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E. H. Moore’s Retiring Address as AMS President took place in 1902.
Moore had a firm commitment to both teaching and research, but the theme
of his address centered on mathematics education. On the role of AMS in
education, he said: “Do you not feel with me that the AMS, as the organic
representative of the highest interests of mathematics in this country, should
be directly related with the movement of [education] reform?” ([EW], p.671)
With the current mathematics education reform movement in place for al-
most a decade, Moore’s words of a century ago become all the more relevant
now.

The “reform” referred to in this article will cover both the K-12 math-
ematics education reform and the calculus reform, since these two reforms
share almost identical outlook and ideology. (See for example [US].) Unbe-
knownst to most mathematicians, AMS has already taken part in this reform:
p.vi of the NCTM Standards ([N1]'), carries the following statement:
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vision of school mathematics described in Curriculum and Eval-
uation Standards for School Mathematics:

Amer. Math. Assoc. of Two Year Colleges, AMS, Amer.
Stat. Assoc., AWM, Assoc. of State Supervisors of
Math., CBMS, Council of Presidential Awardees in
Math., Council of Scientific Society Presidents, Inst. of
Management Sc., MAA, MSEB, National Council of
Supervisors of Math., Operations Research Soc. of

Amer., School Sc. and Math. Assoc., STAM.

There are valid reasons why we as members of the AMS should, as Moore
said, be “directly related with the reform”. To the outside world, the AMS
has spoken for all of us by endorsing NCTM’s “vision”, and the reform is
settling in, becoming codified in law in some states and being mandated on
local and national levels. It is now incumbent on us to consider, even if a
trifle too late, whether this vision is indeed the one that we could — or should
— endorse personally. The purpose of this article is to present some facts to
help the mathematical community make up its collective mind.

The dictionary definition of reform is the improvement or amendment of
what is wrong, corrupt, unsatisfactory. Does this reform then improve on
what is unsatisfactory in the so-called traditional curriculum? The answer is
both yes and no: the reform presents not an unalloyed improvement but a
set of uneasy trade-offs. The succeeding paragraphs give some of the details.
My comments on the reform are based on the following documents and texts:
[A], [CHA], [CPM], [DAU], [EI], [HCC], [IM], IMP1]-[IMP3], [LA], [MAF],
INC], [N1]-[N4], [PEL], [SCA], [SCH], [SE], and [WAP]. (It may be added
that most of these documents are either basic to the reform, such as [N1]-
N3] and [HCC], or highly praised, such as [IMP1] and [NC], or widely used
either nationally or within a state, such as [EI] and [CPM].) A discussion
of the impact of the reform on school and university mathematics education
together with specific suggestions of how mathematicians can help the cause
of education will be given in a separate article ([W1]).

First, a word of caution: I have referred to the reform and the traditional
curriculum as if they were monolithic entities, but of course they are not.
Insofar as they are in the social domain, general statements in this article
must be understood to have some exceptions.

In the following, the traditional curriculum will refer to the generic school



mathematics curriculum of the eighties. By the time the idea of the latest
reform took hold in 1986 — the year NCTM convened its first meeting to
draft the NCTM Standards [N1] — the concept of a “proof” in the traditional
curriculum had either become nonexistent or degenerated into meaningless
ritual. For those who went to school in the 40’s or 50’s, such a statement
may come as a surprise as not a few of us had been charmed by Euclidean ge-
ometry — the essence of proofs — into becoming mathematicians (cf. [OS]).
Yet Euclidean geometry is now perhaps the most vilified portion of school
mathematics. What happened? The mathematics curriculum in the schools
went through the New Math of the 60’s and the Back to Basic Movement
of the 70’s, and emerged oversimplified and dumbed down. Even synthetic
Euclidean geometry has become corrupted by bad texts and bad teaching,
so that a proof can often be mistaken for “one more thing to memorize” by
the students.

Example: the first theorem in the popular geometry text [RH] is: “If two
angles are right angles, then they are congruent.” This occurs on p.24 —
up to that point there has been no attempt to build up students’ geometric
intuition — and the two-column proof consists of five (5) steps. Without
divulging the secret of how to stretch such a proof to so many steps, let
me just mention that, according to the text, “a right angle is an angle whose
measure is 907, and “congruent angles are angles with the same measure”. In
turn, “the measure of an angle is the amount of turning you would do if you
were at the vertex, looking along one side, and then turned to look along the
other side.”, but for the precise measure of “90 (degrees)”, the text tells you
to use a protractor (p.9, line -9). To make matters worse, a teacher in this
situation typically asks students to commit to memory the format of such
a presentation for the purpose of exams (cf. [SCH], pp.157-8). The whole
point of having axioms and modus ponens in order to ascertain the truth of
a statement has clearly fallen by the roadside in the intervening years.

The overriding characteristic of the traditional curriculum is its emphasis
on learning algorithms by rote: mathematics becomes a set of algorithms to
be memorized and regurgitated at exam time. For example, while some alge-
bra texts of the 50’s still gave proofs of the basic properties of polynomials, it
would be difficult to find a standard algebra text of the eighties that takes the
trouble to explain anything. Anyone who teaches freshman calculus regularly
knows only too well the ill effects of this kind of mathematics education. It
does not add to our comfort to realize that many calculus courses in college
also lend themselves to learning by rote, so that students often come out of



such a course equating derivative with “the thing that changes 2" to nz" 1"

and nothing more. The accusation against this traditional curriculum is that
it is arid, boring and irrelevant. Students lose interest. The abysmal test
scores of the late seventies through the early nineties together with massive
drop-outs in K-12 math classes testify to its failure.

From a mathematical point of view, the main problem with the tradi-
tional curriculum is that it deals with the how of mathematics, but not with
why. The basic questions of why something is true and why something is
important are allowed to remain unanswered. What we need is a curriculum
that provides answers to these questions.

Proofs

A reasonable response to the absence of proofs in the traditional curricu-
lum would be to give precise proofs of a set of select basic theorems, with
rigor appropriate to the grade level, and to offer heuristic arguments when-
ever possible for the rest. The crucial point here is to help develop students’
critical faculty by making them aware of the distinction between the two: a
proof and a heuristic argument. On the one hand, logical deduction — proof
— is the backbone of mathematics. If we are serious about mathematics
education, we should aspire to making every high school student learn what
a proof is. On the other hand, it would be a grave mistake to insist that ev-
ery statement in elementary mathematics, up to and including calculus, be
given a proof. There is no reason to impose the kind of training designed for
future professional mathematicians on the average student. (In particular,
e-0 proofs may be best reserved for honors calculus.) What is important,
however, is to give students adequate training in making logical deductions.
This can be done by using what may be called local axiomatics, i.e., before
the proof of a theorem, make clear what statements are assumed to be true
and proceed to show how to use them in the proof. This shows students how
to demonstrate the truth of a statement on the basis of explicit hypotheses.
A reasonable mathematics education should aim for at least this much.

We turn now to the reform’s response to the absence of why. The overall
strategy of the reform is to supply motivation and heuristic arguments, but
only motivation and heuristic arguments. In mathematics, heuristic argu-
ments are used as preludes to proofs; but in the recent reform documents,
they are used as substitutes for proofs.

This strategy presents a new set of problems of its own. For example,
when a seductively phrased heuristic argument, in reality very far from a



proof, is presented without further comments, it is perilously close to a de-
ception. The argument offered for the Fundamental Theorem of Calculus on
p.171 of [HCC] is a good illustration: Given F' defined on [a,b], partition
the latter into n equal subdivisions xyp < ; < --- < x, and let the length
of each subdivision be At. Then for n large, the change of F in [t;, t;41] is
approximately AF ~ Rate of change of F(¢t)x Time ~ F'(t;)At. Thus the
total change in F = S AF ~ " F'(t;)At. But the total change in F(t)
between a and b can be written as F'(b) — F'(a). Thus letting n go to infinity:
F(b) — F(a) = Total change in F'(t) from a to b = fab F'(t)dt.

Problems of a different kind arise when heuristic arguments based on
appeals to technology are made with increasing frequency: the computer or
calculator begins to assume the role of arbiter of pure reason. Thus, in the
8th Grade textbook of the widely used Addison-Wesley series [EI], p.396,
students are told that if a number is not a perfect square or a quotient of
perfect squares, then its square root is an irrational number (which is defined
to be a non-repeating and non-terminating decimal). Why? Because one can
check this on a calculator. Or, consider the reason offered for % sinx = cos T
on pp.101-103 of Derivatives in [DAU]: graph the function f,(z) = (sin(z +
h) —sinz)/h for successively smaller values of h (e.g., 0.5, 0.1, 0.001, ...)
using the computer and observe that this graph approaches that of cosz as
h — 0.

Of course the strategy also has momentary lapses. At times, no argument
of any kind is offered. Thus the pre-calculus text [NC] defines the inverse of
a square matrix R as a matrix S so that RS = I (p.259), but immediately
states: “It is also true that SR = I. ... The inverse of R is symbolized by
R7! sothat R~ = S and S~! = R.” The inherent logical difficulties behind
these statements (Why does RS = I imply SR = I? Why is such an S
unique? Why is S™! = R?) are never mentioned, much less resolved. The
beginning algebra text [CHA] tells the students (p.676) that the quadratic
formula is “one of the most important formulas in mathematics”, but does
not see fit to offer any derivation for it. The geometry text [SE] never explains
why the three altitudes of a triangle meet at a point, among many things.

When it does happen that a heuristic argument is in fact a correct proof,
the problem then becomes one of credibility gap: if no distinction is ever
made between a correct proof and a heuristic argument, which may be diffi-
cult or impossible to upgrade to a proof, how to convince students that this
time around it is really true? So at the end, students are simply left with the



mistaken belief that every piece of reasoning they have encountered is valid.
At least, the de facto absence of proofs in the traditional curriculum did
not mislead the students into the illusion that they know the reason for any-
thing, but the reform manages to do otherwise. For example, the comment in
Derivatives of [DAU] about the above heuristic argument for £ sinz = cosz
is (p.103):

How sweet it is. Math happens.

In other words, the students are explicitly asked to believe that, thanks to
the computer, they have witnessed mathematics at work.

Precision and technical skills

Precision is a defining characteristic of our discipline. For ease of discus-
sion, let us artificially separate precision into the following two categories:?
conceptual precision (definitions, theorems and proofs) and formal precision
(symbolic computations and algorithms). Since proofs have already been
discussed, we now concentrate on formal precision.

The traditional curriculum is driven by algorithms-without-explanations.
By overly simplifying mathematics in this fashion, this curriculum acquires
several virtues: it has built-in precision; it brings computational skills to the
forefront; it sets a clear goal for students — always strive to produce a correct
answer; and finally, it lets teachers know unambiguously what to teach. Its
weaknesses are that, especially in unskilled hands, it can easily degenerate
into mindless number crunching and symbol-pushing, so that students end up
not learning even the computational skills. These weaknesses are correctable:
supply the motivation and reasoning lying behind the algorithms, and replace
some of the routine drills with exercises that make a greater demand on
students’ conceptual understanding.

The reform responds by promoting what it calls “process over product”. 1t
stresses qualitative reasoning (hence heuristic arguments, as described above)
and motivation. In also introduces the idea of looking at counter-examples or
conjectures in connection with a new concept or theorem. These are welcome
changes. Not welcome is the reform’s downplaying of symbolic computations,
precise definitions, neat formulas and precise answers.

The advisability of these decisions is debatable. Consider the following
statement on p.125 of the Standards ([N1]): “the 9-12 standards call for a

2 We note for emphasis that in reality there is no such separation.



shift in emphasis from a curriculum dominated by memorization of isolated
facts and procedures to one that emphasizes conceptual understandings, mul-
tiple representations and connections, mathematical modelling, and mathe-
matical problem solving” . In and of itself, this sentiment cannot be faulted
— trying to lead students away from memorization towards understanding.
Yet when there is no simultaneous emphasis on basic technical skills through-
out the whole document, statements such as this in [N1] open the door to
texts and curricula which make believe that one can be technically deficient
(not knowing precise definitions or not equipped with symbolic computa-
tional skill, say) and still achieve conceptual understandings, make multiple
connections, and solve problems. How much can a student understand about
second degree polynomials without knowing the quadratic formula? Quite a
bit for a history major, perhaps, but not nearly enough if one wants to do
exact sciences or mathematics. The fact must be faced that, in mathematics,
one cannot have understanding without technique. The two are intertwined.

An excellent illustration of the shortcomings of the “process over product”
approach is in the treatment of arithmetic series and geometric series in the
introductory algebra text [WAP]. It goes through the detailed method of
summing these series for concrete cases but relegates the two well-known
formulas to two exercises (pp.191 and 399). All of a sudden, formulas seem
to have fallen into disgrace. In the reform curriculum, this is a severe case of
throwing out the baby with the bath water. Similarly, we have the absence
of any mention of convergence tests for infinite series in the calculus text
[HCC], and of the binomial theorem in the pre-calculus text [NC], and of the
geometric series in [NC] and [IMP1].

Another aspect of “process over product” is the downgrading of the im-
portance of getting a single correct answer. One way is to demonstrate
that mathematics is not “a domain of single right answers”. To this end,
the NCTM Teaching Standards have a teacher posing the following problem
(p.45 of [N2]): if 30 points were scored in a basketball game without a sin-
gle foul shot, how were the 30 points scored? (There are 2-point shots and
3-point shots in basketball.) From a mathematical standpoint, this problem
is not correctly formulated: the teacher could have asked the students either
“to list all the possible ways the 30 points were scored” (in which case there
would be a unique answer), or to show “how such an imprecise question
in daily life could be translated into a precise mathematical problem”. It is
clear that this is where a firm mathematical direction from the teacher would
help to clarify the situation. Instead, the discussion in [N2] makes a point of



not making such a clarification (cf. the marginal remarks on pp.46-47). In
the meantime, even some good teachers are led into believing that problems
which have a unique correct answer are bad for students (p.122 of [W2]; one
can find in [W2] a more extended discussion as well as further examples of
such problems.)

The slighting of technical skills in calculus presents additional educational
problems, however. For example, the text [HCC] is written to be accessible
to students with weak algebraic background. To the question whether reform
calculus was “passing students through calculus with at best a rudimentary
knowledge of algebra”, a reformer’s reply was that “we were doing this long
before calculus reform” ([MCC]). Should the calculus reform not be interested
in smproving on this aspect of mathematics education instead of accepting
the status quo? Educators have long recognized the unfortunate fact that the
prestige of any K-12 mathematics curriculum hinges on its ability to prepare
students to pass calculus. By sending out a signal that being weak in algebra
is acceptable in calculus, the reform in effect sanctions the continued decline
in school students’ symbolic manipulative skill. Especially when this signal
is reinforced by [HCC], at present a best seller in calculus. The devastating
impact this has on school mathematics education as a whole will be long
lasting, because the students of today will be the teachers of tomorrow and
weak teachers tend to produce even weaker students. This is not the kind of
“improvement” expected of a reform.

Relevance

A curriculum of elementary mathematics should achieve a balance be-
tween theory and applications and ultimately, a balance between the abstract
and the concrete. A majority of students learn mathematics to be good citi-
zens, not to become professional mathematicians. For this they need to learn
both the cultural aspect of mathematics and its utility.

For many students, a major defect of the traditional curriculum is its
seeming irrelevance. The result is substantial dropouts in mathematics class-
rooms across the nation.

Part of this feeling of irrelevance stems from the poor integration of theory
and applications in the traditional curriculum. Word problems, too often mis-
handled in the classroom, lend themselves too easily to solutions-by-template.
This then leads to the danger of learning by rote not only the theories but
also their applications. A second difficulty is that the applications used have
not caught up with the explosion of the more recent applications of mathe-



matics (especially discrete mathematics) in everyday life. A third difficulty
is the paucity of “internal applications” within mathematics: e.g., how to
use an algebraic technique in geometry, or vice versa.

This perception of irrelevance was in fact one of the main targets of the
reform from the beginning. “Mathematics has become a critical filter for
employment and full participation in our society. We cannot afford to have
the majority of our population mathematically illiterate: Equity has become
an economic necessity” (p.4 of [N1]). The battle cry is “Mathematics for all!”
To this end, the reform promotes curricula which center around so-called real
world problems. Thus [HCC] states in the Preface: “Formal definitions and
procedures evolve from the investigation of practical problems” (p.vii). Also
one finds in [N1]: “Problem solving must be central to schooling” (p.4). The
resulting more realistic alignment of the reform curricula with the real world
is a definite improvement.

But again, improvement comes at a price. The literal insistence on using
real world problems as core brings in new and sometimes surprising pedagog-
ical issues. For example, do the messy real world details obscure the basic
mathematics, thereby obstructing the very mathematical skills the students
should be learning? Another is whether one person’s real world experience
may not be another’s drivel. Consider some of the applications in [NC]: why
short tennis players should use a spin serve; why it would be advantageous to
have elevators go to certain floors but not all floors; locating a hot dog stand
for student convenience; the number of barbers needed in a given town; how
to relate the counter-reading of a tape being wound in a cassette machine to
the amount of time left on the tape; etc.

Perhaps the most serious issue faced by a problem-oriented curriculum is
that of mathematical closure, or rather the absence thereof. The problems are
only a means to an end — the vehicle to facilitate the learning of mathematics
— but not the end itself. Therefore the solutions of problems in such a
curriculum need to be rounded off with a mathematical discussion of the
underlying mathematics. If new tools are fashioned to to solve a problem,
then these tools have to be put in the proper mathematical perspective:
their purely technical developments should be addressed and their place in
the overall mathematical structure clarified. Otherwise the curriculum lacks
mathematical cohesion. Moreover, if care is given to the distillation of the key
mathematical idea of a solution from its original (real world) context and its
subsequent applications to entirely different situations, students will become
convinced of the need for precision and abstraction. Without appearing to
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minimize the difficulty of achieving this kind of mathematical closure in a
problem-oriented setting, it must be said that none of the reform texts I
have consulted for this article is entirely successful in this regard. In fact,
many of the mathematical transgressions in these texts are directly traceable
to this obsession with real world applications at the expense of abstract
considerations.

The NCTM Standards ([N1]) do not, ever, mention mathematical closure.
(See [W1] for a more extended discussion of this fact.)

Is it an improvement?

Is the current reform an improvement over the traditional curriculum?
Looking over the facts, we see that almost every improvement brought about
by the reform is accompanied by some pronounced liabilities, and that the
two curricula are flawed in complementary ways. The traditional curriculum
teaches how but not why; the reform curriculum teaches a little bit of both,
but at the end may succeed in teaching neither. However, education is not a
purely intellectual enterprise. Are there perhaps other relevant social issues
that need to be considered in evaluating the reform?

It has been suggested that given students’ inability to master symbolic
computations, as evinced by students’ low mathematics achievements in K-12
and calculus, the reform should be given credit for doing the best job possible
with the kind of students we have. What is left unsaid in this analysis is that
a true reform needs to maximize curriculum, teacher qualification (especially
in regard to knowledge of mathematics), and student effort at the same time.
Instead, this NCTM-centered reform has thus far kept the last two constant
while varying the first somewhat randomly. This does not seem a good
strategy for optimization.

It has also been suggested that the de-emphasis of the abstract in favor of
the concrete, of symbolic computations in favor of technological supplements,
and of precision in favor of qualitative reasoning, are exactly what future
users of mathematics (engineers, physicists, etc.) need. Evidently the feeling
is that the few future mathematicians who need such training can get it in
courses like elementary analysis. In the case of engineers etc., good use of a
tool is presumably not to be learned through forcing them to think abstractly
and precisely.

Yet again there are good reasons for rejecting such an approach. One is
that students who want to learn about mathematics per se, not only for its
utility as a tool for science, should not be prevented from doing so. We should
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teach mathematics for what it is, unless and until we are willing to start la-
belling foundational mathematics courses as “minimal survival kits for the
sciences”.? In addition, the notion of what scientists need from mathematics
is volatile. My own informal survey indicates that, while such opinions cover
a wide spectrum, there is no disagreement on the need of versatility and
flexibility in the use of mathematical tools. It is unlikely that such flexibility
and versatility can be achieved in a curriculum without the kind of math-
ematical closure described above. Recently, the introduction of a textbook
on mathematical physics ([GGC|) makes an eloquent plea for scientists to
acquire such a rigorous training in mathematics:

One might argue that although mathematics provides a very im-
portant tool to the scientist and engineer, this is not a sufficient
reason for the arduous training in mathematics. After all, it is
possible to use tools without detailed knowledge of their mode of
functioning; it is possible to drive a car without any idea of the
working of the internal combustion engine. Indeed, problems of
a very well defined nature and limited scope are solvable by com-
puter programs into which one has only to plug the data. But the
situation of most engineers and scientists is not like that of the
driver of a car, but rather like that of a worker detonating blast
charges. Unless he has a good acquaintance with the properties
of explosives, he is likely to come to grief.

It is time for us to restore mathematical balance to problem-driven curricula.
Let us not deny our students the opportunity to acquire this kind of arduous
training.

The summing up

To the extent that the traditional curriculum is so seriously flawed, reform
is way overdue. But if the preceding marshalling of facts means anything,
it is that if this particular reform curriculum, instead of the traditional cur-
riculum, were already in wider use across the land, then its serious defects
would also be signaling the need for yet another reform. We cannot afford
to experiment with a whole generation of our children when the odds are
stacked against the present reform’s long term success.

3 The name compumatics has also been suggested in [GAP].
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While T have grave misgivings about other aspects of the reform, its ped-
agogical practices (cf. [W1]) and its assessment strategies (cf. [AN]), I have
chosen not to discuss them here. This is due in part to considerations of
space, but also because I believe (perhaps wrongly) these are decisions that
can more easily be reversed. What this article has presented, then, are as-
pects of the reform’s curricular decisions reflecting an educational philosophy
gone awry. These will not go away simply by the flipping of a switch. Cor-
rections can be achieved only if the reform is revamped from the ground
up.

Let us ask ourselves defining questions: Are we after a Band Aid solu-
tion to a troubled curriculum? Are we to allow the issue of accessibility to
override the basic integrity of the subject? In designing a curriculum, should
we include only topics that can be learned without real hard work? Can
we compromise the issue of student entitlement to the availability of mathe-
matical knowledge? And, the question best addressed by the membership of
AMS: What kind of mathematics do we want to teach our students?

At the beginning of this article, it was pointed out that AMS has endorsed
the vision of this reform as set forth in the NCTM Standards ([N1]). The
question is whether, as members of AMS, we believe we have been properly
represented in this endorsement. There is a lengthy discussion of the NCTM
Standards in the companion article [W1], but this book is required reading
for every mathematician who thinks mathematics should have something to
do with mathematics education reform. You must decide for yourself if this is
really a vision that you can support. Perhaps you have a better educational
vision?
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