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Open-ended problems have become a popular educational tool in math-
ematics education in recent years. Since mathematical research is nothing
but a daily confrontation with open-ended problems, the introduction of this
type of problems to the classroom brings mathematical education one step
closer to real mathematics. The appearance of these problems in secondary
education is therefore a welcome sight from a mathematical standpoint. More
than this is true, however. While these problems may represent something
of a pedagogical innovation to the professional educators, the fact is that
many mathematicians have made use of them in their teaching all along
and do not regard their presence in the classroom as any kind of depar-
ture in educational philosophy. For example, I myself have often given such
problems in my homework assignments and exams.2 Nevertheless, I have cho-
sen to take up this topic for discussion here because, after having reviewed
a limited amount of curricular materials for mathematics in the schools, I
could not help but notice that they pose certains hazards in practice. These
hazards include the possibility of misinforming the students about the very
nature of mathematics itself. To avoid meaningless generalities, I have se-
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lected for discussion three such problems to illustrate these concerns of mine.
They will serve as a basis for the detailed discussions and general comments
about open-ended problems in this article. For reasons of authenticity, I have
purposely transcribed these problems essentially verbatim from the original
sources, including the use of double question marks and the proliferation of
capital letters. Here is the first one:

PROBLEM I (7th Grade):
Little Arboreal gets a pot bellied pig for her birthday. Since it’s ok in her
city to have pot bellied pigs, she wants to build an enclosure for it in her
back yard. The perimeter of her enclosure is 30 units.
WHAT MIGHT ITS AREA BE?? WHAT WOULD THE LARGEST AREA
BE??
YOU HAVE TWO (2) WEEKS TO GET THIS DONE.
HINTS: OBVIOUSLY THERE IS MORE THAN ONE ANSWER AND
SHAPE. THINK ABOUT ALL POSSIBLE SHAPES.

A sketch of the solution to this problem is given in Appendix 1. The key
point is that the solution requires a knowledge of the isoperimetric inequality.
Note also that in spite of the seemingly amorphous nature of the problem, its
solution is totally unambiguous. However, the nature of the solution is such
that an overwhelming majority of high school students, leave alone students
from the 7th grade, would be unable to supply the correct solution to this
problem. So what was the original intention of such a problem? I have
talked to one of the teachers about this, and I was told that all that was
expected of the students was for them to draw a few simple shapes for the
enclosure and write down the area of each shape. Thus the idea seems to
be to actively engage the students to think about perimeter and area and to
explore the various possibilities on their own, and this is good. There are
two worrisome aspects to this problem, however. One is that the students
will come away from this problem without knowing its solution since most
teachers would be unable to explain it, for the very good reason that the
isoperimetric inequality is not part of the standard curriculum of a math
major in college. Therefore the students would likely be misled into believing
that there is no precise information on this topic whereas the exact opposite
is true. The other is that, not knowing the answer to the second question
(what would its largest area be?) the teacher may not be able to handle
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the students’ guesses properly. Indeed, if the teacher does not know that
there is a proof that the circle represents the maximum, would he or she be
able to emphasize the fact that even guessing correctly (“it is the circle”) is
not enough, because whatever passes for mathematical knowledge must be
proved to be correct?

It may be worthwhile to elaborate on the first point a bit. The fact that
the students should be given the most complete information possible on any
given topic should be a noncontroversial one, but just in case, let us consider
two examples. If a teacher gives a brief history of this country without
mentioning the Civil War, or if a brief description of the geography of this
country omits mentioning the Rockies, no doubt eyebrows would be raised
everywhere. Now, without making a parody of this, I believe one can argue
quite conclusively that the rôle of the isoperimetric inequality in Problem I
above is just as dominant as those of the Civil War and the Rockies in their
respective situations. So why would otherwise sensible educators create a
situation whereby the teacher is put in the awkward position of having to
commit such a glaring omission? Moreover, when students come away from
this problem without being told about this inequality, they would likely have
their suspicion of mathematics confirmed, namely, that it is just a jumble of
disjointed formulas.3 But quite the opposite is true: one of the main concerns
in mathematics is to discover general laws which govern seemingly disparate
phenomena, and the isoperimetric inequality affords an excellent example of
this fact. Problem I is so jarring to a mathematician precisely because it
threatens to falsify this aspect of mathematics.

What was said above, that students should be given the “ most complete
information possible” on any topic, must not be misinterpreted to mean that
the teacher is obligated to explain all the ins and outs of the isoperimetric
inequality to the 7th graders. It suffices for her to clearly state the inequality,
explain what it says and how it bears on this particular problem, and tell
them that its proof will be accessible to them after they have learned more
mathematics. The teaching of mathematics need not be linearly ordered in
the sense of proceeding only in a strictly logical order. What is important
is to make known to the students at each step whether something is proven
or whether it is borrowed from the future with no risk of circular reasoning,
and moreover, to make sure that they keep a clear distinction between these
two kinds of information.4 The isoperimetric inequality is an example of
something that can be harmlessly borrowed from the future.

It is necessary to emphasize that one faults this problem not for its good
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intentions, but rather for its very real potential of being abused in a classroom
situation. With a little more care, one could alter the problem so as to achieve
essentially the same goals while minimizing this potential for abuse. Let us
look at one such possibility. Suppose we change the question to the following:

If the enclosure is in the shape of a rectangle, what might its
area be? What would be its largest area?

While this problem has a much narrower scope than the original one, it would
nevertheless serve the same educational purpose of encouraging the students
to explore the relationship between perimeter and area. But by restricting
the problem to this special case, we have gained the advantage of making
its solution completely accessible to the students. Indeed, with the aid of a
calculator, the students would be in a position to verify experimentally that
the area must now satisfy 0 ≤ area ≤ (30/4)2, and the maximum occurs
exactly when the rectangle is a square of side length 30/4. Moreover, a few
students may even be able to provide an explanation of this fact, since it
suffices to apply the inequality

ab ≤ (
a + b

2
)(

a + b

2
)

for nonnegative numbers a and b, which is equivalent to (a− b)2 ≥ 0. (Sur-
prisingly, the same question with the rectangle replaced by a triangle at once
becomes too difficult; the maximum in this case is of course an equilateral
triangle, but the explanation would involve the so-called Heron’s formula for
the area of a triangle. See p. 25 of Kazarinoff [5].)

As a side remark, for students who have had some trigonometry and
geometry, one can nudge them towards the discovery that the circle encloses
the maximum area by posing the following modified version of Problem I:

If the perimeter is in the shape of, respectively, an equilateral
triangle, a square, a regular pentagon, and a regular hexagon,
what are the areas of the enclosures? From this, what would you
guess to be the shape of the enclosure of maximum area?

This problem allows the students to see for themselves that the area increases
as the number of sides of the regular polygon increases. Thus the circle would
be the logical answer for the maximum (although I must emphasize once more
the need to inform the students that there is a proof of this fact).
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PROBLEM II (9th Grade):
A farmer is taking her eggs to market in her cart, but she is hit by a trailer-
truck. Though she herself is unhurt, every last egg is broken. So she goes
to her insurance agent, who asks her how many eggs she had. She says she
doesn’t know, but she remembers from various ways she tried packing the
eggs that when she put them into 2’s, there was one left over. When she put
them into 3’s, there was one left over. When she put them into 4’s, there
was one left over, and the same for 5’s and 6’s. But when she put them into
7’s, they came out even.
1. How many eggs did she have?
2. Is that the only answer possible?

A sketch of the solution is given in Appendix 2. Here again, there is a
complete solution, but it would be accessible to very few, if any, of the 9th
graders. The people responsible for this problem told me that they expected
nothing more than getting the students to experiment with the integers and
“come up with the number 301 by trial and error”. Now experimentation
is an integral part of doing mathematics, and some significant discoveries
have been made by this process in the past. So getting the students into
the spirit of experimentation is certainly a step forward in their educational
development, mathematical or otherwise. But mathematics does not stop
with experimentation; it is also concerned with the rational explanation of
these experimental discoveries. Is there perhaps an extensive theory lurking
behind the seemingly unrelated facts? How would these facts fit into the
overall mathematical structure? For the problem at hand, while any student
with enough patience would likely get to the first solution 301 by trial and
error, the chance of his or her getting to 721 is more remote, and that of
getting the whole set of solutions {301 + 420 n} is slim. Would the teacher
be able to tell the students the complete solution to this problem? More
importantly, would the teacher be able to tell them that all such (linear
Diophantine) problems can be handled by a standard machinery? Since
it would be unreasonable to expect the teacher to be conversant with the
Chinese Remainder Theorem, the answers to these questions would likely be
negative. So once again, we come face-to-face with the potential dangers
of the Civil War and Rockies analogies above. In addition, having been
encouraged to do experimentation in mathematics, the students must also
be told about its limitations: discovery by experiment must not be treated as
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an end in itself, but rather as a first step towards a complete understanding
of a given situation within a broad mathematical framework. One can hardly
over-emphasize this point to a beginner. In the present context, the students’
understanding of their (possible) numerical discoveries of the solutions 301
and 721 would be that much greater if the Chinese Remainder Theorem
could be explained to them afterwards. The educational function of Problem
II would then be completely fulfilled.

As before, with a little thought, it is possible to reformulate the problem
in a way that would increase its educational value in a real-life classroom
situation. For example, one can simplify the data so as to make the complete
analysis of the problem within reach of the students on this level, as follows:

When the eggs are put into 4’s, there is one left over, and
when put into 6’s, there is also one left over.

One can begin with trial and error to guess at the first few solutions: the con-
dition about the 4’s tells us that the solutions must be among 1 , 5 , 9 , 13 , 17 , 21 , 25 , 29 , 33, . . . .
Using the condition about the 6’s, we know immediately that 1, 13 and 25
would do. How to get all the solutions? Well, the condition about the 6’s
tells us that if the solution is k, then 6|(k−1). (We use the common notation
6|(k − 1) to denote “6 divides k − 1”.) Now for students in the 9th grade, it
should not be difficult to convince them (without resorting to a proof of the
Fundamental Theorem of Arithmetic) that 6|(k−1) is equivalent to 2|(k−1)
and 3|(k − 1). But we already know that 4|(k − 1), because when the eggs
are put into 4’s, there is one left over. Therefore, the requirement of 2|(k−1)
is redundant, and the conditions on k can be summarized as:

3|(k − 1) and 4|(k− 1).

The condition 4|(k − 1) tells us that the solution k must be of the form
k = 4n+1, where n is any integer. But every integer n can be written in one
and only one of the following ways: n = 3m, n = 3m + 1, and n = 3m + 2,
where m is itself an integer. Substituting this into k = 4n + 1, we see that:

If n = 3m, k = 12m + 1, which when divided by 3 has remainder 1.
If n = 3m + 1, k = 12m + 5, which when divided by 3 has remainder 2.
If n = 3m + 2, k = 12m + 9, which when divided by 3 has remainder 0.

It is now clear that the number of eggs has to be one of the integers
12m + 1, where (recalling now that the number of eggs cannot be negative)
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m = 0 , 1 , 2 , . . . and that there are no other possibilities. Observing also
that the first three solutions from this list are 1, 13 and 25, exactly as found
by trial and error above, we have now a concrete instance of “explaining” an
experimental discovery by a general theorem.

Note that the simplification of the problem serves a dual purpose. On
the one hand one can now see quite clearly how the number 12 came up: it
is the l.c.m. of 4 and 6. From this perspective, the students would be able
to appreciate the 420 in the solution of the original problem even without
knowing the Chinese Remainder Theorem. On the other hand, the problem
can now be solved completely by a process that can be made available, with
some patience, to a 9th grader. More than this is true: the above solution is
in essence one possible proof of the Chinese Remainder Theorem. Thus the
students would get a chance to learn something useful as well.

PROBLEM III (10th Grade):
1. Using a sheet of construction paper, build the biggest box possible, i.e.,
the box with the biggest volume. By a box, we mean a container with four
rectangular sides and a rectangular bottom. Your box should have a top.
2. Describe the box you think is the biggest. Try to come up with an intu-
itive explanation of why that box is bigger than any other box.
3. Using a second sheet of construction paper, make the biggest box possible
without a top.

A complete solution of this problem is given in Appendix 3. Before any
discussion we note that the phrasing of the problem is a bit confusing. When
first presented with this problem, I was very concerned about how to opti-
mally cut the construction paper because I was under the impression that
it was a problem of cut and fold and discarding the leftover portions of the
paper. Others also had the same impression. So there is a lesson to be
learned here about trying to be too cute in mathematical writing. This said,
let us reformulate this simply as a mathematical problem: Find the rectan-
gular box with the biggest volume when the lateral area is held fixed. Next,
how to do this problem? In spite of the fact that this problem is a routine
exercise in calculus (see Appendix 3), one can obtain a solution within the
limitations of 10th grade mathematics (ibid.). In reality, however, a 10th
grader would be hard pressed to follow the rather intricate arguments of this
solution, much less devise them. Referring to part 1 of this problem, I have
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been told that one teacher allows the students (a) to assume that the rect-
angular solid which has maximum volume necessarily has a square base, and
(b) to guess with the help of a calculator (graphing the volume against the
length of one side of the square base) that the cube is the answer. How did
the teacher justify (a)? “Oh, they (meaning the students) know.” The few
teachers with whom I had the opportunity to discuss this problem more or
less conceded that something along this line is about all that can be expected
of the 10th graders. At the risk of being repetitious, I say once again that
there is nothing wrong with the spirit behind (b), which is to enable the
students to guess the correct solution with the aid of experimentation. How-
ever, after the students get the correct answer by making use of an unproven
assertion and numerical experimentation, would they be firmly told that all
they have so far is just a guess, but that a proof is still needed for its justifi-
cation? In other words, will they come out of this problem knowing the clear
distinction between what is, or is not, acceptable mathematical reasoning?
It is said that, while not knowing something is bad, it is far worse to not
know that one doesn’t know it. If the students get used to making use of
unproven assertions in solving problems, pretty soon they may not be able to
tell the difference between guessing something and proving it anymore. And
that may be worse than not knowing how to do the problem at all.

What conclusions can one draw from the three preceding problems and
others similar to these? They point to a change in the perception, at least
among some mathematical educators, of what constitutes a valid mathemat-
ical education. These open-ended problems are symptomatic of only part of
this change, but for the purpose of this article, we must limit our scope and
simply address these problems alone. It is said that the traditional prob-
lems which insist on one and only one correct answer are on the one hand
too threatening to students, and on the other too rigid to allow them to to
show what they know. Thus open-ended problems have been introduced so
that all students can work on them at their own level. By not insisting on
one correct answer, they give the students confidence to solve new problems.
So the bottom line is that these problems are accessible to more students.
In real-life, however, these open-ended problems have become in some cases
synonomous with partial answers or unjustified guesses. The wording of the
three problems cited above is certainly consistent with this perception. For
example, the first question of Problem I invites the students to make up a
shape to his or her liking and write down its area, and this is supposed to
be the answer to the question; the second part, by the same token, certainly
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asks for no more than a wild guess. Again, Problem II makes it clear that if
the students can come up with more than one number that satisfies the given
conditions, the problem would be considered solved. In Problem III, the stu-
dents are tacitly given clearance to make use of unwarranted assumptions to
derive the solution.

It is impossible to disagree with this drive to open up mathematics by
changing its facade. Mathematics should look more attractive and more
hospitable than it has up to now. In the right context, none of the practices
described above is objectionable, and I hope some of the preceding discussions
have made this point abundantly clear. But just to be sure, let us retrace
our steps a little. Suppose a teacher can adequately explain the isoperimetric
inequality and show how it bears on Problem I to the students, then they
would get to see how mathematics can extract order out of seeming chaos.
Or suppose a teacher can show the students how their isolated numerical
discoveries in Problem II can be explained once and for all by the Chinese
Remainder Theorem, then they would learn firsthand the power of, and the
need for abstract theorems, and perhaps also acquire the habit of always
digging beneath the surface until they achieve a complete understanding of
a given phenomenon. For Problem III, suppose the teacher tells the students
that the whole problem is a routine one in the calculus of several variables
but that it is too difficult for them at the moment. So all he or she wants
them to do is to get some feeling that the answer (“a cube”) is correct in the
special case of a rectangular solid with a square base by plotting the graph
of the volume against the length of one side of the square base. In this way,
the students would harbor no illusions of having proved anything, and at the
same time they would also develop some intuition about such maximization
problems. By any measure, this would be perfectly valid, and even good
mathematical education.

It would seem that the various methods of handling open-ended peoblems
described in the preceding paragraph do not fall within the scope of of the
original intentions of these problems. One cannot deny that giving students
(open-ended) problems so that they can work on them at their own level is
a very good idea, or that the same is true of making mathematical problems
accessible to more students. Yet by the way these problems (and others like
them) are formulated, it would appear that the fulfillment of these two ob-
jectives already defines to some educators a valid mathematical education. I
would like to offer a differing opinion, however. I believe that a curriculum
that allows students to blur the distinction between guessing and experimen-
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tation on the one hand, and valid logical reasoning on the other, misses one
of the most critical and central features of mathematics. The trouble with
open-ended problems such as Problems I-III may be that in going all out
to achieve the two goals of humanizing mathematics and increasing its ac-
cessibility, they have also inadvertently misinformed the students about this
important distinction.

It would not be out of place to point out that the philosophy underlying
such an emphasis on accessibility also leads to other unexpected side-effects.
For example, in discussing these three problems with some teachers, I was
astounded to be told by one and all that they considered the first part of
Problem I (“WHAT MIGHT ITS AREA BE??”) to be a good problem be-
cause it allows the students to make up their own questions and answers,
but that they thought the second part (“WHAT WOULD THE LARGEST
AREA BE??”) was bad because it pins down the students to a sin-
gle correct answer. Since a good part of mathematics, pure or applied,
is pre-occupied precisely with such maximization problems, we have here an
example of an educational philosophy that has distorted the way a group of
teachers think about the subject they are supposed to teach.5 This should
be a matter of grave concern.

Open-ended problems started off as a well-intentioned pedagogical de-
vice, but the preceding discussion points to a very real possibility of their
being an educational liability instead. How did this come about? What-
ever the direct cause, I believe ultimately it is because, during this frantic
search for pedagogical improvements, the issue of mathematical substance
got lost somewhere. Too often it is forgotten that the technical aspect of
mathematics is a very important component of mathematical education. No
mathematical education is of any value, regardless of its excellence in peda-
gogy, if it is not technically sound. The only reason such a truism is worth
pointing out is that the technical soundness of any mathematical education
can by no means be taken for granted;6 the mathematical defects that show
up in the three problems discussed above should erase all doubts about this
seemingly outrageous assertion. Although the discussion in this short article
is confined to open-ended problems, even a cursory acquaintance with some
of the recent curriculum reforms is enough to make a mathematician won-
der where mathematical education is headed. This points to the real need
of a closer cooperation between mathematicians and educators in order to
insure that our children will get an education that is both technically and
pedagogically sound. Such a cooperation seems to be nearly nonexistent so
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far. Thirty or so years ago, we had the New Math debacle.7 Let this be a
reminder that a second debacle is a very distinct possibility unless both the
educators and the working mathematicians continue to be vigilant.
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Appendix 1: Solution of Problem I

WHAT MIGHT ITS AREA BE? WHAT WOULD THE LARGEST AREA
BE?

Both questions are answered at once by the so-called isoperimetric in-
equality which asserts that if a closed curve of length L encloses a region
with area A in the plane, then 4πA ≤ L2, and the equality is attained ex-
actly when the curve is a circle. Thus in our case, L = 30, and we see that the

area A of the pot bellied pig enclosure must satisfy 0 ≤ A ≤ 1

4π
302, and A

attains the maximum value
1

4π
302 exactly when the pot bellied pig enclosure

is a disk of radius 30
2π

. This is the complete answer to the problem because it

is quite easy to show that given any number A′, such that 0 ≤ A′ ≤ 1

4π
302,

there is an enclosure with perimeter = 30 and area exactly = A′.

The isoperimetric inequality is one of the most profound in-
equalities in mathematics, both in terms of its intrinsic signifi-
cance and the impact it has exerted on the development of math-
ematics, past and present. For an elementary discussion without
a proof of the inequality itself, see §5 of Kazarinoff [5]. Two
proofs are offered on pp.105-108 of Chern [2]. A proof can be
found also on p.186 of the classic work on inequalities by G.H.
Hardy, J.E. Littlewood and G. Pólya [4]. There is a vast liter-
ature surrounding this inequality, and its many generalizations
are still evolving with current research; consult for example the
article of Osserman [6].

Appendix 2: Solution of Problem II

How many eggs did she have? Is that the only answer possible?

The problem calls for solving in positive integers the sequence of congru-
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ences:
x ≡ 1 (mod 2)
x ≡ 1 (mod 3)
x ≡ 1 (mod 4)
x ≡ 1 (mod 5)
x ≡ 1 (mod 6)
x ≡ 0 (mod 7).

By elementary considerations, this is equivalent to solving:

x ≡ 1 (mod 3)
x ≡ 1 (mod 4)
x ≡ 1 (mod 5)
x ≡ 0 (mod 7).

Applying the Chinese Remainder Theorem to the latter, we get immediately
that all solutions are of the form 301+420 n, where n is any integer. Restrict-
ing n to nonnegative integers then gives all the possible number of broken
eggs: 301, 721, 1141, etc.

Solving simultaneous (linear) congruences is among the first
things one learns in a first course on number theory. There are
probably an infinite number of texts one can consult on this topic,
but I highly recommend two of them: Dudley [3] and Stark [7].
Both are guaranteed to be not only informative, but entertaining
as well.

Appendix 3: Solution of Problem III

First of all, the problem should be more clearly rephrased as follows: If
you are required to construct a rectangular solid with a fixed lateral area,
when will you get one of maximum volume? (Here, it is understood that
if the rectangular solid has a top, then “lateral area” refers to the sum of
the areas of all six faces; if however the solid has no top, then “lateral area”
refers to the sum of the areas of the five faces, four on the side and one at
the bottom.) If you know how to solve the problem with a top (i.e., part
1), then you already know how to do the one without a top (i.e., part 3):
Indeed, let the given lateral area be A, and we want to find the box without
a top which has the biggest volume. Get two such boxes, invert one of them
(so that its “bottom” is now on top), and put this inverted box on top of



14

the other (so that the two “topless” faces are now coincident). This creates
a new rectangular solid with a top, to be called R, which clearly maximizes
the volume among all such with a fixed lateral area 2A. If we anticipate
the solution to part 1, then we know that R is a cube. Thus the solution
to part 3 is a “half-cube”, i.e., a rectangular solid whose bottom is a square
and whose height is half the length of the edge of its bottom.

It remains to solve part 1. Let the sides of the box (with a top) be of
lengths x, y and z. For simplicity, we let the given lateral area be 2A (rather
than A). Thus we are given: 2xy + 2xz + 2yz = 2A, which is the same as:

xy + xz + yz = A. (1)

(If we had used A instead of 2A, the right-hand side of equation (1) would
have been 1

2
A instead, and the subsequent computations would be more

cumbersome.) The volume of the box is of course xyz. Thus our problem
becomes one of finding the point (x, y, z) with positive coordinates x, y and
z so that the function

f(x, y, z) = xyz

subject to the “constraint” in equation (1) achieves a maximum at this
point. This is a routine problem in the use of Lagrange multipliers in the
calculus of several variables. (Look up any book on advanced calculus,
for example, Chapter 6 of Buck [1].) The solution is of course the point
(
√

A/3,
√

A/3,
√

A/3), i.e., a cube with side length equal to
√

A/3. How-
ever, in the present context, we must present a solution without the use of
calculus. This proceeds in two steps.

STEP 1. Given positive numbers x, y, z satisfying equation (1), if x 6= y,
then there are three other positive numbers x1, y1, z1 also satisfying (1), so
that

x1 = y1, and xyz < x1y1z1.

(Geometrically, if you think of x and y as the sides of the bottom of the cube,
this asserts that among all rectangular boxes with a fixed lateral area and
a fixed area for the bottom, the one with a square bottom has the largest
area.)

PROOF. We set x1 = y1 =
√

xy, then in order to satisfy equation (1), we
must also set

z1 =
A− xy

2
√

xy
.
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We have to prove that xyz < x1y1z1. By equation (1), A − xy = z(x + y).
Hence,

x1y1z1 = xyz
x + y

2
√

xy
.

Thus it remains to prove that

x + y

2
√

xy
> 1.

This is the same as proving x+y > 2
√

xy, or, since we are dealing with positi
ve numbers x and y, the same as proving (x + y)2 > 4xy, which in turn is
equivalent to x2− 2xy + y2 > 0. The latter is true because the left-hand side
equals (x− y)2 and by assumption, x 6= y. Q.E.D.

STEP 2. Let x0 = y0 = z0 and let x0, y0, z0 satisfy equation (1). Then
for any positive numbers x, y, z satisfying (1),

x0y0z0 ≥ xyz.

PROOF. We first prove this for the special case where x = y. As before,
since x, y, z satisfy equation (1),

z =
A− x2

2x
,

so that

xyz = x2z =
1

2
x(A− x2).

On the other hand, since x0, y0, z0 satisfy equation (1) and x0 = y0 = z0, we
see that x0 = y0 = z0 =

√
A/3, so that x0y0z0 = (A/3)3/2. Thus we must

prove:
1

2
x(A− x2) ≤ (

A

3
)3/2. (2)

If x =
√

A/3, then (2) is an equality and there would be nothing more to

prove. So assume x 6=
√

A/3, and we will verify (2). Let

x =

√
A

3
+ h, (3)
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where h is some nonzero number (positive or negative). Then:

1
2
x(A− x2) = 1

2

(√
A
3

+ h
) (

A− (
√

A
3

+ h)2
)

= 1
2

(√
A
3

+ h
) (

2(A
3
)− 2h

√
A
3
− h2

)
= 1

2

(
2(A

3
)3/2 − 2h2

√
A
3
− 2h3

)
=

(
A
3

)3/2 − h2
(√

A
3

+ h
)

=
(

A
3

)3/2 − h2x,

where the last equality uses equation (3). Since x > 0 and h 6= 0, we see that
−h2x < 0. Hence,

1

2
x(A− x2) =

(
A

3

)3/2

− h2x <

(
A

3

)3/2

,

which then proves equation (2).
We have just proved STEP 2 in the special case where x = y. In general,

suppose x 6= y. By STEP 1, there is another triple, x1, y1, z1 satisfying (1)
so that x1 = y1 and x1y1z1 > xyz. Now repeat the preceding argument with
x1, y1, z1 in place of x, y, z; then we get as above:

x0y0z0 > x1y1z1.

Coupled with x1y1z1 > xyz, we get x0y0z0 > xyz, as desired. Q.E.D.
Step 2 is the statement that, subject to the constraint (1), the function

f(x, y, z) = xyz achieves its maximum at the point (x, y, z) where x = y =
z =

√
A/3.

Footnotes

1. A slightly expanded version of a lecture presented to the Bay Area
Mathematics Project on July 27, 1992. The author is indebted to
Serge Lang for a merciless critique of an early draft of this article, and
to Alfred Manaster for many substantive corrections.

2. As far back as 1968, I posed the following question on the final of my
undergraduate course on differential geometry: Let α be a curve and
let M be its tangential developable. What can you say about M when
α has zero torsion?
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3. That is, one area formula for each shape.

4. This comment is particularly relevant in the context of a common failing
in textbook writing, which is to pass off a heuristic argument as a proof
without an explicit statement to the contrary.

5. One cannot help but notice the great irony in the fact that while these
open-ended problems came into being because they were supposed to
prevent the teachers from “looking for one correct response or one right
answer” in the works of the students, each of the three problems above
in fact admits only one correct answer. See Appendices 1, 2 and 3.

6. By comparison, it would be absurd for the same to be said about the
teaching of English or history, say.

7. I do not wish to imply that everything connected with the New Math
was bad. Zal Usiskin pointed out to me that one positive outcome
of the New Math was the greater emphasis on proofs. On the whole,
however, it was clearly a debacle. One day when the official obituary
of the New Math is written, it will be noted that in addition to the
excessive formalism of the new texts, the gravest mistake of the New
Math movement might have been the over-emphasis on curriculum re-
form without an equal amount of effort devoted to the training of the
teachers. Are the current curriculum reformers aware of this fact?

References

[1] R.C. Buck, Advanced Calculus (3rd Ed.), McGraw Hill, 1978.

[2] S.S. Chern (ed.), Global Differential Geometry, MAA Studies in Math-
ematics, Volume 27, Math. Assoc. Amer., 1989.

[3] U. Dudley, Elementary Number Theory (2nd Ed.), W.H. Freeman, 1978.

[4] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge
University Press, 1952.

[5] N.D. Kazarinoff, Analytic Inequalities, Holt, Rinehart and Winston,
1961.



18

[6] R. Osserman, The isoperimetric inequality, Bulletin Amer. Math. Soc.
84(1978), 1182-1238.

[7] H.M. Stark, An Introduction to Number Theory, M.I.T. Press, 1978.


