1. Straightforward Problems

(1) Consider the series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$. Perform the ratio test for convergence - is it conclusive?
(2) The series $\sum_{n=1}^{\infty} \frac{1-n}{1+n}$:
A. converges absolutely. B. converges conditionally. C. diverges.
(3) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}$:
A. converges absolutely. B. converges conditionally. C. diverges.
(4) Find the binomial series for $y=\left(1-\frac{x}{2}\right)^{-1 / 2}$.
(5) Find the limit of the sequence $\left\{a_{n}\right\}=\left\{\frac{n \ln n}{n^{2}+5}\right\}$.
(6) Which of the following series converge (state which tests/rules you use):
I. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
II. $\sum_{n=1}^{\infty} 2^{n}$
III. $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$
IV. $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$

2. Tricky Problems

(1) Find the center and radius of convergence of the power series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}(1+n)}{2 n}(x-5)^{n} .
$$

Investigate the convergence on the endpoints of the interval.
(2) Do the same for:

$$
\sum_{n=2}^{\infty} \frac{2^{n}(x-3)^{n}}{\sqrt{n}}
$$

(3) Write the second-degree Taylor polynomial $\left(T_{2}\right)$ for $f(x)=\sqrt{x}$ centered at $a=100$. Use this to estimate $\sqrt{101}$. Estimate the error $\left(R_{2}\right)$.
(4) Find the first four nonzero terms of the MacLaurin series for $\int_{0}^{x} \sqrt{1+t^{3}} d t$.
(5) Find the value of

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin x-x}{2 x^{3}}
$$

(6) What is the limit as $n \rightarrow \infty$ of the sequence

$$
\left\{\left(1+\frac{1}{n^{2}}\right)^{n}\right\}
$$

(7) Express these series as closed form functions:
I. $\sum_{k=0}^{\infty} \frac{x^{k+3}}{3^{k} k!}$
II. $\sum_{n=0}^{\infty} \frac{n}{n+1} x^{n}$
III. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2 \cdot 4 \cdot 6 \cdots(2 n)}$

3. Challenge Problems

(1) Find the coefficient of x^{3} in the MacLaurin series for $x e^{x} \cos (x / 2)$.
(2) Does the series $\sum_{n=2}^{\infty} \frac{\log _{n}(n!)}{n^{3}}$ converge or diverge? Explain.
(3) Find the sum of the series

$$
\sum_{n=3}^{\infty} \ln \left[\left(\frac{n}{n+1}\right)^{3}\right]
$$

(4) Find $f^{(5)}(3)$ where $f(x)=x \ln (x)-3 \ln (x)$.
(5) (a) Find the Taylor Series of $\frac{1}{1-x}$ centered at $a=-2$. Find the radius of convergence.
(b) Based on this calculation, evaluate:

$$
\sum_{n=0}^{\infty} \frac{-(3-e)^{n}}{n \cdot 3^{n}}
$$

