SECTION:

NAME:

Solve the differential equation:

$$
\frac{d y}{d x}=y^{2} \sin x
$$

For what values of the arbitrary constant will y be well-defined and continuous for all x ?
We divide both sides by y^{2}, assuming $y \neq 0$. If $y=0$, then $d y / d x=y^{2} \sin x=0$, so we include this as a possible solution. We integrate both sides with respect to $d x$, obtaining:

$$
\begin{gathered}
\int \frac{1}{y^{2}} \frac{d y}{d x} d x=\int \sin x d x \\
\Rightarrow \int \frac{d y}{y^{2}}=-\cos x+C \\
\Rightarrow-\frac{1}{y}=-\cos x+C \\
\quad \Rightarrow y=\frac{1}{\cos x+C} .
\end{gathered}
$$

So the family of solutions for our differential equation is $y=0$, and $y=\frac{1}{\cos x+C}$ for some constant C.
If we want the function to be well-defined everywhere, we need to make sure we never divide by zero. Since $\cos x$ takes all values between -1 and 1 , we need $C<-1$ or $C>1$.

