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The first purpose of this article is to give a careful review of

the concept of a function and its graph, and to give a proof of

the fact that the graph of a linear function is a straight line.

This fact is traditionally used in school mathematics without

any explanation, but its proof holds the key to the under-

standing of the many forms of the equation of a straight line.

A second purpose is to give careful proofs of all the standard

area formulas of rectilinear plane figures, the point here be-

ing that the explanations of these formulas in most textbooks

are incomplete. In the process, the meaning of the number π
and the area formula of a circle will also be clarified. The

article concludes with some general comments about volume,

particularly the relationship between the volumes of gener-

alized cylinders and cones which have the same base and the

same height.

Basic to calculus (and all of mathematics and science) is the concept of a function.
We first recall its definition.

Given two sets D and R, let us first consider some rules (or procedures) that assign
to each element of D an element of R.

Example 1. Let D be the set of all human beings who have at least one sister,
and R be the set of all human beings. let F1 be the rule that assigns to each
person � in D, �’s sister. Symbolically:

F1 : � −→ �’s sister

If � has several sisters, the assignment specified by this rule is then ambigu-
ous: we could assign to � any of the sisters, and it would be unclear which
one of �’s sisters F1 assigns.
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Example 2. Again let D = R = the set of all human beings, and let F2 be
the rule that assigns to each x in D, x’s biological father. This assignment

F2 : x −→ x’s biological father

is then meaningful and unambiguous, except in the case where x’s biological
father is no longer living. Thus if x’s father is no longer alive, F2 cannot
assign anyone in R to x. Now we have the situation that there are elements
(people) in D to which F2 cannot assign any element (person) in R.

Example 3. Let now D be the set of all human beings whose biological fathers
are still living, and let R be the set of all human beings. Now let F3 be the
rule that assigns to each ♣ in D ♣’s biological father. This rule F3 then
makes sense for each and every ♣ in D and furthermore, this rule is totally
unambiguous: F3 assigns to each ♣ in D one and only one element of R. We
express this by saying that F3 is well-defined on (all of) D.

Example 4. Let D and R be the real numbers and let F4 be the rule that
assigns to each real number � a square root of the sum of 1 and the square
of �. Thus,

F4 : � −→ ±
√

1 +�2.

Then the rule F4 is ambiguous because, for example, it could assign to 1
either +

√
2 or −

√
2.

Example 5. Let D and R be the real numbers and let F5 be the rule that
assigns to each real number � the negative square root of the sum of 1 and
the square of �. Thus,

F5 : � −→ −
√

1 +�2.

The rule F5 is then totally unambiguous for every � in D, and we again say
that F5 is well-defined on D.

Example 6. Let D and R be the real numbers and let F6 be the rule that
assigns to each real number its reciprocal. Thus

F6 : � −→ 1/�.

However, F6 cannot assign a real number in R to 0 because 1/0 has no
meaning. (Recall, ∞ is not a real number.) But if we change D to D6 ≡
{the set of all nonzero real numbers}, then F6 as a rule from D6 to R is now
well-defined on all of D6.

We thus see from the above examples that some rules may seem to do a good
job of assigning to each element of D an element of R, but fail to do so upon closer
scrutiny because either the assignment cannot be made on certain elements of D or the
assignment is ambiguous because it assigns to an element of D one of several possible
elements in R. We are interested in those unambiguous rules that are meaningful on
all of D, and these are called “funtions”. Formally, a function F from a set D to a set
R is a rule that assigns to each element � of D one and only one element of R. Thus,
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a function from D to R is an unambiguous assignment that can be made on all of D.
For obvious reasons, the element assigned to � by F is denoted by F (�). In symbols:
it is convenient to denote the function by

F : D → R,

and we also write
F : � −→ F (�).

In the preceding examples, F3 and F5 are functions, and so is F6 when considered as a
rule from D6 to R. The rules in the remaining examples are not functions.

Because the concept of a function has been around for so long, every aspect of the
above definition has acquired a name of its own and you will have to get used to the
terminology. So with F : D → R given:

D is the domain of F

R is the range of F

the elements � in D are the variables

F (�) is the value of F at �

F is defined on D

F takes values in R

For our purpose, the following two kinds of functions are the most important. If
D and R are subsets of the reals (= real numbers), then a function F : D → R is
called a real-valued function of a real variable. If D is a subset of the plane (con-
sisting of all ordered pairs {(x, y)} of real numbers), and R is a subset of the reals,
then F : D → R is called a real-valued function of two variables x and y. Since we
almost never consider any function which does not take value in the reals, we simply
refer to them as a function of one variable and a function of two variables, respectively.

CONVENTION: If a real-valued function of a real variable F is given, it will always
be assumed that its domain is the set of all real numbers on which F is well-defined.

For example, the domain of the function F : � −→ 1/� of one variable, without
further specification, would be understood to have the set of all nonzero numbers as
its domain (cf. Example 6 above). Similarly, the domain of the function H : x −→
+
√

1− x, without further comments, would be assumed to be the semi-infinite closed
interval (−∞, 1] (i.e., all the real numbers x so that x ≤ 1).

Until further notice, we shall consider only functions of one variable. Recall the
definition of the graph of such a function F : it is the set of all the points (x, F (x))
in the plane, where x belongs to the domain of F . The emphasis here is on the word
“all”. In greater detail, this means: if C is the graph of F , then

(i) for every x in the domain of F , the pair (x, F (x)) belongs to C, and

(ii) if a point (x, t) of the plane belongs to C, then necessarily x belongs to
the domain of F and t = F (x).
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Because F (x) can be one and only one element of the range of F (see the above
definition of a function), we also have:

(iii) if (a, b) and (a, c) are two points in the graph C of F , then b = c
(both being equal to F (a)).

The last property (iii) leads to the following vertical line test for the graph of a
function. (Recall: a line is vertical if it is parallel to the y-axis. This is the same as
saying that there is a constant a, so that all the points on the line have coordinates
(a, y), where y is a real number.)

Theorem 1. A nonempty subset C of the plane is the graph of a function if and only
if every vertical line intersects C in at most one point.

Before proving this fact, let us first explain the meaning of the phrase “if and only
if ”. This is a common mathematical shorthand that combines two statements into
one and it is very important to have a thorough understanding of this phrase. Given
statements A and B, the sentence “A if and only if B” means precisely that both of
the following implications are true:

(1) A implies B, and

(2) B implies A.

Thus to prove Theorem 1, we need to prove two statements:

(a) if C is the graph of a function, then every vertical line intersects C in at
most one point, and
(b) if every vertical line intersects C in at most one point, then C is the graph
of a function.

We first prove (a). Let C be the graph of a function F : D → R and let L be a vertical
line passing through a point � on the x-axis. Thus all points on L have coordinates
(�, t), where t is an arbitrary number. If � does not belong to D, then no point of L
could lie in C, by (ii) above. Then L intersects C in no (zero) point. If � belongs to
D, then L intersects C in exactly one point, namely, (�, F (�)), by (i) and (iii). This
proves (a). To prove (b), denote by Lt the vertical line passing through the point (t, 0)
on the x-axis. Let D be the set of all the t’s so that Lt intersects C in exactly one
point. This means that if t ∈ D, then the vetical line Lt passing through the point
(t, 0) on the x-axis meets C at a point (t, T ) for some real number T , and that for an s
not in D, The vertical line Ls passing through the point (s, 0) on the x-axis would not
meet C. Using this notation, we can now define the function F from D to the reals
by: for any t ∈ D,

F : t −→ the y-coordinate T of the point of intersection (t, T ) of Lt with C.

Because there is exactly one T so that (t, T ) ∈ C, this rule defines a function F whose
graph lies in C. Moreover, if (t′, T ′) ∈ C, then the vertical line passing through (t′, 0)
on the x-axis intersects C at (t′, T ′) and, by hypothesis, at no other point of C. There-
fore, (t′, T ′) = (t′, F (t′)), and therefore, every point of C is in the graph of F . It follows
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that C is exactly the graph of F . Q.E.D. (=“End of proof”)

As illustrations of Theorem 1, we can tell right away that the first two curves below
are graphs of functions, whereas the third one is not:

A
A
A
A
A
A�
�
�
�HH

H

Next, we look at some common examples of functions.
Functions of the form

F : � −→ a�+ b,

where a and b are real numbers, occupy a position of singular importance. These are
called linear functions. We proceed to review some of the basic facts and relevant
terminology.

The following theorem is central to the understanding of the relationship between
a linear function and its graph.

Theorem 2. The graph of a linear function is a straight line.

This fact accounts for the nomenclature of a linear function.
Theorem 2 is seldom proved or even explicitly mentioned in elementary texts. Let

us first make clear what is involved. Take two distinct points A and B on the graph
G of a given linear function F : � −→ a� + b, and let L be the straight line joining
A and B. If Theorem 2 is true, then obviously G must coincide with L. (Here we are
using, in a crucial way, the fact that through two distinct points passes one and only
one straight line.) Equally obviously, if we can show that G = L, then G is a straight
line, namely, L. Therefore, our strategy is to make a judicious choice of two points
A and B on G and prove that the line L so defined satisfies L = G. Now how does
one prove that two sets L and G are equal? It is time to recall that, by definition, the
equality of the two sets, L = G, means exactly that the following two statements are
true simultaneously:

(α) every element in L is an element of G, and

(β) every element in G is an element in L.

Thus proving L = G is equivalent to proving these two statements (α) and (β). (Keep
this in mind and it will save you a lot of grief later on in your other math courses.)

We begin with an observation: Let A and B be two arbitrary points in the plane with
distinct x-coordinates. Let L be the line joining A and B. Then L is not vertical. Let
the coordinates of A and B be (x1, y1) and (x2, y2), respectively; it is then customary
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to write the points as A(x1, y1) and B(x2, y2) to indicate their coordinates. Because
x1 6= x2, we may introduce the number m defined by

m ≡ y2 − y1

x2 − x1

. (1)

Notice that m is the quotient of the difference of the y-coordinates of A and B divided
by the difference of the x-coordinates of the same, in the order indicated, B before
A. But it is easy to see that we could equally well let A precede B in the definition
because

y2 − y1

x2 − x1

=
y1 − y2

x1 − x2

.

We wish to prove that this m is in fact a number attached to the line L itself and not
just to the points A and B. In other words, if we take any two points C(X,Y ) and
D(X ′, Y ′) on L, then we would also get

m =
Y ′ − Y
X ′ −X

(2)

We call this m the slope of L. The fact that the slope of a line L can be computed using
any two points on the line is usually not made explicit, much less explained, in the
school curriculum, thereby creating an unnecessary obstacle to the learning of algebra.

The proof of equation (2) depends on the theory of similar triangles. We refer to
the picture with L as shown. The proof would proceed exactly the same way if L is
slanted the opposite way to the left, i.e., \ .

�����������������������������

B

A

C

D

L

E

F

Form triangles BAE and CDF so that BE and CF are parallel to the y-axis while
EA and FD are parallel to the x-axis. Then from the equality of the respective angles,
we have the similar triangles 4BEA ∼ 4CDF . If |BE| denotes the length of the
line segment BE, etc., we have |BE|/|EA| = |CF |/|FD|. In terms of the respective
coordinates, we see from the picture that this is the same as

y2 − y1

x2 − x1

=
Y − Y ′

X ′ −X
,

which is the same as
Y ′ − Y
X ′ −X

=
y2 − y1

x2 − x1

= m,
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which is equation (2). (This argument appears to depend on the particular ordering
of the points B, A, C and D on L as shown in the picture. The fact that were their
ordering different the same argument would have led to the same conclusion will be
left as a simple exercise to the reader.)

We can now prove Theorem 2. We are given a linear function F so that F (x) =
ax + b, where a and b are constants. We have to show that the graph G of F is a
straight line. Now if a = 0, then F (x) = b for all x, and the graph G would consist of
all the points of the form (x, b) in the plane, where x is arbitrary. In this case, G is
obviously the “horizontal” line, parallel to the x-axis, passing through (0, b). We may
threrefore assume a 6= 0.

Observe that A(0, b) and B(− b
a
, 0) are two points belonging to G (in fact, b and

− b
a

are the so-called y-intercept and x-intercept of G, respectively). Let L be the line
joining A and B. We shall prove L = G. This means we have to prove (α) and (β)
above. We first prove (α). Thus we must show that every point of L belongs to G. Let
C(X, Y ) ∈ L. To show that C(X, Y ) ∈ G, we have to show that Y = F (X), i.e.,

Y = aX + b (3)

By the observation concerning the slope of a line, we may compute the slope of L using
either A and C, or A and B, and the two numbers must be equal. Thus

b− Y
0−X

=
b− 0

0− (− b
a
)
,

i.e.,
Y − b
X

= a,

which is exactly (3). So (α) is true. (Incidentally, we have proved that the slope of a
line passing through the points A(0, b) and B(− b

a
, 0) is a.)

Next we prove (β), i.e., if P ∈ G, then P ∈ L. Since G is the graph of the function
F : x −→ ax + b, we may let P = P (X, aX + b) for some number X. Suppose
aX + b > 0. We let L′ be the straight line joining P to B, as shown:

�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�

�
�
��

L

"
"

"
"
"

"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
""

L′

A q
B

O

P
q

Q

If we can show L = L′, then it would follow that P ∈ L. Let Q be the point on the
x-axis so that PQ is parallel to the y-axis, and let O be the origin of the coordinate
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system. Consider the triangles PBQ and AOB. Let |PQ| denote the length of the line
segment PQ, etc. Then

|PQ|
|QB|

=
aX + b

X + b
a

= a

and
|AO|
|OB|

=
b
b
a

= a.

Therefore
|PQ|
|QB|

=
|AO|
|OB|

,

and since angles ∠AOB and ∠PQB are right angles, the SAS criterion for similar
triangles implies 4ABO ∼ 4PBQ. Therefore ∠ABO is equal to ∠PBQ. But these
two angles share a side (the half line from B to Q) and they are both in the upper half
plane, so their other sides must coincide, i.e., the lines AB and PB coincide. Thus we
have proved L = L′, and therefore P ∈ L in case P lies in the upper half plane (i.e.,
aX + b > 0). The case of P being in the lower half plane (i.e., aX + b < 0) is entirely
similar. Q.E.D.

It is clear that the truth of Theorem 2 depends crucially on the theory of similar
triangles. This fact should be emphasized in the school curriculum. Sadly, such is
currently not the case.

If we rewrite equation (1) as

m =
y − y1

x− x1

with (x1, y1) held fixed and (x, y) ranging over the line L, it is called the point-slope
form of the equation of the line L. If the two points (x1, y1) and (x2, y2) are given on
L and we want to characterize all the points (x, y) on L, then we use the fact that the
slope of L can be computed by any two points to conclude that

y − y1

x− x1

=
y2 − y1

x2 − x1

.

This is then called the two-point form of the equation of the line L. Finally, suppose
the line L meets the y-axis and x-axis at A(0, b) and B(− b

a
, 0), respectively. Then for

an arbitrary point (x, y) on L, we have from equation (3) that

y = ax+ b.

This is called the slope-intercept form of the equation of L because we saw in the proof
above that a is the slope of L. When the proof of Theorem 2 is understood, all three
forms become parts of a coherent picture. Theorem 2 therefore provides the context
to put all three forms in the proper perspective. Without a knowledge of the proof of
Theorem 2, these three forms become three isolated facts to be memorized by brute
force.
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To round off the picture, let us briefly recall some basic facts and terminology as-
sociated with a straight line. Two distinct lines are parallel if and only if they have
the same slope, and are perpendicular if and only if the product of their slopes is −1
(in other words, one slope is the negative of the reciprocal of the other). For lack
of space, we won’t go into the explanation of these facts. Once you understand the
preceding reasoning, however, their explanation is straightforward (but be sure you
know it). It is worth noting that the sign of the slope m of a line L has geometric
significance: if m > 0, then L is slanted this way /, whereas if m < 0, then L is slanted

in the other direction \. Moreover, the absolute value of the slope also has geometric
significance: if |m| is large, then L is close to being vertical whereas if |m| is small,
then L is close to being horizontal. Again, you should try to supply the easy reasoning.

We should bring to your attention two general classes of functions and their graphs.
A function F is odd if for every x in the domain of F , F (x) = −F (−X), and is even if
for every x in the domain of F , F (x) = F (−x). If F : x −→ xn, then F is odd exactly
when n is an odd integer, and is even exactly when n is an even integer. In terms of
their graphs, the graph of an odd function (say defined for all real numbers) is radially
symmetric with respect to the origin of the plane, in the sense that if a point P is on
the graph of an odd function F , then if we join P to the origin and then extend this
line segment to the same length on the other side of the origin, we would land on a
point Q which will again lie on the graph of F . The reason is simple. If the coordinate
of P are (a, F (a)), then the coordinates of Q must be (−a,−F (a)) due to the fact
that P and Q are by choice diametrically opposite with respect to the origin. Since F
is odd, −F (a) = F (−a), so that the coordinates of Q are in fact (−a, F (−a)), which
then exhibits Q as a point on the graph of F . If F is even instead, then its graph
would be symmetric with respect to the y-axis, for quite similar reasons. Both kinds
of behavior are displayed in the following graphs of F : x −→ xn for n odd and n even,
respectively.

P

Q

�
�
�
�
�
�
�

�
�

�
�
�
�
�

It should also be pointed out in this connection that every function can be written as
the sum of two functions, one odd and the other even. The way to do it is a standard
trick that is worth learning. If F is any function, the functions F1 and F2 defined
respectively by:

F1(x) =
1

2
(F (x) + F (−x)) and F2(x) =

1

2
(F (x)− F (−x))
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for any number x is easily seen to be even and odd, respectively. Equally obvious is
the fact that

F (x) = F1(x) + F2(x).

This is the desired sum.

We now discuss graphs of equations of two variables, such as x2 + y2 = 1. Let
a function of two variables f : (x, y) −→ f(x, y) be given. Then the graph of the
equation f(x, y) = 0 is by definition the set of all the points {(X, Y )} in the plane so
that f(X, Y ) = 0. In this context then, what we called “the graph of F : � −→ F (�)”
above is nothing but the graph of the equation g(x, y) = 0, where g is the function
of two variables g : (x, y) −→ y − F (x). In the same way, what we called above “the
graph of x2 + y2 = 1” is nothing but the graph of the equation h(x, y) = 0, where h
is the function h : (x, y) −→ x2 + y2 − 1. Note that, by tradition, it is much more
common to speak of “the graph of x2 + y2 = 1” rather than “the graph of the equation
x2 + y2 − 1 = 0”. For this reason, we shall henceforth follow the traditional usage in
this and other similar situations.

There are several standard graphs of equations that you should know about. First
of all, the graph of ax+ by = c, where a, b and c are arbitrary real numbers so that not
both a and b are zero, is of course a straight line. Indeed, if b = 0, then the equation
reduces to x = c/a, which is the vertical line consisting of all the points {(c/a, t)},
t real. If b 6= 0, then the equation becomes y = −(a/b)x + (c/b), and we recognize
from equation (3) above that this is a straight line with slope −a/b and y-intercept c/b.

The graph of x2 + y2 = r for any positive r is of course the circle of radius
√
r. The

graph of
x2

a
+
y2

b
= 1 where a and b are distinct positive numbers is an ellipse in the

so-called standard position which passes through the points (
√
a, 0) and (0,

√
b) on the

x-axis and y-axis, respectively. It is a “squashed circle” if a > b, and is an “elongated
circle” if a < b.

The graph of
x2

a
− y2

b
= 1 where a and b are positive numbers is a pair of

hyperbolas passing through the points (±
√
a, 0). The lines y = ±

(√
b
a

)
x are the so-

called asymptotes of the hyperbolas, meaning that the the hyperbolas get arbitrarily
close to these straight lines when they are sufficiently far away from the origin but
never intersect them.
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(
√
a, 0)(−

√
a, 0)

There are two variants of the above equation for hyperbolas. One is
y2

a
− x2

b
= 1.

Clearly this is merely a matter of exchanging the roles of x and y (see the first of
the figures below.) The other is xy = k, where k > 0. These hyperbolas have the
coordinate axes as asymptotes (see the second of the figures below).

"
"
"
"
"
"
"
"
"
"
"

"
"
"

"
"

"
"
"
"
"
"

b
b

b
b
b

b
b
b

b
b
b

b
b
b
b
b
b
b
b
b
b
b
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Note that one can “transform” the first two kinds of hyperbolas into one like the
third kind (i.e., xy = k) through a rotation and a “shear” of the plane, but such an
explanation would require a more detailed discussion than is possible here. In any case,
such a discussion can be found in all the linear algebra courses and texts.

Finally, the graph of y = ax2 (a > 0) is a parabola in standard position. It is worth
mentioning that this parabola is exactly the set of all points equi-distant from the point
(0, 1/(4a)) and the horizontal line y = −1/(4a). (Discovering this fact on your own may
be difficult, but once you have been told it is true, the verification is a straightforward
computation that you should carry out yourself.) The former is called the focus of the
parabola, and the latter its directrix. If a < 0, then we get the upside-down version of
the former.

q
O

(0, 1
4a

)

y = − 1
4a

q
O

(0, −1
4a

)

y = 1
4a

We now recall some area and volume formulas.

Without defining what “area” and ”volume” mean (these are subtle concepts, but
you will get a glimpse of the correct definitions in calculus), we shall make some simple
assumptions and use them to derive some area formulas for rectilnear figures in the
plane.

Let us start with the area of a square of side a: we would all agree that it should
be a2. Next,

(the area of a rectangle of sides a and b) = ab.

Although a little less obvious than the case of the square, let us also accept this. We
will also assume that

(i) congruent regions have the same area, and

(ii) if a region is expressed as the union of two sub-regions which intersect
each other at most on their boundaries, then the area of the region is the
sum of the areas of the sub-regions.

These are completely believable statements and are usually taken for granted.
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We now prove by drawing pictures that

(the area of a parallelogram with base b and height h) = bh. (4)

In equation (4), it is understood that the height is taken with respect to the given base.
Indeed, let ABCD be the given parallelogram and let BC be the given base with

length b. Note that the length of the side AD is then also equal to b. Let prependiculars
AE and DF be dropped on BC. There are two possibilities: whether at least one of E
and F falls on the segment BC or both fall outside the segment BC. We first assume
the former, as shown:

�
�
�
�
�
��

�
�
�
�
�
��

h

b

B E C F

A D

Then the triangles ABE and DCF are clearly congruent so that they must have the
same area (using (i)). Moreover AEFD is a rectangle and therefore has area bh. Thus,

area of ABCD = area of ABE + area of AECD

= area of DCF + area of AECD

= area of AEFD = bh,

as claimed.
We now tackle the second case where both E and F fall outside the base BC, as

shown:

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

h

b

B C E F

A D

The triangles ABE and DCF are congruent (by ASA), and therefore have the same
area. Moreover AEFD is a rectangle and its area is bh. Thus,

area of ABCD = area of ABFD − area of DCF

= area of ABFD − area of ABE

= area of AEFD = quadbh,
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So equation (4) has now been completely proved. (Note how assumptions (i) and (ii)
above were used implicitly but repeatedly in the proofs of both cases.)

Using equation (4), we can now prove that

the area of a triangle with base b and height h =
1

2
bh. (5)

This is also proved by a picture (see below): Given triangleABC, letM be the midpoint
of segment AC. Rotate the triangle 180 degrees around M to get an inverted copy of
4ABC adjoining side AC. Together, these two triangles now form a parallelogram.
The latter has twice the area of the triangle, but according to equation (4), it also has
area bh. So by assumptions (i) and (ii) again, (5) follows.
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Equation (5) has important applications. On the one hand, it can be used to derive
the area of a trapezoid (recall: a trapezoid is a quadrilateral with a pair of parallel
opposite sides). Let the lengths of the parellel sides be a and b, and let the height (=
the distance between the parallel sides) be h. Then,

area of trapezoid =
1

2
h(a+ b). (6)

Let the trapezoid be ABCD (see picture below). The diagonal BD divides it into two
triangles, 4ABD and 4BCD. By assumption (ii), the area of ABCD is the sum of
the areas of 4ABD and 4BCD. Now apply equation (5) to both triangles and we
immediately get (6).
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A more important application of equation (5) is of a theoretical nature. Every poly-
gon is the union of triangles which intersect each other at most at boundary edges;
although quite difficult to prove in general, this fact is altogether believable and will
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therefore be taken for granted. In the case most important to us, that of a regular
polygon, it is obvious how to express it as such a union of triangles. In any case,
because the area of a triangle can be computed by (5), the area of any polygon is
therefore computable in principle. We will see why this remark is important when we
come to the area of disks below.

We now come to something much more delicate: the area of the region inside a
circle. First, a word about terminology. In every day conversation and, sadly, also in
most high school texts as well as in most calculus texts, this would be called “the area
of a circle”, but the resulting confusion (does “circle” refer to the curve or the region
inside this curve?) is clearly unaccceptable. So in mathematics at least, we make a
distinction: henceforth circle refers only to the round curve, and disk will designate the
region inside the circle. Thus a circle of radius r is the boundary of a disk of radius
r. This being said, we are going to give a correct definition of the number π, and then
give an intuitive explanation of the formula:

the area of a disk of radius r = πr2. (7)

More importantly, we also give an intuitive explanation of

the length of a circle of radius r = 2πr (8)

The number π is by definition the area of the disc of radius 1. We now give a
restrictive, but correct, definition of the area of a disk of any radius r, to be denoted
by D(r). Let the boundary circle of D(r) be denoted by C(r), and let Pn be a regular
n-gon (a polygon of n sides) inscribed in C(r), i.e., all the vertices of Pn lie on C(r).
The following shows the case of n = 6 for a disk with center O:
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It is intuitively clear that as n gets large without bound, Pn would get closer and
closer to C(r) and the region inside Pn would become virtually indistinguishable from
the disk D(r). Because the area of Pn is something we know how to compute, it makes
sense then to define the area of D(r) to be the limit of the area of (the region inside) Pn
as n increases to infinity. Here we leave vague the precise meaning of “limit”, except
to point out that it is one of the central concepts of advanced mathematics.

Next we explain why C(1), the circle of radius 1, has length 2π. This statement
reminds us that we have not yet given meaning to “length of C(r)”. Using the notation
of the preceding paragraph, we define the length of C(r) to be the limit of the perimeter
of Pn as n increases to infinity. We can now compute the length of C(r). Letting as
usual the center of D(r) be O, let us join O to two consecutive vertices A and B of Pn
to form a triangle OAB:
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From O we drop a perpendicular to side AB of4OAB and we denote the length of this
perpendicular by h. If we denote the length of the segment AB by sn (the subscript
n here indicates that it is the length of one side of Pn), then the area of 4OAB is
1
2
snh, by equation (5). Now remember that 4OAB is one of n congruent triangles

which “pave” Pn, so the area of Pn is n(1
2
snh), by virtue of assumptions (i) and (ii).

We rewrite it as

area of Pn =
1

2
(nsn)h

But nsn is the perimeter of Pn because the boundary of Pn consists of n sides, each
being congruent to the segment AB. So as n increases to infinity, nsn becomes in
the limit the length of C(r), by the definition just given. Moreover, as n increases to
infinity, AB gets smaller and smaller and therefore closer and closer to the circle C(r).
So the perpendicular from O to AB becomes OA in the limit and therefore h becomes
the radius of C(r), which is r. Needless to say, the area of Pn becomes the area of
D(r), by the above definition. Letting n increase to infinity, the preceding equation
then becomes

area of D(r) =
1

2
(length of C(r)) r,

or, what is the same,

length of C(r) =
2

r
(area of D(r)).

If r = 1, then since the area of D(1) is by definition the number π, we have

length of C(1) = 2π (9)

We can now show why (7) and (8) must be true. The key idea is to employ the
concept of dilation in the plane: Ds : (x, y) −→ (sx, sy), where s > 0. The overriding
fact is that Ds sends a curve K of length ` to a curve Ds(K) of length s`, and a region
R of area A to a region Ds(R) of area s2A. In our present context of a circle and a
disk, both can be easily explained. Since all circles of the same radius in the plane are
congruent to each other — and recall that congruent figures have the same length and
area — we shall henceforth assume that our circles are centered at the origin O. Let us
start with length. Ds sends the circle C(r) of radius r to the circle C(sr) of radius sr.
If Pn is an inscribing regular n-gon in C(r), then Ds(Pn) is also an inscribed regular
n-gon in C(sr). The perimeter of Ds(Pn) is s times that of Pn for the following reason.
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We may assume one of the triangles obtained by joining O to consecutive vertices of Pn
is positioned as in 4OAB of the preceding discussion, namely, the side AB is parallel
to the x-axis. Then under the dilation Ds, AB goes into a segment (parallel to the
x-axis) of length s times the length of AB. Since the perimeter of Pn is n times the
length of AB, and likewise the perimeter of Ds(Pn) is n times that of Ds(AB), the
perimeter of Ds(Pn) is s times that of Pn. Because the length of C(sr) is by definition
the limit of the perimeter of Ds(Pn) — and the length of C(r) is likewise the limit of
the perimeter of Pn — it follows that the length of C(sr) is s times the length of C(r).

Next area. Note the obvious fact that Ds(D(r)) is D(sr). So we have to prove that
the area of D(sr) is s2 times the area of D(r). Using the preceding notational setup,
we observe that the area of Ds(Pn) is s2 times the area of Pn, for the following reason.
Because the area of Pn is n times the area of 4OAB, — and the area of Ds(Pn) is n
times that of Ds(4OAB), — it suffices to show that the area of Ds(4OAB) is s2 times
that of 4OAB. But the latter is obvious from formula (5): Ds changes each of h and
the length of AB by a factor of s, and hence changes 1

2
snh to (1

2
(s sn)(sh)) = s2(1

2
snh).

So we know that the area of Ds(Pn) is s2 times the area of Pn. But the area of D(r) is
the limit of the area of Pn, while the area of Ds(D(r)) is also the limit of the area of
Ds(Pn). So the relationship

area of Ds(Pn) = s2 (area of Pn)

implies the corresponding relationship

area of Ds(D(r)) = s2 (area of D(r)),

which is the same as
area of D(sr) = s2 (area of D(r)),

which is what we want.

Now the area of the disk of radius r, D(r), is r2 times the area of D(1), which is by
definition equal to π. Thus the area of D(r) is πr2. This confirms (7). On the other
hand, the length of the circle of radius r, C(r), is r times the length of C(1), which by
(9) is 2π. So the length of C(r) is 2πr, and (8) is also true.

Finally, we have to address an issue related to our definition of π. We all know π is
something like 3.1416, and you may be puzzled by the definition of π as the area of the
disk D(1) of radius 1: how to go from this definition to 3.1416? One way to estimate
the area of D(1) is by drawing a circle of radius 1 on a graph paper, and compare
the number of grids inside the circle with that inside the unit square. If you use very
fine grids, and be patient with the counting of grids, then it should be straightforward
to arrive at an estimate the area of D(1) to be between 3.1 and 3.2. Sometimes one
can do far better. This may be the best method for getting some intuitive feeling of
what π is about. Of course the definition of π as the area of D(1), in the context of
calculus, is an integral, and various standard methods can be employed to approximate
the integral to as many decimal places as we wish. Even this does not give the true
picture about π, however. The fact is that π is a number that lives in almost every
part of mathematics, but because it first shows up in the context of length of circles
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and area of disks, the common misconception is that this is the only way π shows up.
What is true is that there are approaches to π which are not related to geometry and
which produce different infinite series to represent π. These series yield an accurate
value of π to many decimal digits by summing only a few terms. See, for example, L.
Berggren, J. Borwein and P. Borwein, Pi: A Source Book, Springer-Verlag, 1997.
For your curiosity, here is π to 50 decimal places:

3.14159265358979323046264338327950288419716939937510

At least one other area formula in connection with π must be mentioned:

the area of a sphere of radius r = 4πr2 (10)

As in the case of the circle, here we mean by sphere the 2-dimensional round surface;
we shall use ball to designate the 3-dimensional region inside a sphere. The remarkable
nature of formula (10) should escape no one: it implies that the area of the hemisphere
(one-half of a sphere) on top of a disk of radius r is exactly twice that of the disk
(by virtue of (7)). Given a hundred chances, would you have guessed this correctly
if you hadn’t known formula (10) beforehand? Needless to say, (10) requires calculus
for its proof, but unlike (7), there is no similar simple explanation. In fact, formula
(10), which was first discovered by Archimedes (287-212 B.C.), is among the deepest
theorems of elementary mathematics. (In order to appreciate the depth of formula
(10), just stop to think for a second: what is really meant by the “area” of such a
curved surface??)

Finally we turn to volumes. Since the definition as well as all subsequent volume
formulas all depend heavily on calculus, we shall operate entirely on the intuitive level.
As with area, we will continue to make the same two basic assumptions on volume,
namely,

(i′) congruent solids have equal volume, and

(ii′) if a solid is divided into two sub-solids so that the latter intersect each
other at most at their boundary surfaces, then the volume of the solid is the
sum of the volumes of these two sub-solids.

However, in contrast with the case of area where assumptions (i) and (ii) were used
very effectively to derive basic area formulas for most of the common rectilinear planar
regions, there is a mathematical reason, too advanced to be given here, why the same
kind of reasoning with (i′) and (ii′) would not lead to similar volume formulas except
in a few exceptions such as rectangular prisms (solids). Almost any volume formula
must employ something equivalent to calculus. Therefore, the important thing at this
point is to know how to correctly apply the formulas. For example, you should be able
to decide whether a spherical container of radius 1.2 or a cubical container of side 2
contains more honey (your money may be at stake). It is also true that you owe it to
yourself to learn, at least once in your life, why all these beautiful formulas are true.

The first formulas have to do with the volumes of “generalized pyramids” and “gen-
eralized cylinders”. Let Π1 and Π2 be two planes in 3-space, parallel but of distance h
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apart, and let R be a region in the plane Π2. We first show how to generate generalized
cylinders using R in Π2. Let w be a point in Π1 and u be a point in the given region R
of Π2. Let L be the line segment joining w to u. Now let u trace out all the points of
R and let L, while following u, remain parallel to itself. (The point w therefore traces
out a region in Π1 congruent to R as u sweeps out R.) The solid C traced out by the
line segment L in this manner is called a generalized cylinder with base R and height
h. (Thus h is the distance between the top and bottom of C.) Because it is difficult to
draw three dimensional pictures, we draw a two-dimensional profile to give an idea:

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Π2

Π1

L

u

w

R

h

In the same setting, we now describe how to generate a generalized pyramid with
baseR. Fix a point P in Π1. Then the solid V which is the union of all the line segments
obtained by joining P to all the points in R is called a generalized pyramid with base
R and height h. Again, we only draw a two-dimensional profile for illustration:
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In case R is a disk and L is perpendicular to Π2 (and hence also to Π1), the resulting
generalized cylinder C is nothing but a right circular cylinder in the usual sense. If R
is a disk, then the resulting generalized pyramid V is what is usually called a cone. In
case R is a rectangle and L is perpendicular to Π2, C is a rectangular solid. In case R
is a square and the point P is right above the center of the square, the resulting V is
then a pyramid in the usual sense.

The basic formulas in this context are:

the volume of a generalized cylinder with base R and height h

= (area of R) ·h. (11)

the volume of a generalized pyramid V with base R and height h

=
1

3
(area of R) ·h. (12)
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Thus given a generalized pyramid and a generalized cylinder with the same base

and height, the volume of the former is always
1

3
of the latter. The proof of this fact

requires calculus, but in an important special case, we can gain some insight into how
the factor of 1

3
arises. So let C0 be the unit cube ABCDEFGH (i.e., all sides are of

length 1) and let V0 be the generalized pyramid AEFGH sharing the same base as the
unit cube (see figure below). Thus the generalized cylinder (C0) and the generalized
pyramid (V0) have the same square base and the same height (= 1).
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We now prove directly that

volume of V0 =
1

3
(volume of C0) (13)

This is because the cube C0 is the union of the following three generalized pyramids:

AEFGH (= V0), ABFGC, and ADCGH.
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These three generalized pyramids are congruent! The easiest way to see this is to
realize that all three have congruent bases (unit squares), same height (= 1), and the
vertex of each pyramid is directly above a vertex of the base (AE is perpendicular to
the base EFGH on the left, AB is perpendicular to the base BFGC in the middle, and
AD is perpendicular to the base DCGH on the right). Thus the unit cube is the union
of three congruent pyramids which intersect only at boundary triangles (AEFGH and
ABFGC intersect only at 4AFG, ABFGC and ADCGH intersect only at 4AGC,
and AEFGH and ADCGH intersect only at 4AGH). By assumptions (i′), the vol-
umes of all three pyramids are equal and therefore, by assumption (ii′), the volume of
each such pyramid is a third of the volume of the unit cube.

The reason this special case is important is that, using basic properties of the behav-
ior of volume under dilation in each coordinate direction and the so-called Cavalieri’s
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Principle (provable only with the help of calculus considerations), this trisection of the
unit cube furnishes the basis of a proof of formula (12). See Chapter 9 in Serge Lang
and Gene Murrow, Geometry, 2nd edition, Springer-Verlag, 1988.

We now go back to formulas (11) and (12). Using formula (7), we conclude from
formula (11) that in case R is a disk of radius r, the following classical formulas are
valid:

the volume of a circular cylinder R of base radius r and height h

= πr2h. (14)

the volume of a cone of base radius r and height h =
1

3
πr2h. (15)

Our final formula pertains to the familiar case of the ball:

the volume of a ball of radius r =
4

3
πr3. (16)

Formula (16) is one of the most celebrated formulas in the mathematics of antiquity.
Like formula (10), it was also first discovered by Archimedes. We have more to say
about him presently. The same formula was re-discovered by a different method, and
most probably independently, several centuries later in China by Zu Chong-Zhi (430–
501) and his son Zu Geng. Nowadays, you should be able to derive (16) in your first
semester of calculus.

Now let us make some observations about the area formulas (7) and (10), and the
volume formulas (14) and (16). First suppose we place a hemisphere (half a sphere) of
radius r on top of a disk of radius r. By formula (7), the area of the disk is πr2, and
by formula (10), the area of the hemisphere is 2πr2. Now compare the two areas, and
you would suddenly be struck by the fact that the area of the hemisphere is exactly
twice that of the disk. Would you have guessed that beforehand? Next, suppose we
have a ball of radius r inscribed in a cylinder. This means the top and bottom disks
of the cylinder touch the sphere, as does the vertical wall of the cylinder. Notice that
this means the radius of the cylinder is also r and the height of the cylinder is 2r. By
formula (14), the volume of the cylinder is 2πr3. Comparing this with formula (16),
we see that the volume of a ball inscribed in a cylinder is 2

3
the volume of the cylinder.

We go further: the surface area of the sphere which is the boundary of the ball under
discussion is 4πr2, by formula (14). On the other hand, the (total) surface area of
the cylinder is πr2 + πr2 + (2πr)(2r) which is equal to 6πr2. Therefore the surface
area of a sphere inscribed in a cylinder is also 2

3
the surface area of the cylinder. These

remarkable relationships between the surface areas and volumes of a ball inscribed in a
cylinder were the discoveries of Archimedes. He was so proud of them that he requested
that a picture of a ball inscribed in a cylinder be drawn on his tombstone.

A final thought: the volume of a rectangular solid with sides a, b, and c is of course
abc.

Here is a brief indication of why the concept of area is subtle. Let us agree
that a unit square (i.e., each side has length 1) has area 1. It is then easy to

21



convince oneself that (say) a rectangle of sides 3 and 7 must have area 21 (no
matter how area is defined) because it can be neatly partitioned into exactly
21 unit squares. The same reasoning shows that if a rectangle has sides m
and n, where m and n are integers, then its area (again regardless of how it
is defined) must be mn. What about a rectangle of sides 0.2 and 0.3? We
can reason as follows: Let Q be a square of side 0.1. Since a unit square can
be partitioned into 100 copies of Q, the area of Q is 1/100. Since also the
rectangle of side 0.2 and 0.3 can be partitioned into 6 copies of Q, its area is
therefore 6/100, which is of course just 0.2 × 0.3. The same reasoning then
proves that a rectangle of sides r and s, where r and s are rational numbers,
has area equal to rs. So far so good. But suppose we have a rectangle
R whose sides are of length

√
2 and

√
3, can the above argument conclude

that the area of R must be
√

2 ×
√

3? A little reflection would reveal that
that argument now breaks down completely and that this new situation calls
for an overhaul of what we mean by the area of R. It turns out that the
proper definition of area must involve the concept of a limit, and that the
new defintion (using limits) of area now leads to the desired conclusion that
the area of a rectangle of sides a and b is ab, for any real numbers a and b.

From this discussion, one can get a glimpse of the complications when
one tries to define the area of a curved object like the sphere.
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