(Based on a worksheet by Rob Bayer)

Second Order Equations

1. For each of the following pairs of functions, determine whether they are linearly independent or dependent:
(a) $f(x)=e^{x}, g(x)=e^{x+1}$
(c) $f(x)=\ln \left(x^{3}\right), g(x)=\ln \left(x^{\pi}\right)$
(b) $f(x)=x e^{2 x}, g(x)=e^{2 x}$
(d) $f(x)=\sin (x), g(x)=\cos (x)$
2. Which of the following second order differential equations are linear? Homogeneous?
(a) $e^{x} y^{\prime \prime}+\cos \left(3 x^{2}\right) y^{\prime}+3 y=0$
(b) $y^{\prime \prime}+3 y^{\prime}+7 y=\cos x$
(c) $y^{\prime \prime}+3 x y^{\prime}+y^{2}=0$
(d) $\tan \left(y^{\prime \prime}\right)+\cos (x) y^{\prime}=e^{x}$
3. Consider the differential equation $y^{\prime \prime}=-y$
(a) By just thinking about it for a while, come up with two linearly independent solutions to this equation and then use them to find the general solution. (Think about elementary functions whose derivatives cycle.)
(b) Show that $y=\cos (x+a)$ is a solution for any constant a.
(c) Argue that parts (a) and (b) show that $\cos (x+a)=C_{1} \cos x+C_{2} \sin x$ for an appropriate choice of C_{1} and C_{2}
(d) Without using trig identities, find C_{1} and C_{2}. (Hint: what should $y(0)$ and $y^{\prime}(0)$ be? Remember that a is a constant, so C_{1} and C_{2} can refer to it.) Does this formula look familiar?

Solving Second Order Homogeneous Linear ODEs with Constant Coefficients

1. Find the general solution to $y^{\prime \prime}+3 y^{\prime}-18 y=0$
2. Solve the initial value problem $y^{\prime \prime}+4 y^{\prime}+4 y=0$ with $y(0)=1$ and $y^{\prime}(0)=3$
3. Solve the boundary value problem $y^{\prime \prime}=y$ with $y(0)=0$ and $y(2)=2$
