1. Practice Problems

(1) Derive the formula for $E[X]$ for the Bernoulli random variable.

$$
E[X]=\sum_{k \in \text { Range }} k f_{X}(k)=1 \cdot p+0 \cdot(1-p)=p .
$$

(2) Show that $E[X]$ for the Binomial and Hypergeometric random variables can be derived from the previous answer using the properties of Expected Value.

A binomial random variable Y can be considered as the sum of n independent identically distributed Bernoulli random variables, i.e. $Y=X_{1}+\cdots+X_{n}$, so:

$$
E[Y]=E\left[X_{1}+\cdots+X_{n}\right]=n p .
$$

A hypergeomtric random variable Z can be considered as the sum of n not independent identically distributed Bernoulli random variables with $p=m / N$, the probability of picking a white marble as the i-th choice: $Z=X_{1}+\cdots+X_{n}$, so:

$$
E[Z]=E\left[X_{1}+\cdots+X_{n}\right]=\frac{m n}{N} .
$$

(3) Why is $\operatorname{Var}[X]$ for the hypergeometric random variable not given by $\frac{m n(N-m)}{N^{2}}$?

The suggested value would be correct for the variance if the X_{i} 's were independent; however, the color of each marble is not independent.
(4) What is a fair price for the following games:
(a) A fair coin is flipped until heads comes up, and the player wins a dollar for each tails she flipped before the heads.

A fair price is the expected value of the game. $X=$ the value of the winnings is a geometric random variable with $p=1 / 2$, so $E[X]=1$. A fair price is one dollar.
(b) The game runner and the player each roll a six-sided die. If the player has a strictly higher roll, then he wins a dollar.

Here $X=$ the value of winnings is a Bernoulli random variable with $p=15 / 36$, as computed in the midterm. So a fair price for the game is $5 / 12$ dollars, or approximately 42 cents.
(c) The player watches a road which has red cars pass at a rate of 10 per hour. She wins a dollar for each red car she sees in the hour.

This time, X is a Poisson random variable with $\lambda=10$. Then, $E[X]=10$.
(5) Suppose I flip a penny, a nickel, a dime, and a quarter. Let X be the value in cents of the coins showing heads. What is $E[X]$ and $\operatorname{Var}[X]$?

The event X can be written as the sum $P+N+D+Q$. Each of these in turn can be written as a function of independent Bernoulli trials Y_{i} by setting $P=Y_{1}, N=5 Y_{2}, D=$ $10 Y_{3}, Q=25 Y_{4}$. Then,

$$
\begin{gathered}
E[X]=E\left[Y_{1}+5 Y_{2}+10 Y_{3}+25 Y_{4}\right]=E\left[Y_{1}\right]+5 E\left[Y_{2}\right]+10 E\left[Y_{3}\right]+25 E\left[Y_{4}\right]=41 / 2 . \\
\operatorname{Var}[X]=\operatorname{Var}\left[Y_{1}+5 Y_{2}+10 Y_{3}+25 Y_{4}\right]= \\
\operatorname{Var}\left[Y_{1}\right]+25 \operatorname{Var}\left[Y_{2}\right]+100 \operatorname{Var}\left[Y_{3}\right]+625 \operatorname{Var}\left[Y_{4}\right]=751 / 4 .
\end{gathered}
$$

Note that we rely on the fact that Y_{1}, \ldots, Y_{4} are independent for the variance calculation.

