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By Hung-Hsi Wu

Some 13 years ago, when the idea of creating a cadre of 
mathematics teachers for the upper elementary grades 
(who, like their counterparts in higher grades, would 
teach only mathematics) first made its way to the halls of 

the California legislature, the idea was, well, pooh-poohed. One 
legislator said something like: “All you have to do is add, subtract, 
multiply, and divide. How hard is that?”

The fact is, there’s a lot more to teaching math than teaching 
how to do calculations. And getting children to understand impor-

What’s Sophisticated about                
Elementary Mathematics?

tant ideas like place value and fractions is hard indeed.
As a mathematician who has spent the past 16 years trying to 

improve math education—including delivering intensive profes-
sional development sessions to elementary-grades teachers—I 
am an advocate for having math instruction delivered by math 
teachers as early as possible, starting no later than fourth grade.* 
But I also understand that until you appreciate the importance 
and complexity of elementary mathematics, it will not be apparent 
why such math teachers are necessary. 

In this article, I address two “simple” topics to give you an idea 
of the advanced content knowledge that is needed to teach math 
effectively. Our first topic—adding two whole numbers—is espe-
cially easy. The difficulty here is mostly in motivating and engag-
ing students so that they come to understand the standard addi-
tion algorithm and, as a result, develop a deeper appreciation of 
place value (which is an absolutely critical topic in elementary 
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Plenty—That’s Why Elementary Schools Need Math Teachers

*There have been calls for math teachers in the education literature, among them the 
National Research Council’s Adding It Up (see pages 397–398, available at www.nap.
edu/catalog.php?record_id=9822#toc) and the National Mathematics Advisory Panel’s 
Foundations for Success (see Recommendation 20 on page xxii, available at www.ed. 
gov/about/bdscomm/list/mathpanel/report/final-report.pdf).
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math). This discussion of addition may not convince you that 
math teachers are a necessity in the first through third grades, but 
it will give you a deeper appreciation of the important mathemati-
cal foundation that is being laid in the early grades.

Our second topic—division of fractions—is substantially 
harder, though it’s still part of the elementary mathematics con-
tent as it should be taught in fifth and sixth grades. This is a topic 
that, in my experience, many adults struggle with. My goal here is 
twofold: (1) to show you that elementary math can be quite 
sophisticated, and (2) to deepen your knowledge of division and 
fractions. Along the way, I think it will become apparent why 
mathematicians consider facility with fractions essential to, and 
excellent preparation for, algebra. By the end, I hope you will join 
me in calling for the creation of a cadre of teachers who specialize 
in the teaching of mathematics in grades 4–6. For simplicity, we 
will refer to them as math teachers, to distinguish them from ele-
mentary teachers who are asked to teach all subjects.

Adding Whole Numbers
Consider the seemingly mundane skill of adding two whole num-
bers. Take, for example, the following.

 

45
+ 31

76 
Nothing could be simpler. This is usually a second-grade lesson, 
with practice continuing in the third grade. But if you were the 
teacher, how would you convince your students that this is worth 
learning? Too often, children are given the impression that they 
must learn certain mathematical skills because the teacher tells 
them they must. So they go through the motions with little per-
sonal involvement. This easily leads to learning by rote. How, then, 
can we avoid this pitfall for the case at hand? One way is to teach 
them what it means to add numbers, why it is worth knowing, why 
it is hard if it is not done right, and finally, why it can be fun if they 
learn how to add the right way.

All this can be accomplished if you begin your lesson with a 
story, like this: Alan has saved 45 pennies and Beth has saved 31. 
They want to buy a small package of stickers that costs 75 cents, 
and they must find out if they have enough money together. To 
act this out, you can show children two bags of pennies, one bag 
containing 45 and the other 31. Now dump them on the mat and 
explain that they have to count how many there are in this pile. 
Chances are, they will mess up as they count. Let them mess up 
before telling them there is an easier way. Go back to the bags of 
45 and 31, and explain to them that it is enough to begin with 45 
and continue to count the pennies in the bag of 31. In other words, 
to find out how many are in 45 and 31 together, start with 45 and 
just go 31 more steps; the number we land on is the answer. To show 
them that making these steps corresponds exactly to counting, do 
a simple case with them. If there are 3 pennies in the smaller bag 
instead of 31, then going 3 steps from 45 lands at 48 because

45 → 46 → 47 → 48.

So 48 is the total number of pennies in the two bags of 45 and 3. 
Now ask them to count like this for 45 and 31; chances are, most 
of them will find this a bit easier but many will still mess up. You 
can help them get to 76, but they probably will get frustrated. That 
is good: here is something they want to learn, but they find it is 

not so easy. 
Then you get to play the magician. Tell them that what they are 

doing is called “adding numbers.” In this case, they are adding 31 
to 45, written as 45 + 31 (teach them to write addition horizontally 
as well as vertically from the beginning), and what it means is that 
it is the number they get by starting with 45 and counting 31 more 
steps. Show them they do not have to count so strenuously to get 
the answer to 45 + 31 because they can do two simple additions 
instead, one being 4 + 3 and the other 5 + 1, and these give the two 
digits of the correct answer 76. 

You can demonstrate this effectively by collecting the 45 pen-
nies and putting them into bags of 10; there will be 4 such bags 
with 5 stragglers. Do the same with the other 31 pennies. Then 
place these bags and stragglers on the mat again, and ask them 
how many pennies there are. It won’t take long for them to figure 
out that there are 4 + 3 bags of 10, and 5 + 1 stragglers.

They will figure out that 7 bags of 10 together with 6 stragglers 
total 76 again. Now ask them to compare counting the bags and 
stragglers with the magic you performed just a minute ago. If they 
don’t see the connection (and some won’t), patiently explain it to 
them. Of course, this is the time to review place value. (To better 
understand place value, and to prepare for the occasional 
advanced student, see the sidebar on page 9.) Then, you can use 
place value to explain that when they add the 4 bags of 10 to the 3 
bags of 10, they are actually adding 40 and 30.

 

45
+ 31

76 
→

40 + 5
+ 30 + 1

?     ?
→

40 + 5
+ 30 + 1

70 + 6
→

    45
+ 31
    76

Now, they will listen more carefully to your incantations of place 
value because you have given them more incentive to learn about 
this important topic.

As mentioned above, addition of whole numbers is done 
mainly in grades 2 and 3. Often, the addition algorithm is taught 
by rote, but some teachers do manage to explain it in terms of 
place value, as we have just done. Many educators believe that the 
real difficulty of this algorithm arises when “carrying” is neces-
sary, but conceptually, carrying is just a sidelight, a little wrinkle 
on the fabric. The key idea is contained in the case of adding with-
out carrying. If we succeed in getting students to thoroughly 
understand addition without carrying, then they will be in an 
excellent position to handle carrying too. (However, in my experi-
ence, the standard textbooks and teaching in most second- or 
third-grade classrooms focus on carrying before students are 
ready, and that is a pity.)

All whole-number computations are 
nothing but a sequence of single-digit 
computations artfully put together. This  
is the kind of thinking students will need 
to succeed in algebra and advanced 
mathematics. 
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Understanding the addition algorithm in terms of place value—
for example, that 45 + 31 is 40 + 30 and 5 + 1—is appropriate for 
beginners, but it cannot stop there. The essence of the addition 
algorithm, like all standard algorithms, lies in the abstract under-
standing that the arithmetic computations with whole numbers, 
no matter how large, can all be reduced to computations with 
single-digit numbers. (For more on this, see the sidebar on page 
10.) In other words, students’ ultimate understanding of these 
algorithms must transcend place value to arrive at the recognition 
that all whole-number computations are nothing but a sequence 
of single-digit computations artfully put together. This is the kind 
of thinking students will need to succeed in algebra and advanced 
mathematics. More precisely, students should get to the point of 
recognizing that 45 + 31 is no more than the combination of two 
single-digit computations, 4 + 3 and 5 + 1. Whether the 4 stands 
for 40 or 40,000 and the 3 stands for 30 or 30,000 is completely 
irrelevant.

To drive home this point, consider the following two addition 
problems.

 

45
+ 31

76 

45723
+ 31251

76974

The problem on the left is the one we have been working with, and 
parts of the problem on the right are tantalizingly similar, except 
that the 4 and 5 in the first row are no longer 40 and 5 but 40,000 
and 5,000, respectively. Similarly, the 3 and 1 in the second row 
are not 30 and 1 but 30,000 and 1,000, respectively. Yet, do the 
changes in the place values of these four single-digit numbers (4, 
5, 3, and 1) change the addition? Not at all, because the result is 
still the same two digits, 7 and 6, and that is the point. 

We are now able to directly address the main concern of this 
article, which is the need for math teachers at least starting in 
grade 4. In grade 4, the multiplication algorithm has to be 
explained. A teacher knowledgeable in mathematics would know 
that this is the time to cast a backward glance at the addition algo-
rithm to make sure students finally grasp a real understanding of 
what this algorithm is all about: just a sequence of single-digit 
computations. Why is this knowledge so critical at this point? 
Because it leads seamlessly to the explanation of why students 
must memorize the multiplication table (of single-digit numbers) 
to automaticity before they do multidigit multiplication: in the 
same way that knowing how to add single-digit numbers enables 
them to add any two numbers, no matter how large, knowing how 
to multiply single-digit numbers enables them to multiply any 
two numbers, no matter how large. We want students to be 
exposed, as early as possible, to the idea that beyond the nuts and 
bolts of mathematics, there are unifying undercurrents that con-
nect disparate pieces.

Let us go a step further to make explicit the role of single-digit 
computations in the additions of 45 + 31 and 45723 + 31251. If 
students have been given the proper foundation in second grade, 
then in fourth grade, a math teacher will be able to give the fol-
lowing explanation.

            

45 + 31  = (4 × 10) + 5 + (3 × 10) + 1
  = (4 × 10) + (3 × 10) + 5 + 1
  = (4 + 3) × 10 + (5 + 1)

In the last equality, we used the distributive law—i.e., (b + c)a = 
ba + ca—to rewrite (4 × 10) + (3 × 10) as (4 + 3) × 10. For 45723 + 

31251, we will focus only on 45 and 31 to enhance clarity. We have, 
then, the following.
 

     

45723 + 31251 = (4 × 10000) + (5 × 1000) + …

     + (3 × 10000) + (1 × 1000) + …

 = (4 × 10000) + (3 × 10000) + …

            + (5 × 1000) + (1 × 1000) + …

 = (4 + 3) × 10000 + (5 + 1) × 1000 + …

Again, the last equality makes use of the distributive law. If we 
compare the two expressions (4 + 3) × 10 + (5 + 1) and (4 + 3) × 
10000 + (5 + 1) × 1000, we see clearly that the same single-digit 
additions (4 + 3) and (5 + 1) are in both of them, and that the dif-
ference between these expressions lies merely in whether these 
single-digit sums are multiplied by 10 or 1,000 or 10,000, the place 
values of the respective digits. This clearly illustrates the primacy 
of single-digit computations in the addition algorithm.

Returning to our original second-grade lesson of 45 + 31, let’s 
review what you have accomplished. You have 
shown students what addition means; this is 
important because we want to promote 
the good practice among students 
that through precise defini-
tions, they get to know 
what they will do before 
doing it .  Then you 
made them want to 
learn it,  and made 
them realize that the 
most obvious method 
(counting) is not the 
easiest. Best of all, you 
opened their eyes to the 
magic of learning: acquiring 
the power of making something complicated much simpler. 
Instead of tedious, error-prone counting, you used the concept of 
place value to introduce the idea of breaking up a task digit by digit 
and adding only two single-digit numbers in succession. A couple 
of years later, the fourth-grade math teacher will have the oppor-
tunity to explain and make explicit the idea that to add any whole 
numbers, no matter how large, all the children need to do is add 
single-digit numbers.

The main goal of the elementary mathematics curriculum is to 
provide children with a good foundation for mathematics. In this 
context, the addition algorithm, when taught as described above 
in grades 2–4, serves as a splendid introduction. It teaches chil-
dren an important skill in mathematics: if possible, always break 
up a complicated task into a sequence of simple ones. This is why 
we do not look at 45 and 31, but only 4 and 3, and 5 and 1.

Of course, they will encounter somewhere down the road 
something like 45 + 37, but they will be in a position to under-
stand that the carrying step is actually adding a 1 to the 10s col-
umn. Despite how it is presented in most U.S. textbooks, carrying 
is not the main idea of the addition algorithm. The main idea is 
to break up any addition into the additions of single-digit num-
bers and then, drawing on our understanding of place value, put 
these simple computations together to get the final answer. If 
you can make your students understand that, you are doing fan-
tastically well as a teacher, because you have taught them impor-
tant mathematics. They now have an important skill and know 
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the reasoning behind it—and they will have used both to deepen 
their appreciation of place value.

Dividing fractions
I’ve had plenty of encounters with well-educated adults who can’t 
divide fractions without a calculator, or who can, but have no idea 
why the old rule “invert and multiply” works. With that in mind, 
I’ll break this topic into three parts: we’ll review division, then 
fractions, and finally the division of fractions. Along the way, the 
answer to our larger question—what’s sophisticated about ele-
mentary mathematics?—will become apparent, as will the ways 
in which mastering fractions prepares students for algebra.

Let’s begin with the division of whole numbers, which would 

normally be taught in third grade. What does 24/6 = 4 
mean? In the primary grades, we teach two meanings of 
division of whole numbers: partitive division* and mea-

surement division. For brevity, let us concentrate only on mea-
surement division, in which the meaning of 24/6 = 4 is that by sepa-
rating 24 into equal groups of 6, we find that there are 4 groups in 
all. So the quotient 4 tells how many groups of 6s there are in 24. 

By fifth grade, students should be ready to apply their under-
standing of measurement division to a more symbolic format. This 
will prepare them for the division of fractions, for which the idea of 
“dividing into equal groups” often is not very helpful in calculating 
answers. (For example, the division of ¹⁄₇ by ¹⁄₂ does not lend itself 
to any easy interpretation of dividing ¹⁄₇ into equal groups of ¹⁄₂. 
Being able to draw or visualize where ¹⁄₇ and ¹⁄₂ fall on the number 
line is helpful in estimating the answer, but not in arriving at the 
precise answer, ²⁄₇.) Any understanding of fraction division, there-
fore, has to start from a more abstract level. With this in mind, we 
express the separation of 24 objects into 4 groups of 6s symbolically 
as 24 = 6 + 6 + 6 + 6, which is, of course, equal to 4 × 6, by the very 
definition of whole-number multiplication. Thus, the division state-
ment 24/6 = 4 implies the multiplication statement 24 = 4 × 6. 

At this point, we must investigate whether the multiplication 
statement 24 = 4 × 6 captures all of the information in the division 
statement 24/6 = 4. It does, because if we know 24 = 4 × 6, then we 
know 24 = 6 + 6 + 6 + 6, and therefore 24 can be separated into 4 
groups of 6s. By the measurement meaning of division, this says 
24/6 = 4. Consequently, the multiplication statement 24 = 4 × 6 
carries exactly the same information as the division statement 
24/6 = 4. Put another way, the meaning of 24/6 = 4 is 24 = 4 × 6. 
This is the symbolic reformulation of the concept of division of 
whole numbers that we seek. 

This meaning of division is actually very clear from the stan-

dard algorithm for long division, as shown in the following 
example.

     4
6 ) 24

–24
0

What we tell children is that to divide 24 by 6, we look for the 
number which, when multiplied by 6, gives 24. (Of course, chil-
dren who have memorized the multiplication table of single-digit 
numbers will do this easily; those who haven’t will struggle.)

In a similar fashion, the meaning of 36/12 = 3 is that  
36 = 3 × 12, and the meaning of 252/9 = 28 is that 252 = 28 × 9, etc. 

There is a subtle point here that is usually slurred over in 
the upper elementary grades but should be pointed out: 
in our examples, the dividend (be it 24, 36, or 252) is a 
multiple of the divisor, since otherwise the quotient can-
not be a whole number. That said, now we can use abstract 
symbols† to express this new understanding of the division 
of whole numbers as follows: for whole numbers m and 
n, where m is a multiple of n and n is nonzero, the mean-
ing of the division m/n = q is that m = q × n.

Beginning in fifth grade, we should teach students to 
reconceptualize division from this point of view. Their 

math teachers should help them revisit division from the perspec-
tive of this new knowledge and reshape their thinking accordingly. 
Such is the normal progression of learning.

Note that this reconceptualization is not a rejection of students’ 
understanding of the division of whole numbers in their earlier 
grades. On the contrary, it evolves from that understanding and 
makes it more precise. This reconceptualization is important 
because the meaning of division, when reformulated this way, 
turns out to be universal in mathematics, in the following sense: 
if m and n are any two numbers (i.e., not just whole numbers) and 
n is nonzero, then the definition of “m divided by n equals q” is 
that m = q × n. In other words, m/n = q means m = q × n.

We now turn to fractions, a main source of math pho-
bia. In the early grades, grades 2–4 more or less, 
students mainly acquire the vocabulary of frac-
tions and use it for descriptive purposes (e.g., ¹⁄₄ of 

a pie). It is only in grades 5 and up that serious learning of the 
mathematics of fractions takes place—and that’s when students’ 
fear of fractions sets in.

From a curricular perspective, this fear can be traced to at least 
two sources. The first is the loss of a natural reference point when 
students work with fractions. In learning to deal with the math-
ematics of whole numbers in grades 1–4, children always have a 
natural reference point: their fingers. But for fractions, the cur-
ricular decision in the United States has been to use a pizza or a 
pie as the reference point. Unfortunately, while pies may be useful 
in the lower grades, they are an awkward model for fractions big-
ger than 1 or for any arithmetic operations with fractions. For 
example, how do you multiply two pieces of pie or use a pie to 
solve speed or ratio problems? 

A second source of the fear of fractions is the inherently abstract 

*An example of partitive division is to put 24 items in 6 bags (each with an equal 
number of items), and find that each bag has 4 items.

†This definitely would be appropriate for fifth-graders once the idea of using symbols 
for abbreviations is introduced and many examples are given for illustration.

We want students to be exposed, as early 
as possible, to the idea that beyond the 
nuts and bolts of mathematics, there are 

unifying undercurrents that connect  
disparate pieces.
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nature of the concept of a fraction. Whereas students’ intuition of 
whole numbers can be grounded in counting their fingers, learning 
fractions requires a mental substitute for their fingers. By its very 
nature, this mental substitute has to be abstract because most frac-
tions (e.g., ¹⁹⁄₁₃ or ²⁵¹⁄₆₀₄) tend not to show up in the real world. 

Because fractions are students’ first serious excursion into 
abstraction,* understanding fractions is the most critical step in 
understanding rational numbers† and in preparing for algebra. In 
order to learn fractions, students need to know what a fraction is. 
Typically, our present math education lets them down at this criti-
cal juncture. All too often, instead of providing guidance for stu-
dents’ first steps in the realm of abstraction, we try in every con-
ceivable way to ignore this need and pretend that there is no 

abstraction. When asked, what is a fraction?, we say it is just some-
thing concrete, like a slice of pizza. And when this doesn’t work, 
we continue to skirt the question by offering more metaphors and 
more analogies: What about a fraction as “part of a whole”? As 
another way to write division problems? As an “expression” of the 
form m/n for whole numbers m and n (n > 0)? As another way to 
write ratios? These analogies and metaphors simply don’t cut it. 
Fractions have to be numbers because we will add, subtract, mul-
tiply, and divide them.

What does work well for showing students what fractions really 
are? The number line. In the same way that fingers serve as a natu-
ral reference point for whole numbers, the number line serves as 
a natural reference point for fractions.‡ The use of the number line 
has the immediate advantage of conferring coherence on the 
study of numbers in school mathematics: a number is now defined 
unambiguously to be a point on the number line.§ In particular, 
regardless of whether a number is a whole number, a fraction, a 
rational number, or an irrational number, it takes up its natural 
place on this line. (For the definition of fractions, including how 
to find them on the number line, see the sidebar on page 12.)

Now, let’s describe the collection of numbers called fractions. 
Divide a line segment from 0 to 1 into, let’s say, 3 segments of equal 
length; do the same to all the segments between any two consecu-
tive whole numbers. These division points together with the whole 
numbers then form a sequence of equal-spaced points. These are 

the fractions with denominators equal to 3: the first division point 
to the right of 0 is what is called ¹⁄₃, and the succeeding points of 
the sequence are then ²⁄₃, ³⁄₃, ⁴⁄₃, etc. The same is true for ¹⁄ⁿ, ²⁄ⁿ, ³⁄ⁿ, 
etc., for any nonzero whole number n. Thus, whole numbers 
clearly fall within the collection of numbers called fractions. If we 
reflect the fractions to the left of 0 on the number line, the mirror 
image of the fraction m/ⁿ is by definition the negative fraction  
– m/ⁿ. Therefore, positive and negative fractions are now just 
points on the number line. Most students would find marking off 
a point ¹⁄₂ of a unit to the left of 0 to be much less confusing than 
contemplating a negative ¹⁄₂ piece of pie.

The number line is especially helpful in teaching students 
about the theorem on equivalent fractions, the single most impor-
tant fact in the subject. To state it formally, for all whole numbers 
k, m, and n (where k ≠ 0 and n ≠ 0), m/ⁿ = km/kⁿ. In other words, 
m/ⁿ and km/kⁿ represent the same point on the number line. Let 
us consider an example to get a better idea: suppose m = 4, n = 3, 
and k = 5. Then the theorem asserts that

         
4 = 5 × 4 
3      5 × 3

and, of course,   5 × 4 = 20 . 
5 × 3      15

The number line makes the equality clear. To see how ⁴⁄₃ equals 
²⁰⁄₁₅, draw a number line and divide the space between 0 and 1, as 
well as between 1 and 2, into three equal parts. Count up to the 
4th point on the sequence of thirds—that’s ⁴⁄₃. Then take each of 
the thirds and divide them into 5 equal parts (an easy way to make 
15ths). Count up until you get to the 20th point on the sequence 
of 15ths—that’s ²⁰⁄₁₅, and it’s in the same spot as ⁴⁄₃.

            

0                   1
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
              ⅓           ⅔            ₃⁄₃           ₄⁄₃
             ₅⁄1₅         10⁄1₅       15⁄1₅        20⁄1₅

The use of the number line has another advantage. Having 
whole numbers displayed as part of fractions allows us to see more 
clearly that the arithmetic of fractions is entirely analogous to the 
arithmetic of whole numbers. For example, in terms of the num-
ber line, 4 + 6 is just the total length of the concatenation (i.e., 
linking) of a segment of length 4 and a segment of length 6.

            
|                              |                                            |            
 4 6 

Then in the same way, we define ¹⁄₆ + ¹⁄₄ to be the total length of 
the concatenation of a segment of length ¹⁄₆ and a segment of 
length ¹⁄₄ (not shown in proportion with respect to the preceding 
number line).

            
|                              |                                            |            
 1∕6 1∕4 

We arrive at ¹⁄₆ + ¹⁄₄ = ¹⁰⁄₂₄ as we would if we were adding whole 
numbers, as follows. Using the theorem on equivalent fractions, 
we can express ¹⁄₆ and ¹⁄₄ as fractions with the same denominator: 
¹⁄₆ = ⁴⁄₂₄ and ¹⁄₄ = ⁶⁄₂₄. The segment of length ¹⁄₆ is therefore the 
concatenation of 4 segments each of length ¹⁄₂₄, and the segment 
of length ¹⁄₄ is the concatenation of 6 segments each of length ¹⁄₂₄. 
The preceding concatenated segment is therefore the concatena-
tion of (4 + 6) segments each of length ¹⁄₂₄, i.e., ¹⁰⁄₂₄.** In this way, 

Because fractions are students’ first serious 
excursion into abstraction, understanding 
fractions is the most critical step in preparing 
for algebra.

*Very large numbers are already an abstraction to children, but children tend not to 
be systematically exposed to such numbers the way they are to fractions.
†Rational numbers consist of fractions and negative fractions, which of course include 
whole numbers.
‡See, for example, page 4-40 of the National Mathematics Advisory Panel’s “Report 
of the Task Group on Learning Processes,” www.ed.gov/about/bdscomm/list/math 
panel/report/learning-processes.pdf.
§We exclude complex numbers from this discussion, as they are not appropriate for 
the elementary grades.

**Naturally, the theorem on equivalent fractions implies that 10/24 = 5/12, as  
10/24 = (2 × 5)/(2 × 12), but contrary to common belief, the simplification is of no 
great importance. Notice in particular that there was never any mention of the  
“least common denominator.”

(Continued on page 10)
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Many teachers, rightly in my opinion, believe place value is the 
foundation of elementary mathematics. It is often taught well, 
using manipulatives such as base-10 blocks to help children grasp 
that, for example, the 4 in 45 is actually 40 and the 3 in 345 is 
actually 300.

But despite the importance of place value, the rationale 
behind it usually is not taught in colleges of education or in math 
professional development. That’s probably because 
the deeper explanation is not appropriate for 
most students in the first and second grades, 
which is when place value is emphasized. But it is 
appropriate for upper-elementary students who 
are exploring number systems that are not base 10 
(which often is done, without enough explana-
tion, through games)—and it is certainly some-
thing that math teachers should know. So here it 
is: the sophisticated side of the simple idea of 
place value.

Let’s begin with a look at the basis of our 
so-called Hindu-Arabic numeral system.* The most 
basic function of a numeral system is the ability to 
count to any number, no matter how large. One 
way to achieve this goal is simply to make up 
symbols to stand for larger and larger numbers as 
we go along. Unfortunately, such a system 
requires memorizing too many symbols, and 
makes devising a simple method of computation 
impossible. The overriding feature of the Hindu-
Arabic numeral system, which will be our exclusive 
concern from now on, is the fact that it limits itself 
to using exactly ten symbols—0, 1, 2, 3, 4, 5, 6, 7, 
8, 9—to do all the counting.† Let us see, for 
example, how “counting nine times” is repre-
sented by 9. Starting with 0, we go nine steps and 
land at 9, as shown below.

0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9

But, if we want to count one more time beyond the 
ninth (i.e., ten times), we would need another symbol. 
Since we are restricted to the use of only these ten symbols, 
someone long ago got the idea of placing these same ten 
symbols next to each other to create more symbols. 

The most obvious way to continue the counting is, of course, 
to simply recycle the same ten symbols over and over again, 
placing them in successive rows, as follows.

0 1 2 3 4 5 6 7 8 9 
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
.     .     .     .     .
.     .     .     .     .
.     .     .     .     .

In this scheme, counting nine times lands us at the 9 of the first 
row, and counting one more time would land us at the 0 of the 
second row. If we want to continue counting, then the next step 
lands us at the 1 of the second row, and then the 2 of the second 
row, and so on.

However, this way of counting obviously suffers from the 
defect of ambiguity: there is no way to differentiate the first row 

from the second row so that, for example, going both 
two steps and twelve steps from the first 0 will 

land us at the symbol 2. The central break-
through of the Hindu-Arabic numeral system is 
to distinguish these rows from each other by 
placing the first symbol (0) to the left of all the 
symbols in the first row, the second symbol (1) 

to the left of all the symbols in the second row, 
the third symbol (2) to the left of all the symbols in 

the third row, etc.

00  01  02  03  04  05  06  07  08  09
10  11  12  13  14  15  16  17  18  19
20  21  22  23  24  25  26  27  28  29
30  31  32  33  34  35  36  37  38  39
 .           .           .           .           .
 .           .           .           .           .
 .           .           .           .           .
90  91  92  93  94  95  96  97  98  99

Now, the tenth step of counting lands us at 10, the 
eleventh step at 11, etc. Likewise, the twentieth step 
lands us at 20, the twenty-sixth step at 26, the 
thirty-first step at 31, etc. By tradition, we omit the 0s 
to the left of each symbol in the first row. That done, 
we have re-created the usual ninety-nine counting 
numbers from 1 to 99. 

We now see why the 2 to the left of the symbols 
on the third row stands for 20 and not 2, because the 
2 on the left signifies that these are numbers on the 

third row, and we get to them only after we 
have counted 20 steps from 0. Similarly, we 

know 31 is on the fourth row because the 
3 on the left carries this 

information; after 
counting thirty steps 
from 0 we land at 30, 

and one more step 
lands us at 31. So the 3 of 

31 signifies 30, and the 1 signifies one more step beyond 30. 
With a trifle more effort, we can 

carry on the same discussion to 
three-digit numbers (or more). The 
moral of the story is that place 
value is the natural consequence 
of the way counting is done in the 
decimal numeral system.

For a fuller discussion, including 
numbers in arbitrary base, see 
pages 7–9 of The Mathematics 
K–12 Teachers Need to Know on 
my Web site at http://math.
berkeley.edu/~wu/School 
mathematics1.pdf.

–H.W.

Understanding Place Value

*This term is historically correct in the sense that the Hindu-Arabic numeral system 
was transmitted to the West from the Islamic Empire around the 12th century, and 
the Arabs themselves got it from the Hindus around the 8th century. However, recent 
research suggests a strong possibility that the Hindus, in turn, got it from the Chinese, 
who have had a decimal place-value system since time immemorial. See Lay Yong 
Lam and Tian Se Ang, Fleeting Footsteps: Tracing the Conception of Arithmetic and 
Algebra in Ancient China (Hackensack, NJ: World Scientific, 1992).

†Historically, 0 was not among the symbols used. The emergence of 0 (around the 9th 
century and beyond) is too complicated to recount here.
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students get to see that fractions are the natural extension of whole 
numbers and not some confusing new thing. This realization 
smoothes the transition from computing with whole numbers to 
computing with fractions.

Hopefully this discussion has smoothed the transition 
for you too, because it’s time for us to skip ahead to 
sixth grade and tackle division with fractions. Having 
learned to add, subtract, and multiply with fractions, 

students should be comfortable with fractions as numbers (just 
like whole numbers). So, their learning to divide with fractions 

can make use of the same scaffolding as learning to divide with 
whole numbers; students proceed from the simple to the com-
plex. For example, a simple problem like ¹⁄₂ ÷ ¹⁄₄ = 2 could be taught 
using the measurement definition of division and showing stu-
dents on the number line that ¹⁄₄ appears twice in ¹⁄₂. That’s fine 
as an introduction, but ultimately, in order to prepare for more 
advanced mathematics, students must grasp a more abstract—
and precise—definition of division with fractions. They must be 
able to answer the following question:

             Why does  5     9  equal  5 × 4
6     4             6     9

?

In other words, why invert and multiply? To give an explanation, 

In the context of school mathematics, an algorithm is a finite 
sequence of explicitly defined, step-by-step computational 
procedures that end in a clearly defined outcome. The so-called 
standard algorithms for the four arithmetic operations with 
whole numbers are perhaps the best known algorithms.

At the outset, we should make clear that there is no such 
thing as the unique standard algorithm for any of the four 
operations +, −, ×, or ÷, because minor variations have been 
incorporated into the algorithms by various countries and ethnic 
groups. Such variations notwithstanding, the algorithms provide 
shortcuts to what would otherwise be labor-intensive computa-
tions, while the underlying mathematical ideas always remain 
the same. Therefore, from a mathematical perspective, the label 
“standard algorithms” is justified.

While it is easy to see why these algorithms were of interest 
before calculators became widespread, a natural question now 
is why we should bother to teach them. There are at least two 
reasons. First, without a firm grasp of place value and of the 
logical underpinnings of the algorithms, it would be impossible 
to detect mistakes caused by pushing the wrong buttons on a 
calculator. A more important reason is that, in mathematics, 
learning is not complete until we know both the facts and their 
underlying reasons. For the case at hand, learning the explana-
tions for these algorithms is a very compelling way to acquire 
many of the basic skills as well as the abstract reasoning that 
are integral to mathematics. Both these skills and the capacity 
for abstract reasoning are absolutely essential for understand-
ing fractions, decimals, and, therefore, algebra in middle 
school. One can flatly state that if students do not feel comfort-
able with the mathematical reasoning used to justify the 
standard algorithms for whole numbers, then their chances of 
success in algebra are exceedingly small.

These algorithms also highlight one of the basic tools used 
by research mathematicians and scientists: namely, that 
whenever possible, one should break down a complicated task 
into simple subtasks. To be specific, the leitmotif of the 
standard algorithms is as follows: to perform a computation 
with multidigit numbers, break it down into several steps so 
that each step (when suitably interpreted) is a computation 
involving only single-digit numbers. Therefore, a virtue of the 
standard algorithms is that, when properly executed, they 
allow students to ignore the actual numbers being computed, 
no matter how large, and concentrate instead on single digits. 

This is an excellent 
example of the kind of 
abstract thinking that is 
critical to success in 
mathematics learning. 

Building on the 
discussion of the addition 
algorithm given in the 
main article, we can 
further illustrate this leitmotif 
with the multiplication algo-
rithm. In this case, let us assume 
that students already know the meaning of multiplication as 
repeated addition. The next step toward understanding 
multiplication requires that they know the multiplication table 
by heart—i.e., that they know the multiplication of single-digit 
numbers to automaticity. We now show, precisely, how this 
knowledge allows them to compute the product 257 × 48. First, 
observe that 257 = (2 × 100) + (5 × 10) + 7, so that by the 
distributive law [i.e., a(b + c) = ab + ac]:

257 × 4 = (2 × 4) × 100 + (5 × 4) × 10 + (7 × 4) and  
257 × 8 = (2 × 8) × 100 + (5 × 8) × 10 + (7 × 8).

Since they already know the single-digit products (2 × 4),  
(5 × 4), (7 × 4), (2 × 8), (5 × 8), and (7 × 8), and they know how 
to add, they can compute 257 × 4 and 257 × 8. Such being the 
case, we further note that 48 = (4 × 10) + 8, so that again by 
the distributive law:

257 × 48 = (257 × 4) × 10 + (257 × 8).

The right side being something they already know how to 
compute, they have therefore succeeded in computing 257 × 48 
starting with a knowledge of the multiplication table. (For lack 
of space, we omit the actual writing out of the multiplication 
algorithm.) 

Although the case of the long-division algorithm is more 
sophisticated, the basic principle is the same: it is just a 
sequence of single-digit computations. 

For further details on the standard algorithms, see pages 
38–90 of the first chapter of a professional development text 
for teachers that I am currently writing, available at http://
math.berkeley.edu/~wu/EMI1c.pdf.

–H.W.

Teaching the Standard Algorithms

(Continued from page 8)
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we have to ask what it means to divide fractions in the first place. 
The fact that if we do not specify the meaning of dividing fractions, 
then we cannot possibly get a formula for it should be totally obvi-
ous, yet this fact is not common knowledge in mathematics edu-
cation. For such a definition, let us go back to the concept of divi-
sion for whole numbers. Recall that in the case of whole numbers, 
having a clearly understood meaning for multiplication (as 
repeated addition) and division (as measurement division) 
allowed us to conclude that the meaning of the division statement 
m/n = q for whole numbers m, n, and q (n > 0) is inherent in the 
multiplication statement m = q × n. But now we are dealing with 
fractions, and the situation is different. To keep this article from 
becoming too long, let’s assume that we already know how to 
multiply fractions,* but we are still searching for the meaning of 
fraction division. Knowing that fractions and whole numbers are 
on the same footing as numbers, it would be a reasonable working 
hypothesis that if m/n = q means m = q × n for whole numbers m, 
n, and q, then the direct counterpart of this assertion in fractions 
should continue to hold. Now, if M, N, and Q are fractions (N > 0), 
we do not as yet know what M/N = Q means, although we know 
the meaning of M = Q × N because we know how to multiply frac-
tions. Therefore, the only way to make this “direct counterpart” in 
fractions come true is to use it as a definition of fraction division. 
In other words, we adopt the following definition: for fractions M 
and N (N > 0), the division of M by N, written M/N, is the fraction 
Q, so that M = Q × N. 

We’ll get acquainted with this definition by looking at a special 
case. Suppose 

            
5     9  = Q for a fraction Q. 
6     4          

What could Q be? By definition, this Q must satisfy ⁵⁄₆ = Q × ⁹⁄₄. 
Now, recalling that m/ⁿ = km/kⁿ (the theorem on equivalent frac-
tions), we use this fact to find Q by multiplying both sides of ⁵⁄₆ = 
Q × ⁹⁄₄  by ⁴⁄₉. 

            

5  × (4) = Q  ×  9  ×  (4)  6       9               4        9                 

               =  Q  ×  (9 × 4)  
                       (4 × 9)
               =  Q  ×  1  = Q   

This is the same as ⁵⁄₆ × ⁴⁄₉ = Q. We can easily check that, indeed, 
this Q satisfies ⁵⁄₆ = Q × ⁹⁄₄. So, we see that

            
5     9  =  5 × 4
6     4      6     9

and we have verified the invert-and-multiply rule in this special 
case. But the reasoning is perfectly general, and it verifies in 
exactly the same way that for a nonzero fraction c/d, if (a/b)/(c/d) 
is equal to a fraction Q, then Q is equal to (a/b) × (d/c). Therefore, 
the invert-and-multiply rule is always correct.

We have been staring at the concept of the division of fractions 
for quite a while, and we seem to be getting there because we 
have explained the invert-and-multiply rule. Therefore, it may be 
a little deflating to say that although we are getting very close, we 
are not quite there yet. There is a subtle point about the definition 
of fraction division that is still unsettled. This is something one 

should probably not bring up in a sixth-grade classroom, but 
which is, nevertheless, something a math teacher should be 
aware of. The question is whether, for arbitrary fractions M and 
N (N > 0), we can always divide M by N—i.e., whether there is 
always a fraction Q so that M = Q × N. The answer, of course, is 
yes: if M = a/b and N = c/d, then Q = (a/b) × (d/c) would do. So the 
upshot of all this is that we can always divide a fraction M by a 
nonzero fraction N, and the quotient, to be denoted by M/N, is 
the fraction obtained by the invert-and-multiply rule.

Once we know the meaning of division, we see there is nothing 
to the procedure of invert and multiply. What is sobering is that 
the rhyme, “Ours is not to reason why; just invert and multiply,” 
gets it all wrong. With a precise, well-reasoned definition, there is 

no need to wonder why—the answer is clear. Thus, we return to 
our earlier theme: before we do anything in mathematics, we must 
make clear what it is we are doing. In other words, we must have 
a precise definition of division before we can talk about its proper-
ties. (And we must have a precise definition of fractions before we 
can expect students to do anything with them.)

But one question remains: if division is just multiplication in 
a different format, why do we need division at all? The correct 
answer is that certain situations in life require it. An example of 
such a problem is the following:

A 5-yard ribbon is cut into pieces that are each ³⁄₄ yard long 
to make bows. How many bows can be made?

Students usually recognize by rote that this problem calls for a 
division of 5 by ³⁄₄, but not the reason why division should be used. 
To better understand the reason for dividing, suppose the prob-
lem reads, instead, “A 30-yard ribbon is cut into pieces that are 
each 5 yards long. How many pieces can be made?” It would fol-
low from the measurement interpretation of the division of whole 
numbers that the answer is 30/5 = 6 pieces—i.e., there are six 5s 
in 30. The use of division for this purpose is well understood. 

However, we are now dealing with pieces whose common 
length is a fraction ³⁄₄, and the reason for solving the problem by 
dividing 5 by ³⁄₄ is more problematic for many students. But if we 
use the preceding definition of division, the reason emerges with 
clarity. Suppose Q bows can be made from the ribbon. Here Q 
could be a fraction, and the meaning of “Q bows” can be explained 
by using an explicit example. If Q = 6 ²⁄₃, for example, then “6 ²⁄₃ 
bows” means 6 pieces that are each ³⁄₄ yard long, plus a piece that 
is the length of 2 parts when the ³⁄₄ yard is divided into 3 parts of 
equal length. If multiplication is taught correctly, so that the mul-
tiplication of two fractions is defined clearly, one can then explain 
why Q bows, no matter what fraction Q is, have a total length of Q 
× ³⁄₄ yards. Therefore, if Q bows can be made from 5 yards of rib-

The rhyme, “Ours is not to reason why;  
just invert and multiply,” gets it all wrong. 
With a precise, well-reasoned definition, 
there is no need to wonder why—the 
answer is clear.

*The treatment of fraction multiplication in textbooks and in the education literature 
is mostly defective, but one can consult pages 62–74 of http://math.berkeley.edu/~wu 
/EMI2a.pdf for an introduction.
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bon, then 5 = Q × ³⁄₄. By the definition of fraction division, this is 
exactly the statement that

            
 5  = Q.  
³⁄₄

This is the reason why division should still be used to solve this 
problem. Incidentally, the invert-and-multiply rule immediately 
leads to Q = ²⁰⁄₃, which equals 6 ²⁄₃ pieces. In greater detail, that’s 
6 pieces and a leftover piece that is the length of 2 parts when ³⁄₄ 
yard is divided into 3 equal parts.

The Bigger Picture
At this point, I hope you can see that there’s more to teaching 
elementary mathematics than is initially apparent. The fact is, 
there’s much more to it than could possibly be covered in an 
article. But allow me to give you a glimpse of the bigger picture—of 
what elementary mathematics is really all about. I’ll conclude with 
some of the latest thinking on the subject, thinking that points to 
mathematics teachers in the upper elementary grades being our 
best hope for providing all students the sound mathematics foun-
dation they need.

Mathematics in elementary school is the foundation of all of 
K–12 mathematics and beyond. Therefore, to prepare students for 

all that is to come, it must, in a grade-appropriate manner, respect 
the basic characteristics of mathematics. What does this mean? 
To answer this question, we have to remember that the school 
mathematics curriculum, beginning with approximately grade 5, 
becomes increasingly engaged in abstraction and generality. It 
will no longer be about how to deal with a finite collection of num-
bers (such as, ¹⁄₂ × (27−11) + 56 = ?), but rather about what to do 
with an infinite collection of numbers all at once (such as, is it true 
that x⁴ + y⁴ = (x² + y² + √−2 xy)(x² + y² − √−2 xy) for all numbers x and 
y?). The progression of the topics, from fractions to negative frac-
tions, and on to algebra, Euclidean geometry, trigonometry, and 
precalculus, gives a good indication that to learn mathematics, a 
student gradually must learn to cope with abstract concepts and 
precise reasoning, and must acquire a coherent overview of topics 
that are, cognitively, increasingly complex and diverse. For this 
reason, students in the upper elementary grades must be pre-
pared for the tasks ahead by being slowly acclimatized to coher-
ence, precision, and reasoning, although always in a way that is 
grade appropriate. Allow me to amplify each of these character-
istics below.

Coherence: If you dig beneath the surface, you will find that the 

The precise definition of a fraction as a point on the number 
line is a refinement of, not a radical deviation from, the usual 
concept of a fraction as a “part of a whole.” As I will explain, 
this refinement produces increased simplicity, flexibility, and 
precision.

Let us begin with a line, which is usually taken to be a 
horizontal one, and fix two points on it. The one on the left will 
be denoted by 0, and the one on the right by 1. (Because we will 
not take up negative numbers, our discussion will focus entirely 
on the half-line to the right of 0.) Now as we move from 0 to the 
right, we mark off successive points, each of which is as far apart 
from its neighbors as 1 is from 0 (like a ruler). Label these points 
by the whole numbers 0, 1, 2, 3, etc.

0               1                2               3       etc.
|                 |                 |                 |

We begin with an informal discussion. If we adopt the usual 
approach to fractions, the “whole” would be taken to be the 
segment from 0 to 1, called the unit segment, to be denoted by 
[0, 1]. The number 1 is called the unit. Then a fraction such as ¹⁄₃ 
would be, by common consent, 1 part when the whole [0, 1] is 
divided into 3 equal parts. So far so good. But if we try to press 
forward with mathematics, we immediately run into trouble 
because a fraction is a number—not a shape or a geometric 
figure. The unit segment [0, 1] therefore cannot be the whole. 
The language of “equal parts” is also problematic because in 
anything other than line segments, it usually is not clear what 
“equal parts” means. For example, if the whole is a ham, does 
“equal parts” mean parts with equal weights, equal lengths, 
equal amounts of meat, equal amounts of bones, etc.? So, we 
are forced to introduce more precision into our discussion in 

order to avoid 
misunderstanding. 
What we should 
specify, instead, is 
that the whole is 
the length of the 
unit segment [0, 1], 
rather than the 
segment itself. When we say 
[0, 1] is divided into “equal 
parts,” what we should say is 
that [0, 1] is divided into 
segments of equal length. The 
fraction ¹⁄₃ therefore would be the length of 
any segment so that three segments of the same length, when 
pieced together, form a segment of length 1. Since all segments 
between consecutive whole numbers have length 1, when we 
likewise divide each of the segments between consecutive 
whole numbers into 3 segments of equal length, the length of 
each of these shorter segments is also ¹⁄₃. In particular, each of 
the following thickened segments has length ¹⁄₃ and is therefore 
a legitimate representation of ¹⁄₃.

  

0               1                2               3       etc.
|     |     |     |     |     |     |     |     |     |     |     |     

Now concentrate on the thickened segment on the far left. 
The distance of its right endpoint from 0 is naturally ¹⁄₃. Since the 
value of each whole number on the number line reveals its 
distance from 0 (e.g., the distance of the point labeled 3 is 
exactly 3 from 0), logic demands that we label the right end-
point of this segment by the fraction ¹⁄₃, and we call this 

Defining Fractions 
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segment the “standard representation” of ¹⁄₃. We also denote 
this thickened segment by [0, ¹⁄₃], because the notation clearly 
exhibits the left endpoint as 0 and the right endpoint as ¹⁄₃. To 
summarize, we have described how the naive notion of ¹⁄₃ as  
“1 part when the whole is divided into 3 equal parts” can be 
refined in successive stages and made into a point on the 
number line, as shown below.

  

0               1                2               3       etc.
|     |     |     |                 |                 |                 
     ⅓

In a formal mathematical setting, we now use this particular 
point as the official representative of ¹⁄₃. In other words, 
whatever mathematical statement we wish to make about the 
fraction ¹⁄₃, it should be done in terms of this point. This 
agreement enforces uniformity of language and lends clarity to 
any mathematical discussion about ¹⁄₃. At the same time, the 
preceding discussion also gives us confidence that we can relate 
this point on the number line to our everyday experience with 
¹⁄₃, should that need arise.

What we have done to the representation of ¹⁄₃ can be done 
to any fraction with a denominator equal to 3; for example, the 
standard representation of ²⁄₃ would be the marked point to the 
right of ¹⁄₃ on the line above, and that of ³⁄₃ would be 1 itself. In 
general, we identify any m⁄₃ for any whole number m with its 
standard representation, and we agree to let 0 be written as ⁰⁄₃. 
Here, then, are the first several fractions with denominators 
equal to 3.

          
          

 0               1                2               3       etc.
 |     |     |     |     |     |     |     |     |     |     |     |     
0∕3  ⅓  ⅔  ₃⁄₃  ₄⁄₃  ₅⁄₃  6∕3  7∕3  8∕3  9∕3 10∕3 11∕3

Notice that it is easy to describe each of these fractions. For 
example, ⁷⁄₃ is the 7th division point when the number line is 
divided into thirds (in self-explanatory language). Equivalently, 

we can also say that ⁷⁄₃ is the 7th multiple of ¹⁄₃ (again, in 
self-explanatory language).

What we have done to fractions with denominators equal to 
3 can be done to any fraction. In this way, we transform the 
naive concept of a fraction as a part of a whole into the clearly 
defined concept of a fraction as a point on the number line. 
There are many advantages of this indispensable transforma-
tion, but there are three that should be brought out right away.

On the number line, all points are on equal footing, so that 
in the preceding picture, for example, there is no conceptual 
difference between ²⁄₃ and ¹¹⁄₃ because both numbers are equally 
easy to access. The essence of this message is that, when a 
fraction is clearly defined as a point on the number line, the 
conceptual difference between so-called proper and improper 
fractions completely disappears. So the first major advantage of 
understanding fractions as points on the number line is that all 
fractions are created equal. Now we can discuss all fractions all 
at once with ease, whether proper or improper. In this small 
way, the concept of a fraction begins to simplify, and learning 
about fractions gets easier. 

The second major advantage is that such a concept of 
fractions is inherently flexible. Once we specify what the unit 1 
stands for, all fractions can be interpreted in terms of the unit. 
Now we are ready for that ham. If we let 1 stand for the weight 
of the ham, then ¹⁄₃ would represent a piece of ham that is a 
third of the whole ham in weight. If, on the other hand, we let 1 
stand for the volume of the ham, then the same fraction will 
now be a piece of ham that is a third of the whole ham in 
volume—e.g., in cubic inches. 

This brings us to the third major advantage: the increase in 
flexibility mandates an increase in precision. Gone is the loose 
reference to “equal parts” in such a setting, because one must 
ask, equal parts in terms of what unit?

–H.W.

main topics of the elementary curriculum are not a collection of 
unrelated facts; rather, they form a whole tapestry where each 
item exists as part of a larger design. Unfortunately, elementary 
school students do not always get to see such coherence. For 
example, although whole numbers and fractions are intimately 
related so that their arithmetic operations are essentially the same, 
too often whole numbers and fractions are taught as if they were 
unrelated topics. The comment I frequently hear that “fractions 
are such different numbers” is a good indication that elementary 
mathematics education, as it stands, cannot go forward without 
significant reform, such as the introduction of math teachers. 
Another example of the current incoherence is the fact that finite 
decimals are a special class of fractions, yet even in the upper 
elementary grades, decimals often are taught as a topic separate 
from fractions. As a result, students end up quite confused having 
to learn three different kinds of numbers (whole numbers, frac-
tions, and decimals), whereas learning about fractions should 
automatically make them see that the other two are just more of 
the same. These are only two of many possible examples of our 
splintered curriculum and the great harm it does to students’ 
learning. 

Another manifestation of the coherence of mathematics is the 

ubiquity of the general principle of reducing a complicated task 
to a collection of simple subtasks. This principle runs right through 
all the standard algorithms, and also all the algorithms for deci-
mals. In middle and high school mathematics, it also is the guid-
ing principle in the discussion of congruence and similarity, 
provided these concepts are presented correctly. It also should be 
the guiding principle in the discussion of quadratic functions and 
their graphs, thereby making the basic technique of completing 
the square both enlightening and inevitable. Similarly, we saw 
how one embracing definition of division clarifies the meaning of 
the division of whole numbers and fractions and, as students 
should be taught in later grades, all rational numbers, real num-
bers, and complex numbers. 

Precision: Children should learn about this mathematics tapestry 
in a language that does not leave room for misunderstanding or 
guesswork. It should be a language sufficiently precise so that they 
can reconstruct the tapestry step by step, if necessary. Too often, 
such precision of language is not achieved. For example, if you 
tell a sixth-grader that two objects are similar if they are the same 
shape but not necessarily the same size, it raises the question of 
what “same shape” means. A precise definition of similarity using 
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the concept of dilation from a point A would not allow for such 
confusion (as students will see that an object changes size, but 
not shape, when each point of the object is pushed away from or 
pulled into A by the same scaling factor).

Another example of the need for precision manifests itself in 
the way we present concepts. It is worth repeating that before we 
do anything in mathematics, we must make clear what it is that 
we are doing by providing precise definitions. There is no better 
example of the need for precision than the way fractions are gen-
erally taught in schools. Too often, fractions are taught without 
definitions, so that students are always in the dark about what 
fractions are. Thus, students multiply fractions without knowing 
what multiplication means and, of course, they invert and multi-
ply, but dare not ask why. It is safe to hypothesize that such con-
ceptual opaqueness is largely responsible for the notorious  

nonlearning of fractions—and, as a result, for great difficulty as 
students begin algebra.

Reasoning: Above all, it is important that elementary school math-
ematics, like all mathematics, be built on reasoning. Reasoning is 
the power that enables us to move from one step to the next. When 
students are given this power, they gain confidence that mathe-
matics is something they can do, because it is done according to 
some clearly stated, learnable, objective criteria. When students 
are emboldened to make moves on their own in mathematics, 
they become sequential thinkers, and sequential thinking drives 
problem solving. If one realizes that almost the whole of mathe-
matics is problem solving, the centrality of reasoning in mathe-
matics becomes all too apparent. 

When reasoning is absent, mathematics becomes a black box, 
and fear and loathing set in. An example of this absence is some 
children’s failure to shift successive rows one digit to the left when 
multiplying whole numbers, such as on the left below.

826
×      473

2478
5782 

+   3304
11564

826
×          473

2478
 5782 
        +    3304      

390698

If no reason is ever given for the shift, it is natural that children 
would take matters into their own hands by making up new rules. 
Worse, such children miss an excellent opportunity to deepen their 
understanding of place value and see that, in this example, the 
multiplication 4 × 8 is actually 400 × 800, and that this is the basic 
reason underlying the shift. Another notorious example is the addi-
tion of fractions by just adding the numerators and the denomina-
tors, something that happens not infrequently even in college. 

Learning cannot take place in the classroom if students are kept in 
the dark about why they must do what they are told to do.

The characteristics of coherence, precision, and reason-
ing are not just niceties; they are a prerequisite to mak-
ing school mathematics learnable. Too often, all three 
are absent from elementary curricula (at least as they 

are sketched out in both state standards and nationally marketed 
textbooks).* As a result, too often they also are absent from the 
elementary classroom. The fact that many elementary teachers 
lack the knowledge to teach mathematics with coherence, preci-
sion, and reasoning is a systemic problem with grave conse-
quences. Let us note that this is not the fault of our elementary 
teachers. Indeed, it is altogether unrealistic to expect our general-
ist elementary teachers to possess this kind of mathematical 
knowledge—especially considering all the advanced knowledge 
of how to teach reading that such teachers must acquire. Com-
pounding this problem, the pre-service professional development 
in mathematics is far from adequate.† There appears to be no hope 
of solving the problem of giving all children the mathematics edu-
cation they need without breaking away from our traditional 
practice of having generalist elementary school teachers.

The need for elementary teachers to be mathematically profi-
cient is emphasized in the recent report of the National Mathemat-
ics Advisory Panel.‡ Given that there are over 2 million elementary 
teachers, the problem of raising the mathematical proficiency of 
all elementary teachers is so enormous as to be beyond compre-
hension. A viable alternative is to produce a much smaller corps 
of mathematics teachers with strong content knowledge who 
would be solely in charge of teaching mathematics at least begin-
ning with grade 4. The National Mathematics Advisory Panel has 
taken up this issue. While the absence of research evidence about 
the effectiveness of such mathematics teachers precluded any 
recommendation from that body, the use of mathematics teachers 
in elementary school was suggested for exactly the same practical 
reasons.§ Indeed, this is an idea that each state should seriously 
consider because, for the time being, there seems to be no other 
way of providing our children with a proper foundation for math-
ematics learning.

We have neglected far too long the teaching of mathematics in 
elementary school. The notion that “all you have to do is add, sub-
tract, multiply, and divide” is hopelessly outdated. We owe it to 
our children to adequately prepare them for the technological 
society they live in, and we have to start doing that in elementary 
school. We must teach them mathematics the right way, and the 
only way to achieve this goal is to create a corps of teachers who 
have the requisite knowledge to get it done.   ☐

*See, for example, the National Mathematics Advisory Panel’s “Report of the Task 
Group on Conceptual Knowledge and Skills,” especially Appendix B, www.ed.gov/
about/bdscomm/list/mathpanel/report/conceptual-knowledge.pdf, and “Report of the 
Subcommittee on Instructional Materials,” www.ed.gov/about/bdscomm/list/
mathpanel/report/instructional-materials.pdf.
†See, for example, the National Council on Teacher Quality’s No Common Denomina-
tor, www.nctq.org/p/publications/reports.jsp.
‡See Recommendation 7 on page xviii and Recommendations 17 and 19 on page xxi 
in Foundations for Success: The Final Report of the National Mathematics Advisory 
Panel, www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf.
§Foundations for Success, Recommendation 20, page xxii, see note above for URL.

It is unrealistic to expect our generalist 
elementary teachers to possess this kind 
of mathematical knowledge—especially 
considering the advanced knowledge 
they must acquire to teach reading.
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