SOLUTION

Solve the second-order differential equation:

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

with the boundary conditions $y(0)=1$, and $y(1)=0$.
The auxiliary equation is:

$$
r^{2}-6 r+9=(r-3)^{2}=0
$$

Because of the repeated root $r=3$, the form of the solution is:

$$
y=c_{1} e^{3 x}+c_{2} x e^{3 x}
$$

We plug in the boundary conditions to determine the values of the arbitrary constants.

$$
\begin{gathered}
c_{1} e^{0}+c_{2}(0) e^{0}=c_{1}=1 \\
c_{1} e^{3}+c_{2}(1) e^{3}=\left(1+c_{2}\right) e^{3}=0 \Rightarrow c_{2}=-1
\end{gathered}
$$

Therefore, the solution to the differential equation is:

$$
y(x)=e^{3 x}-x e^{3 x}
$$

