HW Solutions: 11.1, 11.2

1 Section 11.1

Problem (4).

$$
2 / 2,3 / 5,4 / 8,5 / 11,6 / 14, \ldots
$$

Problem (6).

$$
2,8,48,384,3840, \ldots
$$

Problem (11).

$$
a_{n}=5 n-3
$$

Problem (13).

$$
a_{n}=(-2 / 3)^{n-1}
$$

Problem (18).

$$
a_{n}=\sqrt{n} /(1+\sqrt{n})=1 /\left(\frac{1}{\sqrt{n}}+1\right) \rightarrow 1 /(0+1)=1
$$

Problem (22).
In absolute value, we have

$$
\frac{\left|(-1)^{n} n^{3}\right|}{\left|n^{3}+2 n^{2}+1\right|}=\frac{\left|n^{3}\right|}{\left|n^{3}+2 n^{2}+1\right|}
$$

which approaches 1 , but the terms alternate in sign so the sequence does not converge.

Problem (26).
Converges to $\pi / 2$ since $\lim _{x \rightarrow \infty} \arctan x=\pi / 2$.
Problem (49).
(a) $1060,1123.60,1191.02,1262.48,1338.23$
(b) diverges since $\lim _{n \rightarrow \infty}(1.06)^{n}=\infty$.

2 Section 11.2

Problem (2).
It means that $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}=5$.
Problem (3).
see attached image
Problem (5).
see attached image
Problem (13).
This is a geometric series with $a=-2$ and $r=\frac{-5}{4}$; since $|r|>1$, the series diverges.

Problem (15).
A geometric series with $r=2 / 3 .|r|<1$, so it converges to

$$
5 \frac{1}{1-\frac{2}{3}}=15
$$

Problem (18).
A geometric series with $r=\frac{1}{\sqrt{2}},|r|<1$ so it converges to

$$
\frac{1}{1-\frac{1}{\sqrt{2}}}=2+\sqrt{2}
$$

Problem (27).

The series converges; it is the sum of the convergent series given by $a_{n}=1 / 2$ and $b_{n}=1 / 3$. n starts at 1 here so we have to shift the terms forward:
$\sum_{n=1}^{\infty} \frac{3^{n}+2^{n}}{6^{n}}=\sum_{n=1}^{\infty}(1 / 2)^{n}+\sum_{n=1}^{\infty}(1 / 3)^{n}=\frac{1}{2} \cdot \frac{1}{1-1 / 2}+\frac{1}{3} \cdot \frac{1}{1-1 / 3}=1+1 / 2=3 / 2$
Problem (32).
$0<\cos (1)<1$ so this is a convergent geometric series with sum

$$
\frac{\cos 1}{1-\cos 1}
$$

Problem (34).

Diverges. To see why, suppose $\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)$ converges. then we can add another convergent series to it and combine the terms, and the result will still be convergent; add $\sum_{n=1}^{\infty} \frac{-3}{5^{n}}$ to get

$$
\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)-\sum_{n=1}^{\infty} \frac{3}{5^{n}}=\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}-\frac{3}{5^{n}}\right)=\sum_{n=1}^{\infty} \frac{2}{n}
$$

which we know is not convergent since it is harmonic, a contradiction.
Problem (41).
We have a convergent geometric series with $|r|<1$ if and only if x is such that $|x|<3$

Problem (46).

$$
a_{n}=\ln \left(1+\frac{1}{n}\right)=\ln \left(\frac{n+1}{n}\right)
$$

As $n \rightarrow \infty, a_{n} \rightarrow \ln 1=0$. On the other hand,

$$
\ln \left(\frac{n+1}{n}\right)=\ln (n+1)-\ln (n)
$$

So this is a telescoping series; collapsing we get

$$
s_{n}=\ln (n+1)-\ln (1)=\ln (n+1)
$$

and $\lim _{n \rightarrow \infty} \ln (n+1)=\infty$ so the series diverges.

Problem (49).

A convergent series converges to the limit of its partial sums; here we are given the partial sums so can compute the limit directly

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{n-1}{n+1}=1
$$

To find the a_{n}, we just observe that $a_{1}=s_{1}=0$ and subtract to find the general term:

$$
a_{n}=s_{n}-s_{n-1}=\frac{n-1}{n+1}-\frac{(n-1)-1}{(n-1)+1}=\frac{2}{n(n+1)}
$$

Problem (50).
Letting $n=1$, we find $a_{1}=s_{1}=5 / 2$. For general n,
$a_{n}=s_{n}-s_{n-1}=\left(3^{-} n 2^{-n}\right)-\left[3-(n-1) 2^{-(n-1)}\right]=-\frac{n}{2^{n}}+\frac{n-1}{2^{n-1}} \cdot \frac{2}{2}=\frac{n-2}{2^{n}}$
For the sum,

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} 3-n 2^{-n}=3
$$

Since $\lim _{n \rightarrow \infty} n 2^{-n}=0$, which we can see by applying l'Hopistal's rule to the limit $\lim _{x \rightarrow \infty} \frac{x}{2^{x}}$ or by observing that exponential growth will overcome linear growth.

