$$
\text { 1. } \quad \frac{d y}{d x}=\frac{y}{x}
$$

We write the differential equation as

$$
\frac{d y}{y}=\frac{d x}{x}
$$

and integrate both sides to obtain

$$
\ln y=\ln x+C
$$

Taking the exponential of both sides,

$$
y=e^{C} x
$$

or equivalently $y=K x$.
3. $\left(x^{2}+1\right) y^{\prime}=x y$

We write the differential equation as

$$
\frac{d y}{y}=\frac{x d x}{1+x^{2}}
$$

integrate...

$$
\ln y=\frac{1}{2} \ln \left(1+x^{2}\right)+C=\ln \left(\sqrt{1+x^{2}}\right)+C
$$

apply exp to both sides and absorb the constant...

$$
y=A \sqrt{1+x^{2}}
$$

6. $\frac{d u}{d r}=\frac{1+\sqrt{r}}{1+\sqrt{u}}$

Write

$$
(1+\sqrt{u}) d u=(1+\sqrt{r}) d r
$$

integrate to get

$$
u+\frac{2}{3} u^{\frac{3}{2}}=r+\frac{2}{3} r^{\frac{3}{2}}+C .
$$

And leave this as our solution.
9. $\frac{d u}{d t}=2+2 u+t+t u$

We have $\frac{d u}{d t}=(2+t)(1+u)$, which we rewrite as

$$
\frac{d u}{1+u}=(2+t) d t
$$

integrate...

$$
\ln (1+u)=2 t+\frac{t^{2}}{2}+C
$$

apply exp, absorb the constant, and subtract 1 from both sides

$$
u=A e^{2 t+\frac{t^{2}}{2}}-1
$$

$$
\text { 11. } \quad \frac{d y}{d x}=y^{2}+1, \quad y(1)=0
$$

We rewrite the DE

$$
\frac{d y}{y^{2}+1}=d x
$$

integrate...

$$
\tan ^{-1} y=x+C
$$

evaluate at $x=1$,

$$
\tan ^{-1} y(1)=\tan ^{-1} 0=0=1+C,
$$

so $C=-1$. Therefore $y=\tan (x-1)$.

$$
\text { 13. } x \cos x=\left(2 y+e^{3 y}\right) y^{\prime}, \quad y(0)=0
$$

We separate,

$$
x \cos x d x=\left(2 y+e^{3 y}\right) d y
$$

integrate (integrate the left side by parts with $u=x, d v=\cos x d x$)

$$
-x \sin x-\cos x=y^{2}+\frac{e^{3 y}}{3}+C
$$

evaluate at $(x, y)=(0,0)$

$$
-1=\frac{1}{3}+C
$$

so that $C=-\frac{4}{3}$.
31. Solve the initial-value problem in Exercise 27 in Section 9.2 to find an expression for the charge at time t. Find the limiting value of the charge.

We have the differential equation

$$
5 \frac{d Q}{d t}+\frac{1}{.05} Q=60
$$

Rewriting this equation,

$$
\frac{d Q}{d t}=12-4 Q
$$

rewrite...

$$
\frac{d Q}{12-4 Q}=d t
$$

integrate...

$$
-.25 \ln (12-4 Q)=t+C
$$

so

$$
\ln (12-4 Q)=-4 t+B
$$

Evaluating at $(\mathrm{Q}, \mathrm{t})=(0,0)$ gives

$$
B=\ln 12
$$

Expifying both sides,

$$
Q=-3 e^{-4 t}+3
$$

As $t \rightarrow \infty$, this tends to 3 .

