20 t+20 c_{2} \cos 20 t\right)
\end{gathered}
$$

From the initial condtions $Q(0)=0$ and $I(0)=0$, we obtain $c_{1}=-0.024$ and $c_{2}=-.012$. Finally,

$$
Q(t)=e^{-10 t}(-0.024 \cos 20 t+-.012 \sin 20 t)+0.024 \quad I(t)=0.6 e^{-10 t} \sin 20 t
$$

