(Problems selected from worksheets by Rob Bayer.)

- (1) Determine whether each of the following sequences are convergent or divergent. For those that are convergent, find the limit.
 - (a) $a_n = \frac{3n^2 + 1}{n^2 1}$.

(b)
$$a_n = \frac{(n+2)!}{(2n)^2 \cdot n!}$$
.

- (c) $\{1, \frac{1}{2}, 1, \frac{1}{4}, 1, \frac{1}{8}, \ldots\}.$
- (d) $a_n = \ln(n^2 3n + 1) \ln(n^2 + 4).$

(e)
$$a_n = n \tan(1/n)$$
.

- (2) True/False. For all problems, a_n and b_n are sequences. If the answer is true, cite a theorem, or explain why. If it is false, give a counterexample, i.e. two sequences for which it is false.
 (a) If a_n and b_n converge, then a_n + b_n converges.
 - (b) If $a_n + b_n$ converges, then a_n and b_n converge.
 - (c) If a_n and b_n converge, then a_n/b_n converges.
 - (d) If a_n and b_n diverge, then $a_n + b_n$ diverges.
 - (e) If $a_n + b_n$ diverges, then a_n and b_n diverge.
 - (f) If a_n and b_n diverge, then $a_n b_n$ diverges.
- (3) For each of the following, give an example of a sequence with the required properties or explain why no such sequence can exist:
 - (a) Bounded, Monotonic, Convergent
 - (b) Bounded, Monotonic, Not Convergent
 - (c) Bounded, Not Monotonic, Convergent
 - (d) Bounded, Not Monotonic, Not Convergent
 - (e) Not Bounded, Monotonic, Convergent
 - (f) Not Bounded, Monotonic, Not Convergent
 - (g) Not Bounded, Not Monotonic, Convergent
 - (h) Not Bounded, Not Monotonic, Not Convergent
- (4) More Sequences! Determine convergence or divergence, and calculate the limit if convergent: (a) $a = \frac{\cos^2 n + n}{2}$

(a)
$$u_n = \frac{1}{2^n + 3^n}$$

 $(\rightarrow n$

(b)
$$a_n = \frac{n^{(-1)n}}{n+\ln n}$$

(c)
$$a_n = n^{\frac{\ln 2}{1 + \ln n}}$$