
MATH 1B—SOLUTION SET FOR CHAPTERS 8.1, 8.2

Problem 8.1.1. Use the arc length formula to find the length of the curve y =
2− 3x,−2 ≤ x ≤ 1. Check your answer by noting that the curve is a line segment
and calculating its length by the distance formula.

Solution. First, note:
y′ = −3√

1 + (y′)2 =
√

10

(Note that this is a constant, which is as it should be—the curve is a line, and a
line should have the same amount of arc length per unit horizontal distance. In
fact, it should be the secant of the angle the line makes with the x-axis!)

So, using the arc length formula, the length of the curve on −2 ≤ x ≤ 1 is∫ x=1

x=−2

ds =
∫ 1

−2

√
10dx

=
√

10 [x]1−2

= 3
√

10

Of course, since this curve is a line, using the arc length formula is like using a
flamethrower to kill ants. Since the line has endpoints at (−2, 8) and (1,−1), its
length must be: √

32 + (−9)2 =
√

90 = 3
√

10

as desired.

Problem 8.1.9. Find the length of the curve given by x = 1
3

√
y(y− 3), 1 ≤ y ≤ 9.

Solution. In this case, we’re probably (almost certainly) better off integrating up
the y-axis. Taking the derivative, we have:

dx

dy
=

1
3

(
y − 3
2
√

y
+
√

y

)
=

1
6
√

y
(3y − 3)

=
y − 1
2
√

y

Thus,

ds =

√
1 +

(y − 1)2

4y

=

√
(y + 1)2

4y
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On the range that we’re interested in, y + 1 is positive. Thus, the arc length is:∫ y=9

y=1

ds =
∫ 9

1

y + 1
2
√

y
dy

Substituting u =
√

y, so du = 1
2
√

y , we now have

=
∫ 3

1

(u2 + 1)du

=
[
u3

3
+ u

]3

1

=
32
3

So the curve has arc length 32
3 .

Problem 8.1.13. Find the arc length of the curve given by y = cosh x, 0 ≤ x ≤ 1.

Solution. As long as you remember how cosh is defined and what its derivative is,
this one’s easy. Recall:

y′ = sinhx

so √
1 + (y′)2 =

√
1 + sinh2 x

=
√

cosh2 x

= cosh x∫ x=1

x=0

ds =
∫ 1

0

coshxdx

= [sinhx]10

=
1
2
e− 1

2e

Problem 8.1.30.
(a) Sketch the curve y3 = x2

(b) Set up two integrals for the arc length from (0, 0) to (1, 1), one along x and
one along y.

(c) Find the length of the arc of this curve from (−1, 1) to (8.4).

Proof. (a) It’s clear that this curve is single-valued, since f(x) = x3 is invertible
(so for any given x, there’s only one value of y that satisfies the equation y3 = x2).
Thus, the curve is the same as y = x

2
3 . This function is even, and has first derivative

2
3x−

1
3 . This is positive on x > 0, negative on x < 0, and undefined at zero itself.

The second derivative is − 2
9x−

4
3 , which is negative everywhere (except at 0, where

it too is undefined). Thus the curve is concave down everywhere. Such a curve
looks something like the plot of

√
|x|,

(b) Solving for y, we have y = x
2
3 . Then y′ = 2

3x−
1
3 , and so∫

ds =
∫ 1

0

√
1 +

4
9
x−

2
3 dx
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Because the integrand is undefined at x = 0, this integral is improper. We thus
write:

= lim
s→0+

∫ 1

s

√
1 +

4
9
x−

2
3 dx

= lim
s→0+

∫ 1

s

x−
1
3

√
x

2
3 +

4
9
dx

=
3
2

lim
s→0+

∫ 13
9

s
2
3 + 4

9

√
udu

=
3
2

lim
s→0+

2
3

[
u

3
2

] 13
9

s
2
2 + 4

9

=
(

13
9

) 3
2

−
(

4
9

) 3
2

=
13
√

13− 8
27

We could instead have solved for x (on 0 ≤ x ≤ 1, the curve is single-valued in
either x or y). In this case, we have x = y

3
2 , so

dx

dy
=

3
2
y

1
2 .

Our arc length is thus ∫
ds =

∫ 1

0

√
1 +

9
4
ydy

=
4
9

∫ 13
4

1

√
udu

=
8
27

[
u

3
2

] 13
4

1

=
8
27

[
13
√

13− 8
8

]

=
13
√

13− 8
27

In either case, we get the same answer, as we should—this is, after all, the arc
length of a curve!

(c) Now we have to be careful. On the range −1 ≤ x ≤ 8, the curve is a function
in y, but is not invertible. Probably the laziest (and therefore best) way to proceed
is as follows: First, note that we already know the arc length between (0, 0) and
(1, 1). Next, realize that since the function is odd, the length of the curve between
(−1, 1) and (0, 0) must be the same as the length between (0, 0) and (1, 1). This
leaves only the curve between (1, 1) and (8, 4). On this range, the curve is invertible,
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so we can just use the second method above, to get∫
dx =

∫ 4

1

√
1 +

9
4
ydy

=
4
9

∫ 10

13
4

√
udu

=
8
27

[
10
√

10− 13
√

13
8

]

=
80
√

10− 13
√

13
27

So, our total arc length is 2 13
√

13−8
27 + 80

√
10−13

√
13

27 , or 80
√

10+13
√

13−8
27 .

Problem 8.1.31. Find the arc length function for the curve y = 2x
3
2 , starting

with the point P0(1, 2).

Solution. The arc length function is defined by:

s(x) =
∫ x

1

√
1 + (y′)2dt

Since y′ = 3x
1
2 , this is

s(x) =
∫ x

1

√
1 + 9tdt

=
1
9

∫
1

01+9x
√

udu

=
2
27

[
(1 + 9x)

3
2 − 10

√
10

]
So the arc length function is s(x) = 2

27

[
(1 + 9x)

3
2 − 10

√
10

]
.

Problem 8.1.34. A steady wind blows a kite due west. The kite’s height above
ground from horizontal position x = 0 to x = 80ft is given by

y = 150− 1
40

(x− 50)2

Find the distance traveled by the kite.

Solution. It should be clear that the distance traveled by the kite is precisely the
arc length of its path, as it travels along its parabolic path. (That the path above
describes a downward-opening parabola isn’t important to the problem, but is worth
noting. It’s always nice to see old friends like parabolae).

In this case, y′ = − 1
20 (x− 50), so the arc length is:∫

ds =
∫ 80

0

√
1 +

1
400

(x− 50)2dx

=
∫ 30

−50

√
1 +

1
400

u2du

= 20
∫ arctan( 3

2 )

arctan(− 5
2 )

sec3 θdθ
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To find
∫

sec3 θdθ, we use the usual trick:∫
sec3 θdθ = sec θ tan θ −

∫
sec θ tan2 θdθ

= sec θ tan θ −
∫

sec θ(sec2 θ − 1)dθ

2
∫

sec3 θ = sec θ tan θ + ln | sec θ + tan θ |∫
sec3 θ =

1
2

sec θ tan θ +
1
2

ln | sec θ + tan θ |

Thus, returning to our arc length problem, the distance traveled by the kite in
feet is:

d =
[
1
2

sec θ tan θ +
1
2

ln | sec θ + tan θ |
]arctan( 3

2 )

arctan(− 5
2 )

=
[
1
2

√
1 + tan2 θ tan θ +

1
2

ln |
√

1 + tan2 θ + tan θ |
]arctan( 3

2 )

arctan(− 5
2 )

=

[
1
2

(
3
2

) √
13
4
− 1

2
ln

∣∣∣∣∣
√

13
4

+
3
2

∣∣∣∣∣− 1
2

√
29
4

(
−5
2

)
+

1
2

ln

∣∣∣∣∣
√

29
4
− 5

2

∣∣∣∣∣
]

=
3
√

13 + 5
√

29
8

+
1
2

ln

∣∣∣∣∣3 +
√

13√
29− 5

∣∣∣∣∣
Problem 8.2.1. Set up, but do not evaluate, an integral for the area of the surface
obtained by rotating

y = ln x, 1 ≤ x ≤ 3

about the x-axis.

Solution. This one’s easy (since we don’t have to evaluate the integral!): y′ = 1
x ,

so

A =
∫ 3

1

2π lnx

√
1 +

1
x2

dx

Problem 8.2.3. Set up, but do not evaluate, an integral for the area of the surface
obtained by rotating

y = sec x, 0 ≤ x ≤ π/4

about the y-axis.

Solution. First, note that y′ = sec x tanx. Thus,

A =
∫ π/4

0

2πx
√

1 + sec2 x tan2 xdx
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Problem 8.2.7. Find the area of the surface obtained by rotating the curve

y =
√

x, 4 ≤ x ≤ 9

about the x-axis.

Solution. Since y′ = 1
2
√

x
, we have

A =
∫ 9

4

2π
√

x

√
1 +

1
4x

dx

= 2π

∫ 9

4

√
x +

1
4
dx

= 2π

∫ 37
4

17
4

√
udu

=
4π

3

[
u

3
2

] 37
4

17
4

=
4π

3

[
37
√

37− 17
√

17
8

]

=
π(37

√
37− 17

√
17)

6

Problem 8.2.9. Find the area of the surface obtained by rotating the curve

y = cosh x, 0 ≤ x ≤ 1

about the x-axis.

Proof. Since y′ = sinhx, we have

A =
∫ 1

0

2π coshx
√

1 + sinh2 xdx

= 2π
∫ 1

0

cosh2 xdx

= 2π
∫ 1

0

(
1
4
e2x +

1
2

+
1
4
e−2x

)
dx

= 2π
[
1
8
e2x +

1
2
x− 1

8
e−2x

]1

0

= 2π
[
1
8
e2 +

1
2
− 1

8
e−2 − 1

8
+

1
8

]
= 2π

[
1
4

sinh 2 +
1
2

]
= π[1 +

1
2

sinh 2]
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Problem 8.2.25. If the region R = {(x, y) | x ≥ 1, 0 ≤ y ≤ 1
x} is rotated about

the x-axis, the resulting surface has infinite area.

Proof. We are interested in the surface y = 1
x , which has derivative y′ = − 1

x2 .
Thus, the area is

A =
∫ ∞

1

2π

x

√
1 +

1
x4

dx

= 2π
∫ ∞

1

1
x

√
1 + x−4dx

At this point, the integrand is positive and is everywhere on our domain greater
than 1

x . Since
∫∞
1

dx
x diverges to infinity, so does A, by the comparison test. �

Problem 8.2.27. (a) If a > 0, find the area of the surface generated by rotating
the loop of the curve 3ay2 = x(a− x)2 about the x-axis.

(b) Find the surface area if the loop is rotated about the y-axis.

Solution.
(a) The first step here is to work out what this “loop” is that’s mentioned in

the problem. Looking at the equation that defines the curve, first note that the
left-hand side is necessarily nonnegative, while the right hand side is negative for
all x < 0. Thus, no points with x < 0 can satisfy the equation. Now, if we solve
for y, we see

y = ±
√

x|a− x|√
3a

, so the curve will be double-valued whenever the right-hand size is nonzero. The
zeros occur at 0 and and a, so the curve between 0 and a will indeed form a loop
of sorts. We don’t care about the curve beyond a. On 0 ≤ x ≤ a, we know the sign
of (a − x). Since we’re only interested in the top half of the loop (we’re rotating
about the x-axis, so the “loop” generates the same surface as its top half), we can
consider the function y =

√
x(a−x)√

3a
.

Now, y′ = 1√
3a

a
2
√

x
− 3

√
x

2 , so the area of the surface rotated about the x-axis is

A =
∫ a

0

2π

√
x(a− x)√

3a

√
1 +

1
3a

[
a2

4x
− 6a

4
+

9x

4

]
dx

=
2π√
3a

∫ a

0

√
x(a− x)

√
1 +

1
3a

[
a2 − 6ax + 9x2

4x

]
dx

=
2π√
3a

∫ a

0

√
x(a− x)

√
1
3a

[
a2 + 6ax + 9x2

4x

]
dx

=
π

3a

∫ a

0

(a− x)(a + 3x)dx
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=
π

3a

∫ a

0

(a2 + 2ax− 3x2)dx

=
π

3a

[
a2x + ax2 − x3

]a

0

=
π

3a

[
a3 + a3 − a3

]
=

a2π

3

(b) If the loop is rotated about the y-axis, things become more unpleasant. First,
we have to take both the upper and lower portions of the loop into account. Since
they’re symmetrical with respect to the x axis and give the same contribution to
surface area, this is best handled by multiplying by 2. Then, we simply have

A = 2
∫ a

0

2πx

√
1
3a

[
a2 + 6ax + 9x2

4x

]
=

2π√
3a

∫ a

0

(
ax

1
2 + 3x

3
2

)
dx

=
2π√
3a

[
2a

3
x

3
2 +

6
5
x

5
2

]a

0

=
2π√
3a

[
2
3
a

5
2 +

6
5
a

5
2

]
=

56π
√

3a2

45


