Homework for Mon 4/26

Chapter 17.2

13. The auxiliary equation of $y^{\prime \prime}+9 y=0$ is $r^{2}+9=0$ with roots $r=3 i,-3 i$. Therefore neither $e^{2 x}$ nor $\sin (x)$ are solutions of the complementary homogeneous equation and we can use the trial function

$$
y_{p}(x)=A e^{2 x}+\left(B x^{2}+C x+D\right) \sin (x)+\left(E x^{2}+F x+G\right) \cos (x)
$$

14. The auxiliary equation of $y^{\prime \prime}+9 y^{\prime}=0$ is $r^{2}+9 r=0$ with roots $r=0,-9$. Therefore we can use the trial function

$$
y_{p}(x)=(A x+B) e^{-x} \cos (\pi x)+(C x+D) e^{-x} \sin (\pi x)
$$

15. The auxiliary equation of $y^{\prime \prime}+9 y^{\prime}=0$ is $r^{2}+9 r=0$ with roots $r=0,-9$. Then the constant functions are solutions of the complementary homogeneous equation and therefore we have to multiply the trial function corresponding to the constant 1 by x. Thus, the trial function should be

$$
y_{p}(x)=A x+(B x+C) e^{9 x}
$$

17. The auxiliary equation of $y^{\prime \prime}+2 y^{\prime}+10 y=0$ is $r^{2}+2 r+10=0$ with roots $r=-1+3 i,-1-3 i$ and thus the function $e^{-x} \cos (3 x)$ is solution of the complementary homogeneous equation. Therefore we have to multiply the guess by x, i.e., the trial function should be

$$
y_{p}(x)=x\left(\left(A x^{2}+B x+C\right) \cos (3 x)+\left(D x^{2}+E x+F\right) \sin (3 x)\right) e^{-x}
$$

21. The auxiliary equation of $y^{\prime \prime}-2 y^{\prime}+y=0$ is $r^{2}-2 r+1=0$ with root $r=1$ (double root).
(a). The trial function should be $y_{p}(x)=A e^{2 x}$. Thus $y_{p}^{\prime}(x)=2 A e^{2 x}$ and $y_{p}^{\prime \prime}(x)=$ $4 A e^{2 x}$. Since $y_{p}(x)$ has to satisfy the equation $y_{p}^{\prime \prime}-2 p_{p}^{\prime}+y_{p}=e^{2 x}$ we deduce that $(4 A-4 A+A) e^{2 x}=e^{2 x}$ and so $A=1$. Therefore the general solution of the equation is

$$
y(x)=c_{1} e^{x}+c_{2} x e^{x}+e^{2 x}
$$

(b). Considering the guess $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$ (where $y_{1}(x)=e^{x}$ and $y_{2}(x)=x e^{x}$) and imposing the condition $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ we obtain the equation

$$
e^{2 x}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=u_{1}^{\prime} e^{x}+u_{2}^{\prime} e^{x}+u_{2}^{\prime} x e^{x}=u_{2}^{\prime} e^{x}
$$

i.e. $u_{2}^{\prime}=e^{x}$ so $u_{2}=e^{x}$ and so $u_{1}^{\prime} e^{x}=-x e^{2 x}$. Thus, $u_{1}=-x e^{x}+e^{x}$. Therefore the general solution is

$$
y(x)=c_{1} e^{x}+c_{2} x e^{x}+\left(-x e^{x}+e^{x}\right) e^{x}+\left(e^{x}\right) x e^{x}=c_{1} e^{x}+c_{2} x e^{x}+e^{2 x}
$$

22. The auxiliary equation of $y^{\prime \prime}-y^{\prime}=0$ is $r^{2}-r=0$ with roots $r=0,1$.
(a). Since e^{x} is solution of the homogeneous equation the trial function has to be $y_{p}(x)=A x e^{x}$. Thus $y_{p}^{\prime}(x)=A e^{x}+A x e^{x}$ and $y_{p}^{\prime \prime}(x)=2 A e^{x}+A x e^{x}$. Plugging this into the equation we obtain $A e^{x}=e^{x}$ and so $A=1$. Therefore the general solution is

$$
y(x)=c_{1}+c_{2} e^{x}+x e^{x}
$$

(b). Considering the guess $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$ (where $y_{1}(x)=1$ and $y_{2}(x)=e^{x}$) and imposing the condition $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ we obtain the equation

$$
e^{x}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=u_{2}^{\prime} e^{x}
$$

Thus $u_{2}^{\prime}=1$ so $u_{2}=x$ and the other equation implies $u_{1}^{\prime}=-e^{x}$ so $u_{1}=-e^{x}$ and the general solution is

$$
y(x)=c_{1}+c_{2} e^{x}+\left(-e^{x}\right)+(x) e^{x}=c_{1}+c_{2}^{\prime} e^{x}+x e^{x}
$$

