SOLUTION

Solve the second-order differential equation:

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\frac{e^{-2 x}}{x^{3}}
$$

using variation of parameters.

1. We find the complementary solution. The auxiliary equation is:

$$
r^{2}+4 r+4=(r+2)^{2}=0 .
$$

Therefore, we have a repeated root $r=-2$, so our complementary solution is:

$$
y_{c}=c_{1} e^{-2 x}+c_{2} x e^{-2 x} .
$$

2. We let $y_{p}=u_{1} e^{-2 x}+u_{2} x e^{-2 x}$.
3. We set up the following system of equations:

$$
\begin{gathered}
u_{1}^{\prime} e^{-2 x}+u_{2}^{\prime} x e^{-2 x}=0 . \\
-2 u_{1}^{\prime} e^{-2 x}+u_{2}^{\prime}\left(-2 x e^{-2 x}+e^{-2 x}\right)=\frac{e^{-2 x}}{x^{3}} .
\end{gathered}
$$

4. Solving for u_{1}^{\prime} and u_{2}^{\prime}, we obtain:

$$
u_{1}^{\prime}=-\frac{1}{x^{2}}, \quad u_{2}^{\prime}=\frac{1}{x^{3}} .
$$

5. Integrating to find u_{1} and u_{2}, we obtain:

$$
u_{1}=\frac{1}{x}, \quad u_{2}=-\frac{1}{2 x^{2}} .
$$

6. Substituting into our original formula for y_{p}, we find:

$$
y_{p}=\frac{e^{-2 x}}{x}-\frac{x e^{-2 x}}{2 x^{2}}=\frac{e^{-2 x}}{2 x} .
$$

7. Combining y_{c} and y_{p}, our solution is:

$$
y(x)=c_{1} e^{-2 x}+c_{2} x e^{-2 x}+\frac{e^{-2 x}}{2 x}
$$

