Homework for Wed 3/3

4. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2^{n}}{n^{4}}$ diverges by the Test for Divergence. $\lim _{n \rightarrow \infty} \frac{2^{n}}{n^{4}}=\infty$, so $\lim _{n \rightarrow \infty}(-1)^{n-1} \frac{2^{n}}{n^{4}}$ does not exist.
5. $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} \frac{n}{5+n}=\lim _{n \rightarrow \infty} \frac{1}{5 / n+1}=1$, so $\lim _{n \rightarrow \infty} a_{n} \neq 0$. Thus, the given series is divergent by the Test for Divergence.
6. $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ diverges by the Limit Comparison Test with the harmonic series: $\lim _{n \rightarrow \infty} \frac{n /\left(n^{2}+1\right)}{1 / n}=$ $\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1$. But $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n^{2}+1}$ converges by the Alternating Series Test: $\left\{\frac{n}{n^{2}+1}\right\}$ has positive terms, is decreasing since $\left(\frac{x}{x^{2}+1}\right)^{\prime}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \leq 0$ for $x \geq 1$, and $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=$ 0 . Thus $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n^{2}+1}$ is conditionally convergent.
7. $n^{2 / 3}-2>0$ for $n \geq 3$, so $\frac{3-\cos n}{n^{2 / 3}-2}>\frac{1}{n^{2 / 3}-2}>\frac{1}{n^{2 / 3}}$ for $n \geq 3$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2 / 3}}$ diverges ($p=\frac{2}{3} \leq 1$), so does $\sum_{n=1}^{\infty} \frac{3-\cos n}{n^{2 / 3}-2}$ by the Comparison Test.
8. $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n^{2}+1}=\lim _{n \rightarrow \infty} \frac{1+1 / n^{2}}{2+1 / n^{2}}=\frac{1}{2}<1$, so the series $\sum_{n=1}^{\infty}\left(\frac{n^{2}+1}{2 n^{2}+1}\right)^{n}$ is absolutely convergent by the Root Test.
9. Use the Ratio Test with the series $1-\frac{1 \cdot 3}{3!}+\frac{1 \cdot 3 \cdot 5}{5!}-\frac{1 \cdot 3 \cdot 5 \cdot 7}{7!}+\cdots+(-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdot \cdots(2 n-1)}{(2 n-1)!}+$ $\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdot \cdots(2 n-1)}{(2 n-1)!}$.
 $\lim _{n \rightarrow \infty} \frac{1}{2 n}=0<1$, so the given series is absolutely convergent and therefore convergent.
10. $\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdot \cdots(2 n)}{n!}=\sum_{n=1}^{\infty} \frac{(2 \cdot 1) \cdot(2 \cdot 2) \cdot(2 \cdot 3) \cdots(2 \cdot n)}{n!}=\sum_{n=1}^{\infty} \frac{2^{n} n!}{n!}=\sum_{n=1}^{\infty} 2^{n}$, which diverges by the Test for Divergence since $\lim _{n \rightarrow \infty} 2^{n}=\infty$
