
Recent interest in mathematics education has put the
teaching of algebra in the national spotlight. The
present national goal is not only “Algebra For All,”

but also “Algebra in the Eighth Grade.” Because algebra has
come to be regarded as a gatekeeper course—those who suc-
cessfully pass through will keep going while those who don’t
will be permanently left behind—the high failure rate in al-
gebra, especially among minority students, has rightfully be-
come an issue of general social concern. Many solutions of a
pedagogical nature have been proposed, including the teach-
ing of “algebraic thinking” starting in kindergarten or first
grade. I will argue in this paper that no matter how much
“algebraic thinking” is introduced in the early grades and no
matter how worthwhile such exercises might be, the failure
rate in algebra will continue to be high unless we radically
revamp the teaching of fractions and decimals.

The proper study of fractions provides a ramp that leads
students gently from arithmetic up to algebra. But when the
approach to fractions is defective, that ramp collapses, and
students are required to scale the wall of algebra not at a
gentle slope but at a ninety degree angle. Not surprisingly,
many can’t. To understand why fractions hold the potential
for being the best kind of “pre-algebra,” we must first con-
sider the nature of algebra and what makes it different from
whole number arithmetic.

Algebra is generalized arithmetic. It is a more abstract and
more general version of the arithmetic operations with

whole numbers, fractions, and decimals. Generality means
algebra goes beyond the computation of concrete numbers
and focuses instead on properties that are common to all the
numbers under discussion, be it positive fractions, whole
numbers, etc. In whole number arithmetic, 5 + 4 = 9, for ex-
ample, means just that, nothing more, nothing less. But al-
gebra goes beyond the specific case to statements or equa-
tions that are true for all numbers at all times. Abstraction,
the other characteristic of algebra, goes hand-in-hand with
generality. One cannot define abstraction any more than one
can define poetry, but very roughly, it is the quality that fo-
cuses at each instant on a particular property to the exclu-
sion of others. In algebra, generality and abstraction are ex-
pressed in symbolic notation. Just as there is no poetry with-
out language, there is no generality or abstraction without
symbolic notation. Fluency with symbolic manipulation is
therefore an integral part of proficiency in algebra. I will give
an illustration of the concepts of generality and abstraction
and how they are served by the use of symbolic notation by
considering the problem of when the area of a rectangle with
a fixed perimeter is largest. This of course would not be ap-
propriate as an entry-level algebra problem, but we choose it
because it is an interesting phenomenon and because it illus-
trates the nature of algebra well. As preparation, let us begin
with some well-known algebraic identities.

If x, y and z are any three numbers, then

xy = yx
and

x(y + z) = xy + xz

These are called, respectively, the commutative law (of multi-
plication)—which simply means that changing the order of
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factors in multiplication does not change the answer—and
the distributive law, which means that if a number is broken
into parts and each part is multiplied, the answer is the same
as when the number is kept whole and multiplied. These
laws are usually taken as basic assumptions about all num-
bers, as we do likewise here. Using these simple but power-
ful mathematical laws, we can derive three general state-
ments about numbers. First, for any numbers a and b, the
following identity is always valid

(a + b)2 = a2 + 2ab + b2. (1)

This is easily derived from the preceding two identities by
substituting (a + b) for x , a for y, and b for z:

(a + b)2 = (a + b)(a + b)
= (a + b)a + (a + b)b (the distributive law)
= a(a + b) + b(a + b) (the commutative law)

= aa + ab + ba + bb (the distributive law twice)

= a2 + 2ab + b2 (the commutative law)

Now because identity (1) is valid for any two numbers a
and b—including negative numbers—we may replace b by
its opposite –b. When we do, identity (1) becomes:

(a + (–b))2 = a2 + 2a(–b) + (–b)2.

But a + (–b) = a – b, 2a(–b) = –2ab, and (–b)2 = b2. There-
fore we may rewrite the preceding as:

(a – b)2 = a2 – 2ab + b2 (2)

Identity (2) could have been derived directly as in identity
(1). The present derivation, however, serves the purpose of
illustrating one kind of abstract reasoning that routinely en-
ters into algebraic arguments: If a statement is true for all
numbers, then we can reap dividends by specializing the
statement to specific numbers. Let us see, for example, how
identities (1) and (2) can be used to compute with ease the
squares of numbers close to multiples of 10. Using identity
(1), we see that 622 = (60 + 2)2 = 602 + (2 x 60 x 2) + 22 =
3,600 + 240 + 4 = 3,844. Or, we can solve a seemingly more
difficult problem, (79)2, by first converting 79 to (80 – 1).
Then, using identity (2): 792 = (80 – 1)2 = 802 – (2 x 80 x 1)
+ 12 = 6,400 – 160 + 1 = 6,241. On a more sophisticated
level, (1) can be used to explain the standard algorithm for
the extraction of the square root of a whole number,1 but we
have to omit the details for lack of space.

We need one more identity. Again with a and b as arbi-
trary numbers, and using only the distributive and commu-
tative laws,

(a + b)(a – b) = a(a – b) + b(a – b) (distributive law)
= a2 – ab + ba – b2 (distributive law)
= a2 – ab + ab – b2 (commutative law)
= a2 –  b2

So we have:
a2 – b2 = (a + b)(a – b) (3)

Note that (3) can also be used to provide a simple way to

compute the product of some special numbers, e.g., 89 x 91
= (90 – 1)(90 + 1) = 902 – 12 = 8,100 – 1 = 8,099. Likewise,
117 x 123 = (120 – 3)(120 + 3) = 1202 – 32 = 14,400 – 9 =
14,391.

Let us now take up the problem of the areas of rectangles
in earnest: We want to show that the area of a rectangle with
unequal sides is less than the area of a square with the same
perimeter. (Recall that the perimeter of a rectangle is the sum
of the lengths of all four sides.) Right at the outset, notice
how this problem is distinctly different from a typical prob-
lem in arithmetic: Instead of saying that the rectangles of
sides 1.5 and 2.5, and 1.9 and 2.1 have areas less than that
of a square with sides equal to 2 (they all have perimeter
8)—a fact that can be easily verified by simple computa-
tions—we are claiming that, no matter what the lengths of the
sides of a rectangle may be, its area must be less than that of a
square with the same perimeter. This is an example of gener-
ality: not about one rectangle or a few rectangles, but about
all rectangles with unequal sides.

With very few exceptions in mathematics, one cannot un-
derstand the general without first understanding the particu-
lar. Let us, therefore, first verify such a claim about areas of
rectangles by considering some concrete cases. Take three
rectangles with perimeters equal to 8, say with sides of 1.7
and 2.3, 1.8 and 2.2, and 1.9 and 2.1. Let us check that
their areas are less than 4, which is the area of the square
with side 2 (and therefore perimeter 8):

1.7 x 2.3 = 3.91
1.8 x 2.2 = 3.96
1.9 x 2.1 = 3.99

Indeed, they all have areas of less than 4. Psychologically,
these numbers give us more confidence in the general case,
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but mathematically, they would serve no purpose beyond
themselves unless we can extract from them a common
thread that sheds light on all other rectangles. An inspection
of these numbers suggests that as the shorter side of the rec-
tangle increases toward 2 (from 1.7 to 1.8 to 1.9)—so that
correspondingly the longer side also decreases toward 2—the
area of the rectangle increases toward 4. To put this hypoth-
esis to the test, we look at the areas of rectangles with sides
1.99 and 2.01, and 1.999 and 2.001:

1.99 x 2.01 = 3.9999
1.999 x 2.001 = 3.999999

The new numerical data, therefore, support this hypothesis.
Of course, more numerical data should be compiled if this
discussion takes place in a classroom. Certainly rectangles
with other perimeters should be considered, for example,
those with sides 2.7 and 3.3, 2.8 and 3.2, and 2.9 and 3.1
(all with perimeter 12), etc. They will be seen to give further
corroboration of this hypothesis. The numerical evidence
therefore suggests that if d denotes the deficit of the shorter
side of the rectangle compared with the length of a side of
the square with the same perimeter, then as d gets smaller,
the area of the rectangle gets bigger. This tells us that we
should concentrate on this deficit in developing the general
case.

Thus, let the sides of a rectangle be a and b (a < b), and
let the side of the square with the same perimeter be s:

The area of the rectangle is then ab and the area of the
corresponding square is s2. What we want to show is there-
fore:

ab < s2. (4)

Because the rectangle and the square have the same perime-
ters, 2a + 2b = 4s, or what is the same thing, dividing all
terms by 2,

a + b = 2s. (5)

Now define a positive number d as the deficit of a com-
pared with s, i.e., d is the difference between the side of the
square and the shorter side of the rectangle:

a = s – d

Now if a is less than s by the amount d, then the longer side
b must exceed s by the same amount because, from (5), a
and b must add up to 2s. Thus,

b = s + d.

Now that we know that side a = s – d, and side b = s + d, we
can compute the area ab of the rectangle using identity (3),
which you will recall, in its general form, is a2 – b2 = (a +
b)(a – b):

ab = (s – d)(s + d) = s2 – d 2

Naturally, s2 – d 2 < s2 because d 2 is always a positive quantity.
Therefore, ab (the area of the rectangle), which we now see
is equal to s2 – d 2, must be less than s2 (the area of the
square), and this is exactly what we had set out to prove.

One fact easily stands out in the preceding considerations:
Fluency with the basic skills, both at the arithmetic and
symbolic levels, is a sine qua non of this demonstration. Flu-
ent computation with numbers lies at the foundation of the
symbolic manipulations and the ultimate solution because
the numerical experimentations furnished the platform to
launch the idea of writing ab as (s – d)(s + d). In addition, of
course, identity (3), the difference of squares, had to have
been at one’s fingertips before such an idea would surface in
the first place. Now, it could be argued that fluency with
arithmetic operations is irrelevant in this discussion because
all the numerical evidence we accumulated above could have
been easily obtained by use of a calculator. Such an argu-
ment may seem to be valid, but it overlooks a hidden factor.
If students are not sufficiently fluent with the basic skills to
take the numerical computations for granted, either because
they lack practice or rely too frequently on technology, then
their mental disposition toward computations of any kind
would soon be one of apprehension and ultimately instinc-
tive evasion. How, then, can they acquire the necessary con-
fidence to confront the kind of symbolic computations asso-
ciated with identities (1)-(3)? In other words, is it reasonable
to expect a person to run well if his walk is wobbly?

Having made the point that computational facility on
the numerical level is a prerequisite for facility on
the symbolic level, we must not oversimplify a com-

plex issue by equating the two kinds of facility. There is a siz-
able distance between them, and students in arithmetic need
a gradual acclimatization with the concepts of generality and
abstraction before they can learn to compute on a symbolic
level. In terms of the school curriculum, we can describe this
progression in greater detail. It is difficult to teach students in
whole number arithmetic about symbolic notation other
than to write down in symbolic form the commutative laws,
the distributive law, etc., because the basic computational al-
gorithms for whole numbers do not lend themselves to be ex-
plained symbolically. However, the subject of fraction arith-
metic—usually addressed in grades 5 and 6—is rife with op-
portunities for getting students comfortable with the abstrac-
tion and generality expressed through symbolic notation.
Consider for example the addition of fractions. If one stays
away from the concept of the lowest common denomina-
tor—a topic we will discuss later on—then for whole num-
bers a, b, c, and d, the following is true:

a c ad + bc
b

+
d

=
bd (6)

Pedagogically, we can approach this formula in the fol-
lowing way: Once the concept of addition for fractions has
been clearly defined, then this formula could be shown to be
true, first for small numbers such as a = 1, b = 3, c = 2, and
d = 5, and then for larger numbers such as a = 3, b = 12, c =
5, and d = 18. After a sufficient amount of practice, the
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proof of (6) for arbitrary whole numbers a, b, c, and d can
eventually be given. Here is an abstract situation where stu-
dents can slowly build up their intuition from concrete cases
to the general case, thereby gaining a gentle introduction to
symbolic computations. The importance of good teaching
in fractions as an introduction to algebra does not stop here,
however. As students get to understand the division of frac-
tions so that becomes meaningful even when a and b are
now themselves fractions, one goes on to prove that formula
(6) remains valid, as it stands, when a, b, c, and d are frac-
tions. Then it follows that (6) is also valid for finite deci-
mals. One can go further. A standard topic in algebra is ra-
tional expressions, which are quotients of the form , where
a and b are now polynomials in a variable x, such as a = x3 –
3x + 4 and b = 5x2 + 2. Then the addition of rational expres-
sions is also given by (6) for polynomials, a, b, c, and d.

The message is now clear: Formal abstraction is at the
heart of algebra. The addition-of-fractions formula (6) is an
example because the same formula is seen to encode seem-
ingly disparate information. If we look at the school mathe-
matics curriculum longitudinally, the development of for-
mula (6) from whole numbers a, b, c, d to polynomials as
described above takes place over a period of three to four
years, and it starts with the teaching of fractions. Without
this foundation in fractions, students who come to the study
of rational expressions in algebra are severely handicapped.

The importance of fluency with symbolic computa-
tions in algebra can be reinforced from a slightly dif-
ferent angle. Let us revisit the problem about the

area of rectangles and give it a new proof. Still assuming that
the sides of the given rectangle are a and b, with a < b, we
wish to show as before that its area is less than the area of
the square with the same perimeter 2a + 2b. Again let s be a
side of the square in question. Then, because the rectangle
and square have the same perimeter, we have 2a + 2b = 4s,
so that, dividing all terms by 4, s = ¹⁄₂ (a + b). Now the area
of the rectangle is ab and that of the square is s2 = [¹⁄₂(a +
b)]2 = ¹⁄₄(a + b)2. What we want to prove, in symbolic lan-
guage, is that ab < ¹⁄₄ (a + b)2, which, multiplying by 4, can
be rewritten as:

4ab < (a + b)2 (7)

Why should we believe (7) is true for any two numbers a
and b? Let us try some special cases. If a = 2 and b = 3, (7)
says 24 < 25; if a = 5 and b = 2, (7) says 40 < 49; if a = 4
and b = 11, (7) says 176 < 225; and if a = 7 and b = 9, then
(7) says 252 < 256. These are all true, of course. Let us also
try some small numbers: if a = ¹⁄₂ and b = 3, (7) says 6 <
(3¹⁄₂)2, which is true because 6 < 9 = 32 < (3¹⁄₂)2. If a = ¹⁄₃
and b = ¹⁄₁₀, then (7) says ²⁄₁₅ < (¹³⁄₃₀)2.

This is a more difficult case. There is no way, even for an
experienced mathematician, to take a quick glance at ²⁄₁₅

and (¹³⁄₃₀)2 and determine which is larger. Furthermore, it
does us no good to compute the square of ¹³⁄₃₀ because then
we wind up with a fraction even less receptive to intuition.
So what we do is look for something a little easier to work
with. For example, instead of (¹³⁄₃₀)2, we will try (¹²⁄₃₀)2. If

(¹²⁄₃₀)2 proves to be larger than ²⁄₁₅, then so of course will
(¹³⁄₃₀)2. Now, (¹²⁄₃₀)2 can quickly be simplified to (²⁄₅)2, which
computes to ⁴⁄₂₅. Then by converting ²⁄₁₅ to ⁴⁄₃₀ to make the
comparison more obvious, we can easily see that ⁴⁄₂₅ > ⁴⁄₃₀

and therefore ⁴⁄₂₅ > ²⁄₁₅. So, we have now shown that (7) is
true for this more difficult case. (Of course one could have
checked ²⁄₁₅ < (¹³⁄₃₀)2 directly by pushing buttons on a calcu-
lator, converting the fractions to decimals and then compar-
ing them, but if you want to see in a substantive mathemati-
cal context what estimation can do for you, this is a good ex-
ample.) So we have some evidence that (7) must be true, al-
though it may be difficult to see from these computations
why it is true. We recall, however, that identity (1) gives a
different expression to the right side of (7). Why not make
use of (1) and see if we can simplify (7) to the point where
we know what to do next. By (1), the right side of (7),
which is (a + b)2, computes to a2 + 2ab + b2. Thus (7) is the
same as 4ab < a2 + 2ab + b2. This is, of course, the same as

a2 + 2ab + b2 > 4ab (8)

So proving that (7) is true is the same as proving that (8) is
true. If we subtract 4ab from both sides of (8), then we
would arrive at

a2 – 2ab + b2 > 0 (9)

Conversely, if (9) is true, then (8) would also be true, be-
cause by adding 4ab to both sides of (9) we would obtain
(8). It follows that our task of proving the truth of (7) has
been reduced to proving the truth of (9). If we now recall
identity (2), which is (a – b)2 = a2 – 2ab + b2, then (9) is ob-
viously true because

a2 – 2ab + b2 = (a – b)2 > 0.

This is so because, as readers will recall, b is greater than a,
and so a – b yields a negative number. And since the square
of any negative number always produces a positive number,
(a – b)2 has to be greater than zero. So we have again proved
the desired assertion that the area of a rectangle with un-
equal sides is less than the area of a square with the same
perimeter.

This proof differs from the previous one in its greater re-
liance on formal symbolic manipulations. If you retrace the
steps from (7) to (8) to (9), and then onto the final step of
invoking identity (2), you would recognize that those com-
putations are quite different from the ordinary numerical
computations one encounters in both whole number and
fraction arithmetic. The former depends more on detecting
formal patterns of the kind exemplied by identities (1)-(3)
and less on brute-force calculations. This kind of skill is im-
portant in algebra, and students need lots of practice with
simpler symbolic computations before they can deal with
problems of this nature. It is in this context that we can put
in perspective the recent attempt at solving the algebra-
learning problem by introducing “algebraic thinking” in the
early grades. At the risk of slight oversimplification, we can
say that the main characteristic of the “early algebraic think-
ing” approach is to focus exclusively on the conceptual-un-
derstanding aspect of abstract symbols. Such an approach re-
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lies heavily on the use of concrete objects, “real-life exam-
ples,” and graphs as aids to help students come to grips with
the abstract reasoning in algebra. This is an important first
step in the learning of algebra, but the learning must go on
to encompass the skill component as well, i.e., the mastery
of symbolic computation. Anectodal evidence abounds of
students who can demonstrate a conceptual understanding
of the use of symbols but who nevertheless fail to manipu-
late them correctly in computations. Is there, perhaps, a
danger that the “early algebraic thinking” approach would
be taken by teachers (and therefore by students as well) as
the only step needed to prepare students for algebra? In the
absence of firm data, one can only offer an educated guess:
Such a danger is very real because, in the words of Roger
Howe of Yale University, “You have elementary school
teachers who do not know what algebra is about, so they’re
not in the position to think about how the arithmetic they’re
teaching will mesh with algebra later.”2

How would the good teaching of fractions help stu-
dents acquire the symbolic computational skills
necessary for success in algebra? The addition of

fractions was presented earlier as an example, but that is a
small example. A more substantial example is how the well-
known cross-multiply algorithm can be used to advantage
for this purpose. Of course, when students are first taught
the cross-multiply algorithm, they would use concrete num-
bers not abstract symbols. But at some point—perhaps sixth

grade—they need to be introduced to the symbolic repre-
sentation of this algorithm and its proof. This, again, pre-
pares them for the concept of generality in algebra. The
cross-multiply algorithm asserts that the equality of two
fractions

(where a, b, c, d are whole numbers) is the same as the
equality of a pair of whole numbers

ad = bc.

The reason is very simple: By the equivalence of fractions,
we have

= and =
.

Therefore, the equality

=

is the same as

= ,

which is therefore the same as ad = bc.
Note first of all that the preceding proof uses symbolic

notation. The other thing of note is that this algorithm
seems to get caught in the crossfire between two schools of
thought. On the one hand, the older curricula tend to ram
the algorithm down students’ throats with little or no expla-
nation but otherwise make use of it quite effectively. On the
other hand, the more recent curricula would try to make be-
lieve that there is no such algorithm, and would at best hold
it gingerly at arm’s length. Both are defective presentations
of a piece of useful mathematics. Let us illustrate a good ap-
plication of this algorithm by proving:

is the same as 
(10)

You may be wondering why you should be interested in
such an arcane statement. Because there is no point in ex-
plaining something you don’t care about, let me begin by
showing you its usefulness.

Consider a standard problem: If the ratio of boys to girls
in an assembly of 224 students is 3:4, how many are boys
and how many are girls? This is an easy problem, but what is
important is that we are going to present a solution to this
problem using (10), which is strictly mathematical and free
of any psychological overtone connected with the concept of
a “ratio.” Here “ratio” would mean division, and just that. No
more and no less. So the given data that the ratio of boys to
girls being 3:4 means exactly that if B denotes the number of
boys and G denotes the number of girls in the audience, then

(We have just made use of the provable interpretation of a
fraction as “a divided by b.”)
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Let us proceed. According to (10), we now also know that
. We are given that B + G = 224 and of course 3 +

4 = 7. So

and from this one readily solves for B = 96. There are 96
boys and, therefore, 224 – 96 = 128 girls.

If you are now  convinced that (10) may be interesting, it
is time to prove its validity. By the cross-multiply algorithm, 

is the same as a(c + d) = (a + b)c, which upon expanding
both sides using the distributive law becomes ac + ad = ac +
bc. Taking ac away from both sides, we are left with ad = bc,
so the equality

is the same as ad = bc. But the cross-multiply algorithm also
tells us that ad = bc is the same as . So (10) is now fully
justified.

The proof of a statement such as (10) is the kind of lesson
that should be a regular part of the teaching of fractions. It
is not only a useful piece of mathematical information, but
also—and this is important to our argument here—it ex-
poses students to a small amount of symbolic computation
naturally. If fractions are taught properly, how can one hope
for a better preparation for algebra? Unfortunately, the state
of the teaching of fractions is anything but proper at the
moment. If we believe that the subject of mathematics is a
logical unfolding of ideas starting with clear and precise def-
initions and assumptions, then mathematics education in
grades five through seven—where the teaching of fractions
and decimals dominates—has not been about mathematics
for quite some time.

It is impossible to catalogue all the wrongs in the way
fractions are taught, in all kinds of curricula, in a few para-
graphs. Perhaps we can give two clear cut examples. The first
transgression is that a fraction is never defined in textbooks
or professional development materials. We have children
who are completely lost as to what a fraction is, and educa-
tors who publicly bemoan students’ failure to grasp the con-
cept. Yet strangely enough, no clear definition of a fraction
is ever offered. It is sobering to realize that in elementary ed-
ucation, the importance of having precise definitions of key
concepts such as fractions or decimals is not recognized.

The pedagogical problem is, in fact, far worse than this,
because it is not only that a fraction is never defined but that
very confusing information is impressed on the children.
First, children are told that a fraction such as ³⁄₅ is an activ-
ity: When they see a pie, if they slice it into 5 equal parts
and take 3 of them, what they get will be ³⁄₅ of the pie. They
can do the same to an apple, a square, etc. The problem is
that if a fraction is an activity, how to tell a child to add or
divide two activities? Second, children are told that a frac-
tion is a very complicated concept and they must know that
the symbol ³⁄₅ comes equipped with many interpretations. It
is 3 parts of a division into 5 equal parts; it is 3 “divided” by

5 (students understand that 10 divided by 5 is 2, but 3 di-
vided by 5?); it is an operation that reduces the size of any-
thing from 5 to 3, and it is also a “ratio” of 3 to 5. At this
point, it is fair to say that learning fractions ceases to be a
mathematical exercise because what is required is not intel-
lect but an uncommon supply of faith.

A second example is the addition of fractions. What
would a child experience when she is exposed to a typical
lesson on adding fractions? Because she already knows how
to add whole numbers—where intuition is strongly
grounded on the counting on her fingers—she expects the
addition of fractions to be similar. But then she is told that
adding ³⁄₄ to ¹⁄₆ requires finding the least common multiple
of 4 and 6, which is 12. Then she is supposed to change ³⁄₄
to ⁹⁄₁₂ and ¹⁄₆ to ²⁄₁₂, and add ⁹⁄₁₂ to ²⁄₁₂ by adding only the
numerators, thereby obtaining.

.

This kind of education completely disrupts a child’s normal
mathematical development. Instead of building on what she
knows about the addition of whole numbers—as it
should—this “explanation” confuses her by instilling the
false belief that whole numbers and fractions are completely
different objects.

Some of the more recent curricula have improved on this
dismal situation by making better sense of adding fractions.
Where they still fail is in not having formulated a clear defi-
nition of a fraction that includes whole numbers as a special
kind of fraction. As a result, students do not see that there is
a smooth continuum from whole numbers to fractions. A
more serious concern is the failure of the newer curricula to
emphasize the computational algorithms such as formula (6)
for the addition of any two fractions. In these curricula,
adding fractions remains a “conceptual” preoccupation: Un-
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derstanding the idea, the concept, is deemed sufficient. Being
able to fluently execute the operations until they become
second nature and thus effortlessly available when needed is
downplayed. We have said it once before, but we should say
it again: Fluency in computation is very important for the
learning of algebra, and formulas such as (6) provide con-
ceptual continuity between grades. If we are allowed to look
further ahead, we can say that the computational aspect of
numbers is essential for the learning of both higher mathe-
matics and science.

Grades five through seven are supposed to prepare stu-
dents for algebra. But children who come through two or
three years of the usual kind of instruction in fractions are in
reality refugees from an educational devastation. Mathemati-
cally starved and intellectually demoralized, they harbor a
deep distrust of mathematics as a whole. How, then, do we
expect them to learn algebra?

We have not dealt with decimals thus far, but the prob-
lems there are entirely parallel to those in fractions. Students
are generally not told, forcefully and clearly, that (finite)
decimals are merely a shorthand notation for a special type
of fractions, namely, those whose denominators are 10, 100,
1,000, or, more generally, a power of 10. Therefore, 0.12 is
nothing but an alternate notation for ¹²⁄₁₀₀, as 1.76 is for 1 +
⁷⁶⁄₁₀₀. The failure to provide a clear definition of a decimal
leaves students groping in the dark for the meaning of this
mysterious piece of notation.3 No wonder they resort to
such wild guesses as 0.19 > 0.4 on account of the fact that
19 > 4. A clear definition of decimals would also help ex-
plain the usual rules about “moving the decimal point,” e.g.,
0.5 x 0.43 = 0.215 because we can see in a straightforward
manner that

There is no need to memorize this rule by brute force, not
here and not anywhere else in mathematics. Incidentally, no-
tice how the understanding of decimals is founded on an
understanding of fractions.

The mathematical defects in the usual presentation of
fractions and decimals can be remedied in a straightforward
manner without appealing to any heroic measures. Details
are not called for in an article of this nature, but it would be
appropriate to mention briefly that one can, for example,
begin with a definition of a number (which includes whole
numbers and fractions) as a point on the number line. Of
course, to do so would require that the number line be in-
troduced early, say in the third and fourth grades. One could
then gradually but carefully raise the level of abstract reason-
ing and increase the use of symbolic computations to ex-
plain the more subtle aspects of fractions, such as the inter-
pretation of fractions as quotients, as well as the more for-
mal concepts such as the division and multiplication of frac-
tions or operations with complex fractions.4 With the proper
infusion of precise definitions, clear explanations, and sym-
bolic computations, the teaching of fractions can eventually
hope to contribute to mathematics learning in general and
the learning of algebra in particular.

It remains to supplement these curricular considerations
of mathematics in grades five through seven with two
observations. One is the glaring omission thus far of the

basic reason why fractions are critical for undertanding alge-
bra: The study of linear functions, which is the dominant
topic in beginning algebra, requires a good command of
fractions.5 The slope of the graph of a linear function is by
definition a fraction, to cite just one example. The solution
of simultaneous linear equations leads inevitably to the use
of fractions, to cite another. Thus on the skills level alone,
there is no escape from fractions in algebra.

The other observation is that no matter what the curricu-
lar improvement may be, its implementation rests ultimately
with the teacher in the classroom. Liping Ma’s pathbreaking
book, Knowing and Teaching Elementary Mathematics, did
away with the myth that elementary mathematics is simple.
Nowhere is Ma’s observation more apparent than in the
teaching of fractions. Fractions are difficult not only for stu-
dents, but also for their teachers, who, for the most part, are
themselves the victims of poor mathematics education.

This, then, brings us full circle. If we are to prepare mil-
lions of students to successfully open the gate of algebra, we
must prepare their teachers as well. This will require that
college math courses for prospective teachers be drastically
overhauled, so that they directly address teachers’ mathemat-
ical needs in the classroom. For those already teaching, we
will need a massive commitment to inservice development,
with classes that do not waste teachers’ valuable time. In ad-
dition, we should allow teachers who like math to specialize
in the field at an earlier grade level. This specialization could
begin at grade five—when fractions are introduced—or even
earlier, as is done in many other countries. As Richard Askey
pointed out in the pages of this magazine two years ago, the
use of math specialists would unburden other teachers from
a task many of them “now find difficult and unpleasant.”6

All this can be done. It will require resources, good will,
and political resolve. Whether these are forthcoming depends
on how seriously we take the slogan “Algebra for All.” �
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