5. $y^{\prime}+2 y=2 e^{x}$

Using $P(x)=2$, we get the integrating factor

$$
I(x)=e^{\int 2 d x}=e^{2 x} .
$$

Multiplying both sides by $I(x)$, the DE becomes

$$
e^{2 x} y^{\prime}+2 e^{2 x} y=\left(e^{2 x} y\right)^{\prime}=2 e^{3 x} .
$$

Integrating both sides with respect to x, we get

$$
e^{2 x} y=2 e^{3 x}+C,
$$

so

$$
y=2 e^{x}+C e^{-2 x} .
$$

8. $x^{2} y^{\prime}+2 x y=\cos ^{2} x$

The left-hand side is equal to $\left(x^{2} y\right)^{\prime}$, so we integrate both sides (using the trig identity $\cos ^{2} x=\frac{1}{2}(1+$ $\cos 2 x)$ to obtain

$$
x^{2} y=\frac{x}{2}+\frac{1}{4} \sin (2 x)+C,
$$

so

$$
y=\frac{1}{2 x}+\frac{1}{4 x^{2}} \sin (2 x)+\frac{C}{x^{2}} .
$$

15. $y^{\prime}=x+y, y(0)=2$

The DE $y^{\prime}-y=x$ is linear with $P(x)=-1$. Therefore we takes as our integrating factor $I(x)=e^{-x}$. Multiplying both sides by I, we obtain

$$
e^{-x} y^{\prime}-e^{-x} y=\left(y e^{-x}\right)^{\prime}=x e^{-x} .
$$

Integrating both sides with respect to x (use integration by parts on the RHS with $u=x$ and $d v=e^{-x}$) to obtain

$$
y e^{-x}=-x e^{-x}+\int e^{-x} d x=-x e^{-x}-e^{-x}+C .
$$

Multiplying both sides by e^{x},

$$
y=-x-1+C e^{x} .
$$

Using our initial condition, $y(0)=-1+C=2$, so $C=3$. Our solution to the IVP is

$$
y=-x-1+3 e^{x} .
$$

17.

$$
\frac{d v}{d t}-2 t v=3 t^{2} e^{t^{2}}, \quad v(0)=5
$$

This is a linear DE with $P(t)=-2 t$. Therefore we use the integrating factor

$$
I(t)=e^{\int-2 t d t}=e^{-t^{2}}
$$

Multiplying both sides by $I(t)$,

$$
e^{-t^{2}} \frac{d v}{d t}-2 t e^{-t^{2}} v=\left(e^{-t^{2}} v\right)^{\prime}=3 t^{2}
$$

Integrating both sides with respect to x,

$$
e^{-t^{2}} v=t^{3}+C
$$

Applying our initial condition, $v(0)=C=5$. Therefore

$$
e^{-t^{2}} v=t^{3}+5
$$

and multiplying both sides by $e^{t^{2}}$,

$$
v=t^{3} e^{t^{2}}+5 e^{t^{2}}
$$

29. Substituting the given values into the DE gives

$$
\frac{d Q}{d t}+4 Q=12
$$

This is a linear DE with $P(t)=4$. We use the integrating factor $I(x)=e^{4 t}$, multiply both sides by the integrating factor and get

$$
\left(e^{4 t} Q\right)^{\prime}=12 e^{4 t}
$$

so $e^{4 t} Q=3 e^{4 t}+C$. Our initial condition, $Q(0)=3+C=0$ tells us that $C=-3$, so substituting this value for C and multiplying both sides by $e^{-4 t}$ gives $Q=3-3 e^{-4 t}$.

