1. A population of protozoa develops with a constant relative growth rate of 0.7944 per member per day. On day zero the population consists of two members. Find the population size after six days.

Let $P$ be the population size and let $t$ be the time variable, measured in hours. The system is modelled by the differential equation

$$
\frac{d P}{d t}=0.7944 P .
$$

Solving the separable equation and expifying both sides,

$$
P=A e^{0.7944 t} .
$$

From our initial condition $P(0)=2, A=2$. Therefore the population size after six days is $P(6)=2 e^{6.7944)}$ (about 235).
3. A bacteria culture starts with 500 bacteria and grows at a rate proportional to its size. After 3 hours there are 8000 bacteria.
(a) Find an expression for the number of bacteria after $t$ hours.

Letting $P$ be the number of bacteria and $t$ be time measured in hours,

$$
\frac{d P}{d t}=k P
$$

for some constant $k$, so

$$
P=A e^{k t} .
$$

From $P(0)=500, A=500$, and from $P(3)=8000, k=\frac{\ln 16}{3}$. Therefore

$$
P(t)=500 \exp \left(\frac{\ln 16}{3} t\right)=500 \cdot 16^{\frac{t}{3}} .
$$

(b) Find the number of bacteria after 4 hours.

$$
P(4)=500 \cdot 16^{\frac{4}{3}}
$$

(c) Find the rate of growth after 4 hours.

$$
\frac{d P}{d t}(4)=k P(4)=\frac{\ln 16}{3} \cdot 500 \cdot 16^{\frac{4}{3}} .
$$

(d) When will the population reach 30,000 ?

If $30,000=P(t)$, then

$$
t=\frac{3 \ln 60}{\ln 16}
$$

7. Let $P=N_{2} O_{5}$.
(a) Find an expression for the concentration $P$ after $t$ seconds if the initial concentration is $C$.

We solve the separable differential equation and use our initial condition, $P(0)=C$ to obtain

$$
P(t)=C \exp (-0.0005 t)
$$

(b) How long will the reaction take to reduce the concentration $P$ to $90 \%$ of its original value?

We would like to find a $t$ such that $P(t)=.9 C$. Using the equation obtained in part a,

$$
t=-2000 \ln (.9)
$$

9. The half-life of cesium-137 is 30 years. Suppose we have a $100-\mathrm{mg}$ sample.
(a) Find the mass that remains after $t$ years.

Let $m$ be the mass of the sample in milligrams, and let $t$ be time measured in years. The system is modelled by the differential equation

$$
\frac{d m}{d t}=k m
$$

so $m(t)=A e^{k t}$. From $m(0)=100, A=100$, and from $m(30)=.5 \times 100=50, k=\frac{-\ln 2}{30}$. Therefore

$$
m(t)=100 \exp \left(\frac{-\ln 2}{30} t\right)=100 \cdot 2^{\frac{-t}{30}}
$$

(b) How much of the sample remains after 100 years?

$$
m(100)=100 \cdot 2^{-100} 30
$$

(c) After how long will only 1 mg remain?

We want to find $t$ such that $m(t)=1$, or equivalently so $\exp \left(\frac{-\ln 2}{30} t\right)=.01$. Therefore

$$
t=\frac{30 \ln 100}{\ln 2}
$$

$($ since $-\ln .01=\ln 100)$.
§9.5
3. (a) By equation (4),

$$
y(t)=\frac{8 \times 10^{7}}{1+A e^{-0.71 t}}
$$

Using the initial condition $y(0)=2 \times 10^{7}$, and equation (4) again,

$$
A=\frac{6 \times 10^{7}}{2 \times 10^{7}}=3
$$

Therefore $y(1)=\frac{8 \times 10^{7}}{1+3 e^{-0.71}}$.
(b) We want to solve

$$
\frac{8 \times 10^{7}}{1+3 e^{-0.71 t}}=4 \times 10^{7}
$$

for $t$. The solution is $t=\frac{\ln 3}{0.71}$.
7. (a) If the fraction of the population who has not heard the rumor is $x$, then $y+x=1$, so $x=1-y$. The differential equation is

$$
\frac{d y}{d t}=k y(1-y)
$$

(b) Using equation (4), the solution to the equation found in (a) is

$$
y(t)=\frac{1}{1+A e^{-k t}}
$$

(c) We remember the $y$ represents the fraction of the population that has heard the rumor. Let $t$ represent time measured in hours after 8am. Then $y(0)=0.08$, so (equation 4 again) $A=11.5$. We are also told that $y(4)=.5$, so that we can find $k$. We have

$$
k=.25 \ln (11.5)
$$

Now we have

$$
y(t)=\frac{1}{1+11.5 e^{-.25 \ln (11.5) t}}=\frac{2}{2+23\left(\frac{2}{23}\right)^{\frac{t}{4}}}
$$

We are trying to solve the equation $y(t)=.9$ for $t$. This gives us

$$
t=4 \frac{\ln (9 \times 11.5)}{\ln (11.5)}=4 \frac{\ln 9-\ln \frac{2}{23}}{-\ln 223}=4\left(1-\frac{\ln 9}{\ln \frac{2}{23}}\right)
$$

