HW Solutions: 11.11

April 11, 2004

1 Section 11.11

1. The general binomial series in (2) is

$$
\begin{aligned}
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n} & =1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots \\
(1+x)^{1 / 2} & =\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} x^{n}=1+\left(\frac{1}{2}\right) x+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} x^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!} x^{3}+\cdots \\
& =1+\frac{x}{2}-\frac{x^{2}}{2^{2} \cdot 2!}+\frac{1 \cdot 3 \cdot x^{3}}{2^{3} \cdot 3!}-\frac{1 \cdot 3 \cdot 5 \cdot x^{4}}{2^{4} \cdot 4!}+\cdots \\
& =1+\frac{x}{2}+\sum_{n=2}^{\infty} \frac{(-1)^{n-1} 1 \cdot 3 \cdot 5 \cdots \cdots(2 n-3) x^{n}}{2^{n} \cdot n!} \text { for }|x|<1, \text { so } R=1
\end{aligned}
$$

2. $\frac{1}{(1+x)^{4}}=(1+x)^{-4}=\sum_{n=0}^{\infty}\binom{-4}{n} x^{n}$. The binomial coefficient is

$$
\begin{aligned}
\binom{-4}{n} & =\frac{(-4)(-5)(-6) \cdots \cdots(-4-n+1)}{n!}=\frac{(-4)(-5)(-6) \cdots \cdots[-(n+3)]}{n!} \\
& =\frac{(-1)^{n} \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdots \cdots(n+1)(n+2)(n+3)}{2 \cdot 3 \cdot n!}=\frac{(-1)^{n}(n+1)(n+2)(n+3)}{6}
\end{aligned}
$$

Thus, $\frac{1}{(1+x)^{4}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)(n+2)(n+3)}{6} x^{n}$ for $|x|<1$, so $R=1$.
7. We must write the binomial in the form (1+expression), so we'll factor out a 4.

$$
\begin{aligned}
\frac{x}{\sqrt{4+x^{2}}} & =\frac{x}{\sqrt{4\left(1+x^{2} / 4\right)}}=\frac{x}{2 \sqrt{1+x^{2} / 4}}=\frac{x}{2}\left(1+\frac{x^{2}}{4}\right)^{-1 / 2}=\frac{x}{2} \sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(\frac{x^{2}}{4}\right)^{n} \\
& =\frac{x}{2}\left[1+\left(-\frac{1}{2}\right) \frac{x^{2}}{4}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(\frac{x^{2}}{4}\right)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(\frac{x^{2}}{4}\right)^{3}+\cdots\right] \\
& =\frac{x}{2}+\frac{x}{2} \sum_{n=1}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots \cdot(2 n-1)}{2^{n} \cdot 4^{n} \cdot n!} x^{2 n} \\
& =\frac{x}{2}+\sum_{n=1}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{n!2^{3 n+1}} x^{2 n+1} \text { and } \frac{x^{2}}{4}<1 \Leftrightarrow \frac{|x|}{2}<1 \Leftrightarrow
\end{aligned}
$$

$|x|<2$, so $R=2$.
13. (a) $\sqrt[3]{1+x}=(1+x)^{1 / 3}=\sum_{n=0}^{\infty}\binom{\frac{1}{3}}{n} x^{n}$

$$
\begin{aligned}
& =1+\frac{1}{3} x+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!} x^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!} x^{3}+\cdots \\
& =1+\frac{x}{3}+\sum_{n=2}^{\infty}(-1)^{n+1} \frac{2 \cdot 5 \cdot 8 \cdots \cdots(3 n-4)}{3^{n} \cdot n!} x^{n}
\end{aligned}
$$

(b) $\sqrt[3]{1+x}=1+\frac{1}{3} x-\frac{1}{9} x^{2}+\frac{5}{81} x^{3}-\cdots \cdot \sqrt[3]{1.01}=\sqrt[3]{1+0.01}$, so let $x=0.01$. The sum of the first two terms is then $1+\frac{1}{3}(0.01) \approx 1.0033$. The third term is $\frac{1}{9}(0.01)^{2} \approx 0.00001$, which does not affect the fourth decimal place of the sum, so we have $\sqrt[3]{1.01} \approx 1.0033$.
17. (a) $\left(1+x^{2}\right)^{1 / 2}=1+\left(\frac{1}{2}\right) x^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(x^{2}\right)^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}\left(x^{2}\right)^{3}+\cdots$

$$
=1+\frac{x^{2}}{2}+\sum_{n=2}^{\infty} \frac{(-1)^{n-1} 1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 n-3)}{2^{n} \cdot n!} x^{2 n}
$$

(b) The coefficient of x^{10} (corresponding to $n=5$) in the above Maclaurin series is $\frac{f^{(10)}(0)}{10!}$, so

$$
\frac{f^{(10)}(0)}{10!}=\frac{(-1)^{4} \cdot 1 \cdot 3 \cdot 5 \cdot 7}{2^{5} \cdot 5!} \Rightarrow f^{(10)}(0)=10!\left(\frac{1 \cdot 3 \cdot 5 \cdot 7}{2^{5} \cdot 5!}\right)=99,225
$$

19. (a) $g(x)=\sum_{n=0}^{\infty}\binom{k}{n} x^{n} \Rightarrow g^{\prime}(x)=\sum_{n=1}^{\infty}\binom{k}{n} n x^{n-1}$, so

$$
\begin{aligned}
(1+x) g^{\prime}(x) & =(1+x) \sum_{n=1}^{\infty}\binom{k}{n} n x^{n-1}=\sum_{n=1}^{\infty}\binom{k}{n} n x^{n-1}+\sum_{n=1}^{\infty}\binom{k}{n} n x^{n} \\
& =\sum_{n=0}^{\infty}\binom{k}{n+1}(n+1) x^{n}+\sum_{n=0}^{\infty}\binom{k}{n} n x^{n} \quad\left[\begin{array}{c}
\text { Replace } n \text { with } n+1 \\
\text { in the first series }
\end{array}\right] \\
= & \sum_{n=0}^{\infty}(n+1) \frac{k(k-1)(k-2) \cdots(k-n+1)(k-n)}{(n+1)!} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{(n+1) k(k-1)(k-2) \cdots(k-n+1)}{(n+1)!}\left[(k-n) \frac{k(k-1)(k-2) \cdots(k-n+1)}{n!}\right] x^{n} \\
= & k \sum_{n=0}^{\infty} \frac{k(k-1)(k-2) \cdots(k-n+1)}{n!} x^{n}=k \sum_{n=0}^{\infty}\binom{k}{n} x^{n}=k g(x)
\end{aligned}
$$

Thus, $g^{\prime}(x)=\frac{k g(x)}{1+x}$.
(b) $h(x)=(1+x)^{-k} g(x) \Rightarrow$

$$
\begin{aligned}
h^{\prime}(x) & =-k(1+x)^{-k-1} g(x)+(1+x)^{-k} g^{\prime}(x) \quad \text { [Product Rule] } \\
& =-k(1+x)^{-k-1} g(x)+(1+x)^{-k} \frac{k g(x)}{1+x} \quad[\text { from part (a)] } \\
& =-k(1+x)^{-k-1} g(x)+k(1+x)^{-k-1} g(x)=0
\end{aligned}
$$

(c) From part (b) we see that $h(x)$ must be constant for $x \in(-1,1)$, so $h(x)=h(0)=1$ for $x \in(-1,1)$. Thus, $h(x)=1=(1+x)^{-k} g(x) \Leftrightarrow g(x)=(1+x)^{k}$ for $x \in(-1,1)$.

