Let a and b be positive numbers with $a>b$. Let a_{1} be their arithmetic mean and b_{1} their geometric mean:

$$
a_{1}=\frac{a+b}{2} \quad b_{1}=\sqrt{a b}
$$

Repeat this process so that, in general,

$$
a_{n+1}=\frac{a_{n}+b_{\mathrm{n}}}{2} \quad b_{\mathrm{n}+1}=\sqrt{a_{\mathrm{n}} b_{\mathrm{n}}}
$$

a) Use mathematical induction to show that

$$
a_{n}>a_{n+1}>b_{n+1}>b_{n} .
$$

As with all induction arguments, we need a base case and an induction step.

1. Base Case

We start with the base case $n=1$. We need to prove that $a_{1}>a_{2}>b_{2}>b_{1}$. Equivalently, we want to show that $a_{1}>\frac{a_{1}+b_{1}}{2}>\sqrt{a_{1} b_{1}}>b_{1}$

First we demonstrate that $a_{1}>b_{1}$. We know that $(\sqrt{a}-\sqrt{b})^{2}>0$ since $a>b$.

$$
\begin{equation*}
(\sqrt{a}-\sqrt{b})^{2}>0 \Rightarrow a-2 \sqrt{a} \sqrt{b}+b>0 \Rightarrow a+b>2 \sqrt{a} \sqrt{b} \Rightarrow \frac{a+b}{2}>\sqrt{a b} \tag{1}
\end{equation*}
$$

Using this fact, we can show:

$$
\begin{gather*}
a_{1}>b_{1} \Rightarrow 2 a_{1}>a_{1}+b_{1} \Rightarrow a_{1}>\frac{a_{1}+b_{1}}{2} \Rightarrow a_{1}>a_{2} . \tag{2}\\
a_{1}>b_{1} \Rightarrow a_{1} b_{1}>b_{1}^{2}\left(\text { true, because } b_{1}>0\right) \Rightarrow \sqrt{a_{1} b_{1}}>b_{1} \Rightarrow b_{2}>b_{1} .
\end{gather*}
$$

Finally, we use a variation on argument (1) to show that $a_{2}>b_{2}$:

$$
\begin{equation*}
\left(\sqrt{a}_{1}-\sqrt{b}_{1}\right)^{2}>0 \Rightarrow a_{1}-2 \sqrt{a_{1}} \sqrt{b}_{1}+b_{1}>0 \Rightarrow \frac{a_{1}+b_{1}}{2}>\sqrt{a_{1} b_{1}} \Rightarrow a_{2}>b_{2} \tag{4}
\end{equation*}
$$

Putting these together, we find that:

$$
a_{1}>a_{2}>b_{2}>b_{1} .
$$

2. Induction Step

We now proceed to the induction step. This is where we assume that $a_{n}>a_{n+1}>b_{n+1}>b_{n}$, and we need to prove that $a_{n+1}>a_{n+2}>b_{n+2}>b_{n+1}$. These arguments are going to be similar to the ones in the previous step:

$$
\begin{gather*}
a_{n+1}>b_{n+1} \Rightarrow 2 a_{n+1}>a_{n+1}+b_{n+1} \Rightarrow a_{n+1}>\frac{a_{n+1}+b_{n+1}}{2} \Rightarrow a_{n+1}>a_{n+2} . \tag{5}\\
a_{n+1}>b_{n+1} \Rightarrow a_{n+1} b_{n+1}>b_{n+1}^{2} \Rightarrow \sqrt{a_{n+1} b_{n+1}}>b_{n+1} \Rightarrow b_{n+2}>b_{n+1} . \\
\left(\sqrt{a}_{n+1}-\sqrt{b_{n+1}}\right)^{2}>0 \Rightarrow a_{n+1}-2 \sqrt{a_{n+1}} \sqrt{b}_{n+1}+b_{n+1}>0 \\
\Rightarrow \frac{a_{n+1}+b_{n+1}}{2}>\sqrt{a_{n+1} b_{n+1}} \Rightarrow a_{n+2}>b_{n+2} \\
1
\end{gather*}
$$

This gives us the result:

$$
a_{n+1}>a_{n+2}>b_{n+2}>b_{n+1} .
$$

So, by induction, we proved that, for all n,

$$
a_{n}>a_{n+1}>b_{n+1}>b_{n} .
$$

b) Deduce that both $\left\{\mathbf{a}_{\mathbf{n}}\right\}$ and $\left\{\mathbf{b}_{\mathbf{n}}\right\}$ are convergent.

Both a_{n} and b_{n} are bounded above by a_{1} and below by b_{1}. The sequence a_{n} is monotone decreasing, and the sequence b_{n} is monotone increasing. Therefore, by the Monotone Sequence Theorem, both sequences converge.
c) Show that $\lim _{\mathbf{n} \rightarrow \infty} \mathbf{a}_{\mathbf{n}}=\lim _{\mathbf{n} \rightarrow \infty} \mathbf{b}_{\mathbf{n}}$. Gauss called the common value of these limits the arithmetic-geometric mean of he numbers a and b.

Let $A=\lim _{n \rightarrow \infty}\left\{a_{n}\right\}$ and $B=\lim _{n \rightarrow \infty}\left\{b_{n}\right\}$. We can take either recurrence relation, take the limit as $n \rightarrow \infty$, and we will find that $A=B$.

Starting with the recurrence relation for a_{n} :

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{a_{n}+b_{n}}{2} \\
\Rightarrow A=\frac{A+B}{2} \\
\Rightarrow \frac{A}{2}=\frac{B}{2} \\
\Rightarrow A=B .
\end{gathered}
$$

Starting with the recurrence relation for b_{n} :

$$
\begin{gathered}
\lim _{n \rightarrow \infty} b_{n+1}=\lim _{n \rightarrow \infty} \sqrt{a_{n} b_{n}} \\
\Rightarrow B=\sqrt{A B} \\
\Rightarrow B^{2}=A B \\
\Rightarrow B=A .
\end{gathered}
$$

