(Based on a worksheet by Rob Bayer)

Second Order Equations

1. For each of the following pairs of functions, determine whether they are linearly independent or dependent:
(a) $f(x)=e^{x}, g(x)=e^{x+1}$ DEPENDENT
(c) $f(x)=\ln \left(x^{3}\right), g(x)=\ln \left(x^{\pi}\right)$ DEPENDENT
(b) $f(x)=x e^{2 x}, g(x)=e^{2 x}$ INDEPENDENT
(d) $f(x)=\sin (x), g(x)=\cos (x)$ INDEPENDENT
2. Which of the following second order differential equations are linear? Homogeneous?
(a) $e^{x} y^{\prime \prime}+\cos \left(3 x^{2}\right) y^{\prime}+3 y=0$ Linear, Homogeneous
(b) $y^{\prime \prime}+3 y^{\prime}+7 y=\cos x$ Linear, Non-homogeneous
(c) $y^{\prime \prime}+3 x y^{\prime}+y^{2}=0$ Not Linear
(d) $\tan \left(y^{\prime \prime}\right)+\cos (x) y^{\prime}=e^{x}$ Not Linear
3. Consider the differential equation $y^{\prime \prime}=-y$
(a) By just thinking about it for a while, come up with two linearly independent solutions to this equation and then use them to find the general solution. (Think about elementary functions whose derivatives cycle.) $\cos x$ and $\sin x$ are two linearly independent solutions.
(b) Show that $y=\cos (x+a)$ is a solution for any constant a. Just compute it! $y^{\prime \prime}=-\cos (x+a)=-y$.
(c) Argue that parts (a) and (b) show that $\cos (x+a)=C_{1} \cos x+C_{2} \sin x$ for an appropriate choice of C_{1} and C_{2}. All of the solutions to a second-order linear differential equation are given by sums of constant multiples of two linearly independent solutions. So, $\cos (x+a)$ must be expressible in terms of $\cos (x)$ and $\sin (x)$.
(d) Without using trig identities, find C_{1} and C_{2}. (Hint: what should $y(0)$ and $y^{\prime}(0)$ be? Remember that a is a constant, so C_{1} and C_{2} can refer to it.) Does this formula look familiar? Plugging in $x=0$, we get $\cos a=C_{1}$. Taking the derivative and evaluating at $x=0$, we get $-\sin a=C_{2}$. So, we obtain $\cos (x+a)=\cos a \cos x-\sin a \sin x$, the angle addition formula.

Solving Second Order Homogeneous Linear ODEs with Constant Coefficients

1. Find the general solution to $y^{\prime \prime}+3 y^{\prime}-18 y=0$.

The auxiliary equation is

$$
r^{2}+3 r-18=0 \Rightarrow r=3 \text { or }-6
$$

Therefore the general solution is:

$$
y=c_{1} e^{3 x}+c_{2} e^{-6 x}
$$

2. Solve the initial value problem $y^{\prime \prime}+4 y^{\prime}+4 y=0$ with $y(0)=1$ and $y^{\prime}(0)=3$.

The auxiliary equation is

$$
r^{2}+4 r+4=0 \Leftrightarrow(r+2)^{2}=0 .
$$

Therefore the general solution is:

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}
$$

Plugging in our initial conditions, we obtain:

$$
1=c_{1}, 3=-2 c_{1}+c_{2} \Rightarrow c_{1}=2, c_{2}=5 \Rightarrow y=e^{-2 x}+5 x e^{-2 x}
$$

3. Solve the boundary value problem $y^{\prime \prime}=y$ with $y(0)=0$ and $y(2)=2$.

The auxiliary equation is

$$
r^{2}-1=0 \Leftrightarrow(r+1)(r-1)=0 .
$$

Therefore the general solution is:

$$
y=c_{1} e^{x}+c_{2} e^{-x}
$$

Plugging in our boundary conditions, we obtain:

$$
0=c_{1}+c_{2}, 2=c_{1} e^{2}+c_{2} e^{-2} \Rightarrow c_{1}=\operatorname{csch}(2), c_{2}=-\operatorname{csch}(2) \Rightarrow y=\operatorname{csch}(2) e^{x}-\operatorname{csch}(2) e^{-x}
$$

