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EDUCATION SEEMS to be plagued by false
dichotomies. Until recently, when research and

common sense gained the upper hand, the debate
over how to teach beginning reading was character-
ized by many as “phonics vs. meaning.” It turns out
that, rather than a dichotomy, there is an inseparable
connection between decoding—what one might call
the skills part of reading—and comprehension. Fluent
decoding, which for most children is best ensured by
the direct and systematic teaching of phonics and lots
of practice reading, is an indispensable condition of
comprehension.

“Facts vs. higher order thinking” is another example
of a false choice that we often encounter these days, as
if thinking of any sort—high or low—could exist out-
side of content knowledge. In mathematics education,
this debate takes the form of “basic skills or concep-
tual understanding.” This bogus dichotomy would
seem to arise from a common misconception of math-
ematics held by a segment of the public and the educa-
tion community: that the demand for precision and
fluency in the execution of basic skills in school math-
ematics runs counter to the acquisition of conceptual
understanding. The truth is that in mathematics, skills
and understanding are completely intertwined. In
most cases, the precision and fluency in the execution
of the skills are the requisite vehicles to convey the
conceptual understanding. There is not “conceptual
understanding” and “problem-solving skill” on the one
hand and “basic skills” on the other. Nor can one ac-

quire the former without the latter.
It has been said that had Einstein been born at the

time of the Stone Age, his genius might have enabled
him to invent basic arithmetic but probably not much
else. However, because he was born at the end of the
19th century—with all the techniques of advanced
physics at his disposal—he created the theory of rela-
tivity. And so it is with mathematics. Conceptual ad-
vances are invariably built on the bedrock of tech-
nique. Without the quadratic formula, for example, the
theoretical development of polynomial equations and
hence of algebra as a whole would have been very dif-
ferent. The ability to sum a geometric series, some-
thing routinely taught in Algebra II, is ultimately re-
sponsible for the theory of power series, which lurks
inside every calculator. And so on.

The analogue of the same phenomenon in the artis-
tic domain is even more transparent. A violinist who
still worries about fingering positions cannot hope to
impress with the beauty of tone or the elegance of
phrasing, and an opera singer without the requisite
high notes would try in vain to stir our souls with sear-
ing passion. In good art as in good mathematics, tech-
nique and conception go hand in hand.

The desire to achieve understanding in a technical
subject such as mathematics while minimizing the
component of skills is a most human one. There are
situations where efforts to this effect are called for
and, indeed, brilliantly executed. One can think of the
classics of Courant and Robbins (What Is Mathemat-
ics?)1 and Hilbert and Cohn-Vossen (Geometry and the
Imagination).2 In the context of school mathematics,
however, such a desire cannot be indulged without
doing great harm to students’ education. There are
many reasons. Sometimes a simple skill is absolutely
indispensable for the understanding of more sophisti-
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cated processes. For example, the familiar long divi-
sion of one number by another provides the key ingre-
dient to understanding why fractions are repeating
decimals. Or, the fact that the arithmetic of ordinary
fractions (adding, multiplying, reducing to lowest
terms, etc.) develops the necessary pattern for under-
standing rational algebraic expressions. At other times,
it is the fluency in executing a basic skill that is essen-
tial for further progress in the course of one’s mathe-
matics education. The automaticity in putting a skill to
use frees up mental energy to focus on the more rigor-
ous demands of a complicated problem. Such is the
case with the need to know the multiplication table
(for single-digit numbers) before attempting to tackle
the standard multiplication algorithm, a fact we will
demonstrate in due course. Finally, when a skill is by-
passed in favor of a conceptual approach, the resulting
conceptual understanding often is too superficial. This
happens with almost all current attempts at facilitating
the teaching of fractions.3

Let us illustrate the last statement with the example
of the division of fractions. Recall the familiar method
of “invert and multiply”:

Nowadays, “invert and multiply” has become almost
synonymous with rote learning. Among recent at-
tempts to inject conceptual understanding into this
topic, the following approach is not untypical.4

Rather than relying on algorithms, where memorization
of rules is the focus, the Mathland approach relies heavily
on active thinking. To solve problems such as ¹⁄₄ ÷ ¹⁄₂, stu-
dents need to be able to verbalize the question: How
many halves are there in one-fourth? This kind of fluency
enables students to use their own logical and visual think-
ing skills to really know what the solution (¹⁄₂) means in
relation to the problem. How many halves are there in
¹⁄₄? There is one-half of ¹⁄₂ in ¹⁄₄.

Many pictures go with the explanation because it is
easy to represent one-half, one-fourth, etc., by squares.
Three pages down (p. 132), the “invert and multiply”
algorithm is introduced and students are urged to “see
if the answers you get by using [the algorithm] match
up with answers you got earlier this week.... Allow
plenty of time to experiment with the standard algo-
rithm, then ask [students] to choose one problem that
they worked with both ways and write about how the
two solution methods compare.” The problems sug-
gested for practice are all of the type
⁵⁄₆ ÷ 16, ¹⁄₂ ÷ ¹⁄₆, 3 ÷ ¹⁄₆, etc. With conceptual under-
standing thus restored—or so it seems—the mathemat-
ical exposition on the division of fractions comes to an
end.

If only simple fractions such as those given above
are involved, the preceding approach emphasizing the
visual aspect of division is for the most part adequate.
The worm in the apple is the need to deal with divi-
sion problems when the fractions are not at all simple.
For example, what do the above brand of logical and
visual thinking skills have to say about ²⁄₉₇ ÷ ³¹⁄₁₇? Noth-
ing, of course. A natural consequence of such an ap-
proach is that children develop a sense of extreme in-
security upon the sight of any fraction other than the
simplest possible.

It is good to start with simple fractions that children
can visualize, and they should do many such problems,
until they have a firm grasp of what they are doing
when they divide fractions. But we should not make
students feel that the only problems they can do are
those they can visualize. We should explain to them
that of course they cannot draw a picture of ²⁄₉₇ ÷ ³¹⁄₁₇;
it is doubtful that anyone can. But this does not mean
they cannot do the problem! Or that more complex
problems like this one are not essential.

An analogy to addition may be helpful. When chil-
dren were first learning to add, perhaps they counted
out three blocks and then counted out four blocks and
joined them to get seven blocks. But we didn’t tell
them that, when faced with the problem 1,272 + 846,
their only choice was to gather up hundreds of blocks
or draw hundreds of dots on their paper and count
them. Nor did we tell them the problem was too diffi-
cult for them or not important. No, we told them there
was a mathematical route to the answer. And not a
“rote, meaningless” one, but a procedure based on
simple but sound mathematical principles. And we
taught it to them.

And so we can do with fractions. From the intuitive
to the abstract, and from primitive skills to sophisticated
ones, such is the normal progression in mathematics.
The way to approach the division of non-simple frac-
tions is not to bypass “invert and multiply,” but to con-
front it. We begin by asking what it means to say a frac-
tion

equals

,
and realize that perhaps we have not fully come to
terms with the meaning of the division of whole num-
bers. Children are taught, for example, that 2443=8
means that if you “divide 24 objects into 3 equal por-
tions, each portion would have 8 objects.” However,
such a grouping of the 24 objects shows that it is
8+8+8, which is therefore the same as 338. So in this
case, “2443=8” means exactly that 24=338. This rea-
soning turns out to be general, in the sense that if we
analyze any other example, say 80416=5, then repeat-
ing the preceding reasoning leads to a similar conclu-
sion that it is the same as 80=5316. Along this line,
fifth-graders should have no trouble understanding
that, in general, for whole numbers m, n and k, the
statement 

m4n=k

says exactly the same thing as 

m=n3k. 

This then provides an abstract point of view to under-
stand division in terms of multiplication. It is common
to express this interpretation of division as “division is
the inverse operation of multiplication.”

With the new insight at hand, we can now reprise
the division of fractions: To the extent that whole num-
bers and fractions are just “numbers,” they must share
the same properties in terms of the basic operations
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such as multiplication or division. Thus looking at each
fraction as a number and imitating the case of whole
numbers, we see that the division

ought to mean

.
This is then how we want to define the division of frac-
tions. Multiplying both sides by

immediately leads to

.
In other words,

.
Thus the method of “invert and multiply” is a result of a
deeper understanding of fractions than that embodied
in the naive logical and visual thinking skills above. We
see clearly the concordance of skills and understanding
in this instance.

There is at present a desire in a large segment of the
education community to achieve understanding of
fractions—the bugbear of elementary mathematics ed-
ucation—by avoiding the traditional skills and by re-
stricting attention only to very simple fractions and a
naive visual reasoning of the type described above.
While the intention is laudable, the inevitable net re-
sult is that skills and understanding both are given
short shrift. The following passage is another example
that sets forth such an agenda:5

The mastery of a small number of basic facts with common
fractions (e.g., ¹⁄₄ + ¹⁄₄ = ¹⁄₂; ³⁄₄ + ¹⁄₂ = 1¹⁄₄ and ¹⁄₂ 3 ¹⁄₂ = ¹⁄₄)...
contributes to students’ readiness to learn estimation and
for concept development and problem solving. This profi-
ciency in the addition, subtraction, and multiplication of
fractions and mixed numbers should be limited to those
with simple denominators that can be visualized con-
cretely and pictorially and are apt to occur in real-world
settings; such computation promotes conceptual under-
standing of the operations. This is not to suggest however
that valuable time should be devoted to exercises like 
¹⁷⁄₂₄ + ⁵⁄₁₈ or 5³⁄₄ 3 4¹⁄₄, which are much harder to visualize
and unlikely to occur in real-life situations. Division of frac-
tions should be approached conceptually.

Without going into details (which are not unlike those
related to the division of fractions), it is again the case
that if students only have enough understanding of
fractions to do simple operations such as 1⁄4 + 1⁄4, 3⁄4 + 1⁄2, 1⁄2
3 1⁄2, etc., but nothing else, then this understanding is
fragile and defective. In this context, it may be worth-
while to point out, in a different way, how the good in-
tention of promoting understanding by suppressing
skills can ultimately diminish students’ understanding.
Both examples of computations, ¹⁷⁄₂₄ + ⁵⁄₁₈ and 5³⁄₄ 3 4¹⁄₄,
which students are advised to avoid, are in fact ex-
tremely simple to perform. For example, if students
have a firm grasp of the distributive law, then:

5³⁄₄34¹⁄₄=(5+³⁄₄)3(4+¹⁄₄)=(534)+(53¹⁄₄)+(³⁄₄34)+(³⁄₄3¹⁄₄).

Because the resulting multiplications and additions on
the right are easy to do by any standard, the original
computation is also accomplished therewith. The ex-

hortation not to do this computation—although well-in-
tentioned—ends up slighting a very important weapon
in students’ conceptual arsenal: the distributive law.

There is yet another reason why division of fractions
should not be limited to only those problems that stu-
dents can visualize, which is apparently what the pas-
sage quoted above means when it says “approached
conceptually.” If students are not fed a steady diet of in-
creasing abstraction, how can they hope to cope with
algebra a year or two later? The “algebra for all” battle
cry will be an empty promise unless it is backed up by
an insistence on elevating education in grades 5 to 7 to
periodic heights of abstraction.

LET US now take up the issue of the teaching of the
standard algorithms in elementary school, where

the confrontation of skills vs. understanding is most in-
tense. We are told that these algorithms are by their
very nature nothing more than rote, meaningless math-
ematical maneuvers.

Indeed, the very mention of the teaching of stan-
dard algorithms causes open hostility in some mathe-
matics education circles. In a recent article, the presi-
dent of the southern section of the California Mathe-
matics Council put forth the view that the explicit
presence of algorithms in the new California Mathe-
matics Standards is nothing less than an advocacy for
knowledge to be taken “as a collection of bits or facts
to be learned by memorization and impressed upon
the child from the outside,” which then results in chil-
dren trying to “mechanically memorize meaningless
facts and skills.”6

This view echoes one that is held by many educa-
tors, among them Constance Kamii. Kamii is generally
acknowledged to be a leading advocate of this point of
view. A much quoted recent article co-authored by
Kamii and Ann Dominick is provocatively entitled
“The Harmful Effects of Algorithms in Grades 1-4.”7 Its
main thesis is this:

Algorithms not only are not helpful in learning arith-
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metic, but also hinder children’s development of numeri-
cal reasoning....

We have two reasons for saying that algorithms are
harmful: (1) They encourage children to give up their
own thinking, and (2) they “unteach” place value,
thereby preventing children from developing number
sense....

The persisting difficulty [with standard algorithms] lay
in the column-by-column, single-digit approach that pre-
vents children from thinking about multidigit numbers.

This then brings us to an impasse, according to Kamii
and Dominick: Children can have conceptual under-
standing of numbers without learning algorithms, or
they become mathematical error-prone robots. Which
do we prefer? Invoking Piaget’s constructivism [sic],
Kamii and Dominick recommend that

Children in the primary grades should be able to invent
their own arithmetic without the instruction they are
now receiving from textbooks and workbooks.

We are thus led to believe that there is no way to teach
a simple addition such as 89 + 34 (a problem Kamii and
Dominick consider) using the standard algorithm except
by ramming it down children’s throats. Could these au-
thors be unaware of the fact that the addition algorithm,
like all other standard algorithms, contains mathematical
reasoning that would ultimately enhance children’s un-
derstanding of our decimal number system? Why not
consider the alternative approach of teaching these algo-
rithms properly before advocating their banishment from
classrooms? Let us see what we can do with the addition
algorithm in the special case of 89 + 34.

In a third-grade class, say, let us assume that the chil-

dren already know how to add single-digit numbers
fluently. To teach them the addition of 89 to 34, one
may begin with a simpler problem: 59 + 34. This is be-
cause 59 + 34 would avoid any mention of the hun-
dreds digit. Now, one must emphasize at all times that
59 is 50 + 9 and 34 is 30 + 4. So 59 + 34 can be added
separately in this way:

50 + 9
30 + 4 (+ (1)
80 + 13

Because each “vertical” addition involves only single
digits, the individual steps should offer no difficulty to
children. Now add 13 to 80 to get 93; again this should
present no difficulty, because the children can repeat
the above process if necessary:

80
10 + 3 (+ (2)
90 + 3

Give several such problems to allow the children to
practice addition in this long-winded manner. Because
they understand this simple skill, such extended prac-
tice to perfect the skill is both necessary and desirable.
After the students have become thoroughly familiar
with the method, point out to them that what they have
been doing each time is to add the ones digits sepa-
rately, and then the tens digits separately: 9 + 4 and 5 +
3 in step (1), and 8 + 1 and 0 + 3 in step (2). Let them
do a few more such additions and take note of this fact
each time. Allow some time for this idea to sink in be-
fore introducing them to the first simplification: Build-
ing on the newly acquired idea of adding the digits in
different “places” separately, point out to them that they
could save some writing in step (2) because they can
simply line up the ones and tens digits vertically and di-
rectly add since the ones digit in 80 would always be 0:

80
13 (+ (3)
93

Again give the students time to get used to this idea.
Make them do many practice problems of this type: 40
+ 12, 60 + 18, etc.

Children welcome any suggestions that save labor. It
is therefore time to introduce another one. When they
can do step (2) in the format of step (3) fluently, tell
them that in fact they could combine steps (1) and (2)
into one step by bringing down the “13” to the next
line and add as in step (3):

50 + 9
30 + 4 (+
80 + 13
13 (+
93

With a little bit more practice, the children can sim-
plify the writing even further:

59
34 (+

(50 + 30) 80 

(9 + 4) 13 (+
93

⇒

⇒
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(Students need not write down the two lefthand
columns consisting of [50 + 30], [9 + 4], and the long
right arrows; these only serve as instructional re-
minders.) The final coup de grâce, to be administered
only when the children are already secure in all the
preceding simpler addition activities, is to point out a
shorthand method of writing the preceding step: Slip
the tens digit “1” of the “13” under 34 to keep track of
the addition of the ones digit. So:

59
34
1 (+
93

This then is the standard addition algorithm. It should
be plain to the children (even if they may not be able to
articulate it) that this is an efficient compression of a
valuable piece of mathematical reasoning into a com-
pact shorthand. They would appreciate this efficiency,
let it be noted, only if they have meticulously gone
through the laborious process of steps (1) to (3) above.
Because young minds are flexible and discerning, the
children will learn the algorithm logically without being
pressured “from the outside” to “mechanically memo-
rize meaningless facts and skills” while “giving up their
own thinking.” On the contrary, they will learn how to
reason effectively, and the whole experience will stand
them in good stead in their later work.

The next step is of course to go back to the original
problem of 89 + 34, but the introduction of the hun-
dreds digit in 80 + 30 should now present no real diffi-
culty since the simpler case has been firmly mastered.

It may be useful to elaborate on the idea that the
standard algorithm presented above captures a valu-
able piece of mathematical reasoning that enhances
students’ understanding of numbers. We can see this
more clearly by making explicit the underlying mathe-
matics. The fact that 59 + 34 can be added as in step
(1) makes implicit use of the commutative law and as-
sociative law of addition:

59 + 34 = (50 + 9) + (30 + 4)
= [(50 + 9) + 30] + 4 (assoc. law)
= [50 + (9 + 30)] + 4 (assoc. law)
= [50 + (30 + 9)] + 4 (comm. law)
= [(50 + 30) + 9] + 4 (assoc. law)
= (50 + 30) + (9 + 4) (assoc. law)

Without entering into the tedious details, one need
only point out that both laws are also used in all subse-
quent arguments. Third-graders should not be saddled
with this kind of formalism, of course, but teachers
should be aware of it if only to gain the confidence
that teaching the standard algorithm does not “encour-
age children to give up their own thinking.” Teachers
will also need this knowledge to explain it to their stu-
dents should the need arise.

Children always respond to reason when it is care-
fully explained to them. The day will come when
teachers are capable of explaining these time-honored
algorithms in this logical manner. In the meantime, let
us be constructive and concentrate on the needed pro-
fessional development of teachers rather than spread
the destructive theory about the harm these algo-
rithms inflict upon children.

To drive home the point that the standard algo-

rithms embody conceptual understanding, let us con-
clude with an examination of the multiplication algo-
rithm as taught to, say, fourth-graders. We assume they
are fluent in single-digit multiplications. Consider
the problem of 268 3 43. A new element now appears
in the form of the distributive law. Because this law is
so basic and because fourth-graders are sufficiently ma-
ture to understand it, the law should be explained to
them: For any number a, b, c:

a(b + c) = ab + ac.

Henceforth, we will write a 3 b as ab for simplicity.
Because multiplication is commutative, this also im-
plies:

(b + c)a = ba + ca.

This law can be made plausible using rectangular ar-
rays of dots. For example, 5 3 4 is represented by a
five-row and four-column collection of dots.

Similarly 5 x 3 is represented by the dots in:

Hence ( 5 3 4) + (5 3 3) is represented by the dots ob-
tained from putting the two sets of dots side by side:

But this is a rectangular array of dots with 5 rows and
(4 + 3) columns, so it represents 5 3 (4 + 3), thereby
verifying the distributive law in this special case. The
general case is entirely similar.

In the following, we shall call attention to the dis-
tributive law each time it is used, but will use the com-
mutative laws and associative laws without mention. To
compute 268 3 43, we shall appeal to the higher order
thinking skill of breaking complicated tasks down to
simple ones by breaking it down to two simpler multi-
plication problems. Because 3 and 4 are the two digits
of 43, we first compute 268 3 3 and 268 3 4 separately.
Because 268 = 200 + 60 + 8 (as usual, students need to
be reminded of this fact), the distributive law gives:

268 3 3 = (3 3 200) + (3 3 60) + (3 3 8).

Because students know how to multiply single-digit
numbers, this equals

268 3 3 = 600 + (180) + (24). (4)

Because the 180 above comes from the tens digit,
we can “split off” the 100 from 180 = 100 + 80 and
combine it with 600:

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

• • •
• • •
• • •
• • •
• • •

• • • •
• • • •
• • • •
• • • •
• • • •
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268 3 3 = (600 + 100) + (80) + (24). (5)

Similarly, 24 = 20 + 4, and we can combine the 20
with the 80 in the tens digit:

268 3 3 = (600 + 100) + (80 + 20) + 4. (6)

But now the (80 + 20) in the tens digit is equal to 100,
and we can again combine it with the (600 + 100) in
the hundreds digit. Thus

268 3 3 = (600 + 100 + 100) + 0 + 4 = 800 + 0 + 4 = 804.

A few more experiences with working from left to right
would tell us that we are likely to waste a little time by
so doing because of the frequent need to backtrack to
fix a certain digit as in step (6). (There it was the tens
digit.) Thus from experience, we learn to work from
right to left in order to save time. This is the reason to
work from right to left, but let students find out for
themselves by working through several such problems.
Therefore, we now redo the above, from right to left, as
follows. Start with step (4) again, 24 = 20 + 4, so

268 3 3 = 600 + (180) + (20 + 4) = 600 + (180 + 20) + 4.
(7)

Next, 180 + 20 = 200, which can be combined with
600:

268 3 3 = (600 + 200) + 0 + 4 = 800 + 0 + 4 = 804.
(8)

The numbers that were carried from the ones digit to
the tens digit in step (7) and from the tens digit to the
hundreds digit in step (8) can be recorded by a short-
hand method, and this is the standard algorithm for the
multiplication of any number by a single-digit number:

268
3

2   2 (3

804

In exactly, the same way, we see that 268 x 4 =
1,072 via the standard algorithm:

268
4

2   3 (3

1,072

Incidentally, this implies that:

268 3 40 = 10,720. (9)

Now we put the pieces together using the distribu-
tive law:

268 3 43 = 268 3 (40 + 3) = (268 3 40) + (268 33).

Using steps (8) and (9), we obtain:

268 3 43 = 10,720 + 804 = 11,524.

In retrospect, we see that the single-digit approach to
this two-digit multiplication problem (that of multiply-
ing by 43) results from heeding the call of the indis-
pensable mathematical principle to always break
down a complicated problem into simple compo-
nents. The correct way to think about multidigit multi-
plication is therefore to regard it as nothing more than
a sequence of single-digit multiplications. Let children

learn this fundamental fact from day one.
Now to convert the preceding to algorithmic form,

it is traditional to use the commutative law of addition
to rewrite it as:

268 3 43 = 804 + 10,720 = 11,524

so that we have:

268
43 (3

804 (10)
10720 (+
11524

A final touch-up: We see from step (9) that the “0” at
the end of 10,720 comes from the “0” of 40, and is the
result of 268 being multiplied by the tens digit (4 in
this case). Thus this “0” can be taken for granted and
will therefore be omitted in the next-to-bottom row of
step (10). This accounts for the apparent shift of digits
in the next-to-bottom row of the standard multiplica-
tion algorithm:

268
43 (3

804 (11)
1072 (+
11524

Several observations readily come to mind at this
point. The foremost pertains to the clear demonstra-
tion of the unity of skills and understanding in this
derivation. For example, fluency with single-digit mul-
tiplication allows us to take for granted 268 3 40 and
268 3 3 and focus instead on the mathematical ideas
leading up to step (10). Another observation is to un-
derscore yet again the central role played by the dis-
tributive law, while noting (of course) that the com-
mutative law and associative law also have been used
implicitly. For example, in going from step (4) to step
(5), we have used the associative law of addition be-
cause: 600 + 180 = 600 + (100 + 80) = (600 + 100) +
80. A third observation is that this derivation is noth-
ing if not about place value. The passage from (10) to
(11), for example, explains in terms of place value
why the digits of the middle two rows have that par-
ticular vertical alignment. In what way then does
learning the standard algorithms “unteach” place
value?

Finally, we call attention to the breathtaking simplic-
ity of the multiplication algorithm itself despite the te-
diousness of its derivation. The conceptual under-
standing hidden in the algorithm is the kind that stu-
dents eventually need in order to prepare for algebra.
In short, this algorithm is a shining example of elemen-
tary mathematics at its finest and is fully deserving to
be learned by every student. If there is any so-called
harmful effect in learning the algorithms, it could only
be because they are not taught properly. In Chapter 2
of her pathbreaking book, Knowing and Teaching Ele-
mentary Mathematics,8 Liping Ma gives a more re-
fined discussion of why rote learning might take place
in the context of multidigit multiplication: It does so
when the teacher does not possess a deep enough un-
derstanding of the underlying mathematics to explain
it well. The problem of rote learning then lies with in-
adequate professional development and not with the
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algorithm. This is exactly the kind of scholarship we
need in order to assist our teachers and to move mathe-
matics education forward.

We have given several examples to show that deep
understanding of mathematics ultimately lies within
the skills. It remains to make a passing comment on
the idea of skipping the standard algorithms by asking
children to invent their own algorithms instead. The
justification is that inventing algorithms promotes con-
ceptual understanding. What is left unsaid is that
when a child makes up an algorithm, the act raises
two immediate concerns: One is whether the algo-
rithm is correct, and the other is whether it is applica-
ble under all circumstances. In short: correctness and
generality. In a class of, say, 30 students, asking the
teacher to carefully check 30 new algorithms periodi-
cally is a Herculean task. More likely than not, some in-
correct algorithms would slip through, and these chil-
dren would come out of this encounter with mathe-
matics with no understanding at all. Such a potentially
harmful effect should have been brought into the open
in the advocacy of invented algorithms, but it seems
not to have been done. As far as generality is con-
cerned, this aspect of the standard algorithms—the
fact that they are applicable under all circumstances—
seems also to have been neglected in educational dis-
cussions. For example, although there are shortcuts to
compute special products such as 97 3 103 faster than
the standard algorithm, these shortcuts would be of no
help at all in a different setting. With each invented al-
gorithm, then, the responsibility of checking its gener-
ality again falls on the teacher. Are those who are
telling teachers to encourage invented algorithms in
their classrooms aware of this heavy burden?

As Euclid told King Ptolemy in the fourth century,
B.C., there is no royal road to geometry. Neither is
there a royal road to conceptual understanding. Let us
teach our children mathematics the honest way by
teaching both skills and understanding. l
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