Math 1B, Prof Zworski

Section 17.1

1: $y^{\prime \prime}-6 y^{\prime}+8 y=0$. The auxiliary equation is $r^{2}-6 r+8=0$. The roots are $r=2,4$. Hence the general solution is

$$
y(x)=c_{1} e^{2 x}+c_{2} e^{4 x}
$$

2: $y^{\prime \prime}-4 y^{\prime}+8 y=0$. The auxiliary equation is $r^{2}-4 r+8=0$. The roots are $r=(4 \pm \sqrt{-16}) / 2=2 \pm 2 i$. Hence the general solution is

$$
y(x)=e^{2 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)
$$

6: $3 y^{\prime \prime}-5 y^{\prime}=0$. The auxiliary equation is $3 r^{2}-5 r=0$. The roots are $r=0,5 / 3$. Hence the general solution is

$$
y(x)=c_{1}+c_{2} e^{5 x / 3}
$$

9: $4 y^{\prime \prime}+y^{\prime}=0$. The auxiliary equation is $4 r^{2}+r=0$. The roots are $r=0,-4$. Hence the general solution is

$$
y(x)=c_{1}+c_{2} e^{-4 x}
$$

17: $2 y^{\prime \prime}+5 y^{\prime}+3 y=0$. The auxiliary equation is $2 r^{2}+5 r+3=0$. The roots are $r=-1,-3 / 2$. Hence the general solution is

$$
y(x)=c_{1} e^{-x}+c_{2} e^{-3 x / 2}
$$

So $y^{\prime}(x)=-c_{1} e^{-x}-(3 / 2) c_{2} e^{-3 x / 2}$. Plugging in the initial conditions $y(0)=$ $3, y^{\prime}(0)=-4$, we get the equations

$$
c_{1}+c_{2}=3 \quad ; \quad-c_{1}-(3 / 2) c_{2}=-4
$$

The solution is $c_{1}=1, c_{2}=2$. The solution to our initial value problem is $y(x)=e^{-x}+2 e^{-3 x / 2}$.

19: $4 y^{\prime \prime}-4 y^{\prime}+y=0$. The auxiliary equation is $4 r^{2}-4 r+1=0$. The roots are $r=1 / 2,1 / 2$. Hence the general solution is

$$
y(x)=c_{1} e^{x / 2}+c_{2} x e^{x / 2}
$$

So $y^{\prime}(x)=c_{1} e^{x / 2}+c_{2} e^{x / 2}+\left(c_{2} / 2\right) x e^{x / 2}$. Plugging in the initial conditions $y(0)=1, y^{\prime}(0)=-1.5$, we get the equations

$$
c_{1}=1 \quad ; \quad c_{1}+c_{2}=-1.5
$$

The solution is $c_{1}=1, c_{2}=-2.5$. The solution to our initial value problem is thus $y(x)=e^{x / 2}-2.5 x e^{x / 2}$.

