Quiz 9

Math 1B, Spring 2012
April 13, 2012
GSI: Zvi Rosen

SOLUTION

Solve the second-order differential equation:

$$
x y^{\prime \prime}+2 y^{\prime}=12 x^{2} .
$$

by making the substitution $u=y^{\prime}$.

Solution: We substitute $u=y^{\prime}$ and $u^{\prime}=y^{\prime \prime}$. The resulting differential equation is:

$$
x u^{\prime}+2 u=12 x^{2} \Rightarrow u^{\prime}+\frac{2}{x} u=12 x .
$$

The integrating factor is $\exp \left(\int \frac{2}{x} d x\right)=e^{2 \ln x}=x^{2}$, which gives us:

$$
\begin{gathered}
x^{2} u^{\prime}+2 x u=12 x^{3} \Rightarrow\left(x^{2} u\right)^{\prime}=12 x^{3} \Rightarrow x^{2} u=\int 12 x^{3} d x \\
\Rightarrow u=\frac{1}{x^{2}} \int 12 x^{3} d x=\frac{1}{x^{2}}\left(3 x^{4}+C\right) \Rightarrow u=3 x^{2}+\frac{C}{x^{2}}
\end{gathered}
$$

Finally, we substitute back our original function using the identity $u=y^{\prime}$:

$$
y^{\prime}=3 x^{2}+\frac{C}{x^{2}} \Rightarrow y=\int 3 x^{2}+\frac{C}{x^{2}} d x \Rightarrow y=x^{3}-\frac{C}{x}+D .
$$

Since C and D are both arbitrary constants, we can also write $y=x^{3}+\frac{C}{x}+D$. (This sign change is not strictly necessary.)

