## §11.8

$3-20$ Find the radius of convergence and interval of convergence of the series.

$$
\text { 3. } \sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}} \text {. }
$$

We will apply the ratio test.

$$
\left|\frac{x^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{x^{n}}\right|=\left|\frac{x \sqrt{n}}{\sqrt{n+1}}\right| \rightarrow|x| \quad \text { as } n \rightarrow \infty
$$

Hence the radius of convergence is 1 . For $x=1$, the series is a divergent $p$-series, and for $x=-1$, the series is an alternating series, and since $\frac{1}{\sqrt{n}}$ is decreasing and converges to zero, the series converges. The interval of convergence is therefore $[-1,1)$.

$$
\begin{gathered}
5 \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n^{3}} \\
\left|\frac{x^{n+1}}{(n+1)^{3}} \frac{n^{3}}{x^{n}}\right|=\left|\frac{x n^{3}}{(n+1)^{3}}\right| \rightarrow|x| \quad \text { as } n \rightarrow \infty
\end{gathered}
$$

Hence the radius of convergence is 1 . For $x= \pm 1$, the series converges absolutely and therefore converges. Therefore the interval of convergence is $[-1,1]$.

$$
\begin{gathered}
\text { 8. } \sum_{n=1}^{\infty} n^{n} x^{n} \\
\left|\frac{(n+1)^{n+1} x^{n+1}}{n^{n} x^{n}}\right|=\frac{x(n+1)^{n+1}}{n^{n}}
\end{gathered}
$$

converges if and only if $x=0$. Therefore the radius of convergence is 0 and the interval of convergence is $[0,0]$.

$$
\begin{gathered}
\text { 9. } \sum_{n=1}^{\infty}(-1)^{n} n 4^{n} x^{n} \\
\left|\frac{(n+1) 4^{n+1} x^{n+1}}{n 4^{n} x^{n}}\right|=\left|\frac{(4(n+1) x}{n}\right| \rightarrow|4 x| \quad \text { as } n \rightarrow \infty .
\end{gathered}
$$

Therefore the radius of convergence is $\frac{1}{4}$. At the end points, $x= \pm \frac{1}{4}$, the sequence $(-1)^{n} n 4^{n} x^{n}$ diverges, so its sum cannot converge. Therefore the interval of convergence is $\left(-\frac{1}{4}, \frac{1}{4}\right)$.

$$
\begin{gathered}
\text { 13. } \sum_{n=2}^{\infty}(-1)^{n} \frac{x^{n}}{4^{n} \ln n} \\
\left|\frac{x^{n+1}}{4^{n+1} \ln (n+1)} \frac{4^{n} \ln n}{x^{n}}\right|=\left|\frac{x \ln n}{4 \ln (n+1)}\right| \rightarrow\left|\frac{x}{4}\right| \quad \text { as } n \rightarrow \infty
\end{gathered}
$$

Therefore the radius of convergence is 4 . For $x=4$, the sequence

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\ln n}
$$

satisfies the criteria for the alternating series test and hence converges. For $x=-4$. the sequence

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{(-4)^{n}}{4^{n} \ln n}=\sum_{n=2}^{\infty} \frac{1}{\ln n}
$$

diverges because for $n \geq 2, \frac{1}{n} \leq \frac{1}{\ln n}$, and the harmonic series diverges. The interval of convergence is therefore $(-4,4]$.

$$
\begin{gathered}
\text { 14. } \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \\
\left|\frac{x^{2 n+2}}{(2 n+2)!} \frac{(2 n)!}{x^{2 n}}\right|=\frac{x^{2}}{(2 n+1)(2 n+2)} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{gathered}
$$

Therefore the radius of convergence is infinity and the interval of convergence is $\mathbb{R}$.

$$
\begin{gathered}
15 \cdot \sum_{n=0}^{\infty} \sqrt{n}(x-1)^{n} \\
\left|\frac{\sqrt{n+1}(x-1)^{n+1}}{\sqrt{n}(x-1)^{n}}\right|=\left|\frac{\sqrt{n+1}(x-1)}{\sqrt{n}}\right| \rightarrow|x-1| \quad \text { as } n \rightarrow \infty
\end{gathered}
$$

The series converes if $|x-1|<1$, so the radius of convergence is 1 . If $x=0$ or if $x=2$, the series diverges because $\sqrt{n}(x-1)^{n}$ does not converge to zero. Therefore the interval of convergence is $(0,2)$.

$$
\text { 20. } \sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n 3^{n}}
$$

$$
\left|\frac{(3 x-2)^{n+1}}{(n+1) 3^{n+1}} \frac{n 3^{n}}{(3 x-2)^{n}}\right|=\left|\frac{n(3 x-2)}{3(n+1)}\right| \rightarrow\left|x-\frac{2}{3}\right|, \quad \text { as } n \rightarrow \infty
$$

The series converges if $|x-2 / 3|<1$, so the radius of convergence is 1 . If $x=5 / 3$, the series is equal to the harmonic series and hence diverges. If $x=-1 / 3$, the series is equal to the alternating harmonic series and therefore converges. The interval of convergence is then $[-1 / 3,5 / 3)$.
29. If $\sum_{n=0}^{\infty} c_{n} 4^{n}$ is convergent, does it follow that the following series are convergent?

$$
\text { (a) } \sum_{n=0}^{\infty} c_{n}(-2)^{n}
$$

Yes. If $\sum_{n=0}^{\infty} c_{n} 4^{n}$ is convergent, then the radius of convergence for the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is at least 4. Therefore the interval of convergence contains -2 .

$$
\text { (b) } \sum_{n=0}^{\infty} c_{n}(-4)^{n}
$$

No. Consider the power series

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{4^{n} n}
$$

Then the series converges for $x=4$, because in that case it is the alternating harmonic series, but the series diverges for $x=-4$, because in that case it is equal to the positive harmonic series.
31. If $k$ is a positive integer, find the radius of convergence of the series

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{(n!)^{k}}{(k n)!} x^{n} . \\
\left|\frac{[(n+1)!]^{k} x^{n+1}}{(k n+k)!} \frac{(k n)!}{(n!)^{k} x^{n}}\right|=\left|\frac{(n+1)^{k} x}{(k n+1) \cdot \ldots \cdot(k n+k)}\right| \rightarrow\left|\frac{x}{k^{k}}\right| \quad \text { as } n \rightarrow \infty .
\end{gathered}
$$

The radius of convergence is therefore $k^{k}$.
33. The function $J_{1}$ definted by

$$
J_{1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(n+1)!2^{2 n+1}}
$$

is called the Bessel function of order 1.
(a) Find its domain.

$$
\left|\frac{x^{2 n+3}}{(n+1)!(n+2)!2^{2 n+3}} \frac{n!(n+1)!2^{2 n+1}}{x^{2 n+1}}\right|=\frac{x^{2}}{4(n+1)(n+2)} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Therefore the domain of $J_{1}$ is $\mathbb{R}$.
34. The function $A$ defined by

$$
A(x)=1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{2 \cdot 3 \cdot 5 \cdot 6}+\frac{x^{9}}{2 \cdot 3 \cdot 5 \cdot 9}+\cdots
$$

is called the Airy function after the English mathematician and astronomer Sir George Airy. (a) Find the domain of the Airy function.

If we write $A(x)=\sum_{n=0}^{\infty} a_{n} x^{3 n}$, then we find that

$$
a_{n}=\frac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot \ldots \cdot(3 n-1) \cdot 3 n} .
$$

Since

$$
\left|\frac{x^{3 n+3} a_{n+1}}{x^{3 n} a_{n}}\right|=\left|\frac{x^{3}}{(3 n-1) \cdot 3 n}\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

the series converges for all values of $x$ in $\mathbb{R}$.

