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3-20 Find the radius of convergence and interval of convergence of the series.
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We will apply the ratio test.
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Hence the radius of convergence is 1. For x = 1, the series is a divergent p-series, and for x = —1, the series
is an alternating series, and since % is decreasing and converges to zero, the series converges. The interval
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of convergence is therefore [—1,1).
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Hence the radius of convergence is 1. For x = %1, the series converges absolutely and therefore converges.
Therefore the interval of convergence is [—1,1].
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converges if and only if x = 0. Therefore the radius of convergence is 0 and the interval of convergence is
[0,0].
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Therefore the radius of convergence is i. At the end points, x = :I:%, the sequence (—1)"nd"z™ diverges, so

its sum cannot converge. Therefore the interval of convergence is (—i, i)
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Therefore the radius of convergence is 4. For x = 4, the sequence
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satisfies the criteria for the alternating series test and hence converges. For x = —4. the sequence
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s 7 < 5> and the harmonic series diverges. The interval of convergence is

diverges because for n > 2
therefore (—4,4].
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Therefore the radius of convergence is infinity and the interval of convergence is R.
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The series converes if |x — 1| < 1, so the radius of convergence is 1. If x = 0 or if z = 2, the series
diverges because v/n(z — 1)™ does not converge to zero. Therefore the interval of convergence is (0, 2).
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The series converges if | — 2/3| < 1, so the radius of convergence is 1. If x = 5/3, the series is equal to
the harmonic series and hence diverges. If x = —1/3, the series is equal to the alternating harmonic series

and therefore converges. The interval of convergence is then [—1/3,5/3).

29. If 3°° , cp4™ is convergent, does it follow that the following series are convergent?
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Yes. If ZZOZO cp,4™ is convergent, then the radius of convergence for the power series Zf;o cpx™ is at
least 4. Therefore the interval of convergence contains -2.
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Then the series converges for x = 4, because in that case it is the alternating harmonic series, but the series
diverges for x = —4, because in that case it is equal to the positive harmonic series.

31. If k is a positive integer, find the radius of convergence of the series
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The radius of convergence is therefore k*.

33. The function J; definted by
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is called the Bessel function of order 1.
(a) Find its domain.
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Therefore the domain of J; is R.
34. The function A defined by
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is called the Airy function after the English mathematician and astronomer Sir George Airy.
(a) Find the domain of the Airy function.

If we write A(z) = Y07, a,2z®", then we find that
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the series converges for all values of z in R.



