Solution

Determine whether the following series converges or diverges:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}
$$

We use the limit comparison test:
Let $b_{n}=\frac{1}{n}$. Then $\frac{a_{n}}{b_{n}}=\frac{1}{n^{1+1 / n}} \cdot n=\frac{1}{n^{1 / n}}$.
To calculate the limit, we take the natural logarithm, recalling that, if $\left\{c_{n}\right\}$ converges to a limit where log is continuous, then:

$$
\ln \lim c_{n}=\lim \ln c_{n} \Leftrightarrow \lim c_{n}=\exp \left(\lim \ln c_{n}\right) .
$$

So, for our sequence,

$$
\lim _{n \rightarrow \infty} \ln \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{-\ln n}{n}=0
$$

Therefore, by the logic above:

$$
\lim \frac{a_{n}}{b_{n}}=\exp \left(\lim _{n \rightarrow \infty}\left(\ln \left(\frac{a_{n}}{b_{n}}\right)\right)\right)=1 .
$$

By the limit comparison test, since the ratio converges to a finite limit greater than 0 , either both series diverge or both converge.

Since the harmonic series diverges, we know that our original series diverges.

