Homework for Fri 3/5

2. If $a_{n}=\frac{n-1}{n^{2}+n}$ and $b_{n}=\frac{1}{n}$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}-n}{n^{2}+n}=\lim _{n \rightarrow \infty} \frac{1-1 / n}{1+1 / n}=1$, so the series $\sum_{n=1}^{\infty} \frac{n-1}{n^{2}+n}$ diverges by the Limit Comparison Test with the harmonic series.
3. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-3)^{n+2}}{2^{3(n+1)}} \cdot \frac{2^{3 n}}{(-3)^{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{-3 \cdot 2^{3 n}}{2^{3 n} \cdot 2^{3}}\right|=\lim _{n \rightarrow \infty} \frac{3}{2^{3}}=\frac{3}{8}<1$, so the series $\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{2^{3 n}}$ is absolutely convergent by the Ratio Test.
4. $\sum_{k=1}^{\infty} \frac{2^{k} k!}{(k+2)!}=\sum_{k=1}^{\infty} \frac{2^{k}}{(k+1)(k+2)}$. Using the Ratio Test, we get
$\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{2^{k+1}}{(k+2)(k+3)} \cdot \frac{(k+1)(k+2)}{2^{k}}\right|=\lim _{k \rightarrow \infty}\left(2 \cdot \frac{k+1}{k+3}\right)=2>1$, so the series diverges. Or: Use Test for Divergence.
5. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3^{n+1}(n+1)^{2}}{(n+1)!} \cdot \frac{n!}{3^{n} n^{2}}\right|=\lim _{n \rightarrow \infty}\left[\frac{3(n+1)^{2}}{(n+1) n^{2}}\right]=3 \lim _{n \rightarrow \infty} \frac{n+1}{n^{2}}=0<1$, so the series $\sum_{n=1}^{\infty} \frac{3^{n} n^{2}}{n!}$ converges by the Ratio Test.
6. The series $\sum_{n=1}^{\infty} \sin n$ diverges by the Test for Divergence since $\lim _{n \rightarrow \infty} \sin n$ does not exist.
7. $\lim _{n \rightarrow \infty} 2^{1 / n}=2^{0}=1$, so $\lim _{n \rightarrow \infty}(-1)^{n} 2^{1 / n}$ does not exist and the series $\sum_{n=1}^{\infty}(-1)^{n} 2^{1 / n}$ diverges by the Test for Divergence.
8. Let $f(x)=\frac{\ln x}{\sqrt{x}}$. Then $f^{\prime}(x)=\frac{2-\ln x}{2 x^{3 / 2}}<0$ when $\ln x>2$ or $x>e^{2}$, so $\frac{\ln n}{\sqrt{n}}$ is decreasing for $n>e^{2}$. By l'Hospital's Rule, $\lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{1 / n}{1 /(2 \sqrt{n})}=\lim _{n \rightarrow \infty} \frac{2}{\sqrt{n}}=0$, so the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{\sqrt{n}}$ converges by the Alternating Series Test.
9. Since $\left\{\frac{1}{n}\right\}$ is a decreasing sequence, $e^{1 / n} \leq e^{1 / 1}=e$ for all $n \geq 1$, and $\sum_{n=1}^{\infty} \frac{e}{n^{2}}$ converges $(p=2>1)$, so $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}}$ converges by the Comparison Test. (Or use the Integral Test.)
10. Use the Limit Comparison Test with $a_{n}=\sqrt[n]{2}-1$ and $b_{n}=1 / n$. Then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=$ $\lim _{n \rightarrow \infty} \frac{2^{1 / n}-1}{1 / n}=\lim _{x \rightarrow \infty} \frac{2^{1 / x}-1}{1 / x}=$ (By l'Hospital Rule) $\lim _{n \rightarrow \infty} \frac{2^{1 / x} \cdot \ln 2 \cdot\left(-1 / x^{2}\right)}{-1 / x^{2}}=\lim _{n \rightarrow \infty}\left(2^{1 / x} \cdot \ln 2\right)=$ $1 \cdot \ln 2=\ln 2>0$. So since $\sum_{n=1}^{\infty} b_{n}$ diverges (harmonic series), so does $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)$.
