Let a and b be positive numbers with a > b. Let a_1 be their arithmetic mean and b_1 their geometric mean:

$$\mathbf{a_1} = rac{\mathbf{a} + \mathbf{b}}{2}$$
 $\mathbf{b_1} = \sqrt{\mathbf{ab}}$

Repeat this process so that, in general,

$$\mathbf{a_{n+1}} = rac{\mathbf{a_n} + \mathbf{b_n}}{2} \qquad \qquad \mathbf{b_{n+1}} = \sqrt{\mathbf{a_n}\mathbf{b_n}}$$

a) Use mathematical induction to show that

$$\mathbf{a_n} > \mathbf{a_{n+1}} > \mathbf{b_{n+1}} > \mathbf{b_n}$$

As with all induction arguments, we need a base case and an induction step.

1. Base Case

We start with the base case n = 1. We need to prove that $a_1 > a_2 > b_2 > b_1$. Equivalently, we want to show that $a_1 > \frac{a_1+b_1}{2} > \sqrt{a_1b_1} > b_1$

First we demonstrate that $a_1 > b_1$. We know that $(\sqrt{a} - \sqrt{b})^2 > 0$ since a > b.

(1)
$$(\sqrt{a} - \sqrt{b})^2 > 0 \Rightarrow a - 2\sqrt{a}\sqrt{b} + b > 0 \Rightarrow a + b > 2\sqrt{a}\sqrt{b} \Rightarrow \frac{a+b}{2} > \sqrt{ab}$$

Using this fact, we can show:

(2)
$$a_1 > b_1 \Rightarrow 2a_1 > a_1 + b_1 \Rightarrow a_1 > \frac{a_1 + b_1}{2} \Rightarrow a_1 > a_2.$$

(3)
$$a_1 > b_1 \Rightarrow a_1 b_1 > b_1^2 \text{ (true, because } b_1 > 0) \Rightarrow \sqrt{a_1 b_1} > b_1 \Rightarrow b_2 > b_1.$$

Finally, we use a variation on argument (1) to show that $a_2 > b_2$:

(4)
$$(\sqrt{a_1} - \sqrt{b_1})^2 > 0 \Rightarrow a_1 - 2\sqrt{a_1}\sqrt{b_1} + b_1 > 0 \Rightarrow \frac{a_1 + b_1}{2} > \sqrt{a_1b_1} \Rightarrow a_2 > b_2$$

Putting these together, we find that:

$$a_1 > a_2 > b_2 > b_1$$
.

2. Induction Step

We now proceed to the induction step. This is where we assume that $a_n > a_{n+1} > b_{n+1} > b_n$, and we need to prove that $a_{n+1} > a_{n+2} > b_{n+2} > b_{n+1}$. These arguments are going to be similar to the ones in the previous step:

(5)
$$a_{n+1} > b_{n+1} \Rightarrow 2a_{n+1} > a_{n+1} + b_{n+1} \Rightarrow a_{n+1} > \frac{a_{n+1} + b_{n+1}}{2} \Rightarrow a_{n+1} > a_{n+2}.$$

(6)
$$a_{n+1} > b_{n+1} \Rightarrow a_{n+1}b_{n+1} > b_{n+1}^2 \Rightarrow \sqrt{a_{n+1}b_{n+1}} > b_{n+1} \Rightarrow b_{n+2} > b_{n+1}.$$

(7)
$$(\sqrt{a_{n+1}} - \sqrt{b_{n+1}})^2 > 0 \Rightarrow a_{n+1} - 2\sqrt{a_{n+1}}\sqrt{b_{n+1}} + b_{n+1} > 0$$
$$\Rightarrow \frac{a_{n+1} + b_{n+1}}{2} > \sqrt{a_{n+1}b_{n+1}} \Rightarrow a_{n+2} > b_{n+2}.$$

This gives us the result:

$$a_{n+1} > a_{n+2} > b_{n+2} > b_{n+1}$$
.

So, by induction, we proved that, for all n,

$$a_n > a_{n+1} > b_{n+1} > b_n.$$

b) Deduce that both $\{a_n\}$ and $\{b_n\}$ are convergent.

Both a_n and b_n are bounded above by a_1 and below by b_1 . The sequence a_n is monotone decreasing, and the sequence b_n is monotone increasing. Therefore, by the Monotone Sequence Theorem, both sequences converge.

c) Show that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$. Gauss called the common value of these limits the arithmetic-geometric mean of he numbers a and b.

Let $A = \lim_{n \to \infty} \{a_n\}$ and $B = \lim_{n \to \infty} \{b_n\}$. We can take either recurrence relation, take the limit as $n \to \infty$, and we will find that A = B.

Starting with the recurrence relation for a_n :

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{a_n + b_n}{2}$$
$$\Rightarrow A = \frac{A + B}{2}$$
$$\Rightarrow \frac{A}{2} = \frac{B}{2}$$
$$\Rightarrow A = B.$$

Starting with the recurrence relation for b_n :

$$\lim_{n \to \infty} b_{n+1} = \lim_{n \to \infty} \sqrt{a_n b_n}$$
$$\Rightarrow B = \sqrt{AB}$$
$$\Rightarrow B^2 = AB$$
$$\Rightarrow B = A.$$