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One of the main goals of California’s Mathematics Content Standards is
that algebra be taught in the eighth grade so that all high school graduates
know algebra. Achieving this goal of “algebra for all students” would be
easier if we have a quantitative understanding of how the learning of algebra
takes place, but we don’t. Nevertheless, there is at least a general agree-
ment that the learning of algebra would be extremely difficult if it is not
accompanied by computational fluency in the arithmetic operations of inte-
gers and fractions together with a good understanding thereof. Let us try to
understand why this is so.

School algebra is sometimes referred to as “generalized arithmetic”. If
one looks at the algebra taught in school, superficially there seems to be not
much difference between arithmetic and algebra because, in both cases, the
operations involved are the usual standard ones: +, −, ×, ÷, with a few
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thrown in here and there. But the key difference, not visible to the
naked eye, lies in the generality of the reasoning in algebra. For example,
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a sixth grader can easily compute the square of a sum of two numbers:
(5 + 1.6)2 = 6.62 = 43.56, (1.3 + 0.1)2 = 1.42 = 1.96, etc. This is no more
than simple arithmetic: add two numbers and then multiply the result by
itself. Sometimes, however, the straightforward method of computation is
inadequate, and we want to know if there a different way to express the
square of a sum, for instance, as a sum of products in terms of the given
numbers. There are many reasons for asking this question, one of which may
be explained as follows. Using (1.3 + 0.1)2 for the purpose of discussion,
suppose we regard 1.3 as fixed and, instead of just asking for its square, also
want to know how much bigger or smaller the square of a number near 1.3,
such as 1.3 + 0.1, would be. This calls for a computation of the difference
(1.3 + 0.1)2 − 1.32. Of course, the real question is not about one number
1.3 + 0.1 near 1.3, but any number near 1.3: e.g., 1.3 + (−0.1), 1.3 + 0.01,
1.3+(−0.004), etc. So we may as well look at the difference (1.3+h)2−1.32

for any small number h.
Now (1.3+h)2−1.32 is a mysterious expression! It is impossible to get an

intuitive feeling of how the magnitude of h affects the difference (1.3 + h)2−
1.32 just by looking at it. If we are given 5h2 + 13, for example, we would
feel more comfortable because, ignoring the term 13, we have a general idea
of how h2 behaves: if h = 0.1, then 5h2 = 5× 0.01 = 0.05, and if h = 0.004,
then 5h2 = 5 × 0.000016 = 0.00008. Or if we are given 16h + 3, we would
feel even better because, except for the constant term 3, this expression is
proportional to h. What we are driving at is that, with expressions such as
5h2 + 13 or 16h + 3, h is displayed explicitly, whereas in (1.3 + h)2− 1.32 the
role played by h is opaque: h is “hidden” inside (1.3 + h)2. Is there perhaps
some way to “liberate” h from inside the square regardless of what h may
be? When we start to think this way, we have already left arithmetic behind
and are engaged in what is known as algebraic thinking. But first let us see
how to liberate h.

There is clearly no point in looking at a specific number such as 1.3, so
we do it in general. Let x and y be two arbitrary numbers, and we ask for
the value of (x + y)2. By definition, (x + y)2 = (x + y)(x + y), so if we use A
to stand for the first factor (x + y), then the distributive law —- which says
that no matter what real numbers a, b and c may be, it is always true that
a(b + c) = ab + ac and (b + c)a = ba + ca —- yields:

(x + y)2 = A(x + y) = Ax + Ay.

But Ax = (x+ y)x and to the right side, we can again apply the distributive
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law to get Ax = x2 + yx. Similarly, Ay = xy + y2, so that1

(x + y)2 = x2 + yx + xy + y2.

Remembering that the multiplication of numbers is commutative (in the
sense that yx = xy no matter what the numbers x and y may be), we finally
get:

(x + y)2 = x2 + 2xy + y2 (1)

Putting everything together for easy reference, we can summarize the deriva-
tion of identity (1) in the following sequence of steps:

(x + y)2 = (x + y)(x + y)
= (x + y)x + (x + y)y
= (x2 + yx) + (xy + y2)
= x2 + 2xy + y2.

 (2)

We have thus shown that (x + y)2 can be evaluated as the sum of three
products xx, 2xy and yy, and this is valid regardless of what x and y may be.
This feature of generality, together with the extensive use of symbolic nota-
tion to express this generality, are what distinguishes algebra from ordinary
arithmetic.

To go back to our example, we can use identity (1) —- with 1.3 replacing
x and h replacing y — to obtain (1.3 + h)2 = 1.32 + 2.6 h + h2. It follows
that

(1.3 + h)2 − 1.32 = 2.6 h + h2 , (3)

which then completely solves our original problem of making the role of h
explicit in the expression (1.3 + 0.1)2− 1.32 without knowing the exact value
of h. In the process, we come to appreciate the power of generality: we lose
nothing in the way of precision but gain enormously in the sweeping nature
of our conclusion. The identity (3) is valid for all values of h. Thus, if we
let h be 0.1, then (3) gives (1.3 + h)2− 1.32 = 2.6 h + h2 = 2.6× 0.1 + 0.12 =
0.26 + 0.01 = 0.27, which is of course exactly 1.42 − 1.32 (=1.96− 1.69).

Let us examine critically how the the sequence of steps (2) leading up
to identity (1) differ from the usual computations in arithmetic. Because
the exact values of x and y are not given, doing any of the steps in (2)
by following a mechanical procedure of adding and multiplying is out of the

1 We have chosen to soft-pedal the associative law of addition here.
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question. We must go beyond procedures and rely on a general understanding
of the operations of addition and multiplication. Whereas each computation
of the type (1.3 + 0.1)2 focuses on the individual numbers in question, the
steps in (2) can be performed only when a certain abstract understanding of
all numbers as a whole has been attained. It requires more than looking at
individual numbers. Instead, one must focus on the abstract nature of the
operations on real numbers. In saying this, we are aware of the possibility of
performing the computations in (2) by rote, but solid evidence is available
to show that the rote approach leads to errors in the long run. There is no
known rote method of mastering abstract mathematics.

It may be profitable to revisit the computation in (2) from the opposite
point of view. A natural question is whether someone who cannot perform
computations of the type (1.3 + 0.1)2 = 1.96 with ease is nevertheless able
to do abstract computations such as (2). By and large, the answer is no,
because a purely formal understanding of general properties of numbers such
as the commutative law of multiplication or the distributive law, when not
backed up by vast concrete experiences with specific numbers, tends to be
fragile and incapable of supporting the kind of structural thinking implicit in
the computations of (2). Working mathematicians know only too well that
abstractions are rooted in concrete special cases. It may be somewhat tenu-
ous, but an analogy can be made to the effect that someone who has limited
knowledge of people as individuals would be equally limited in his overall
understanding of human beings. In this sense, proficiency in arithmetic pro-
vides the foundation that makes possible the understanding of algebra.

An additional comment can be made about the kind of symbolic computa-
tion exhibited in the steps of (2). In the mathematics leading up to algebra,
there is one subject which develops the skill of symbolic computation, and it
is fractions. When fractions are taught correctly —- and it must be admit-
ted that often it is not done correctly —- students get to manipulate integers
almost on a symbolic level, e.g.

5

7
+

2

3
=

(5× 3) + (2× 7)

7× 3
,

2/9

6/5
=

2× 5

9× 6
, etc.

Of course, when we try to express these facts in complete generality, we have
no choice but to use symbolic notation: for all integers a, b, c, and d, with
b 6= 0 and d 6= 0,

a

b
+

c

d
=

ad + bc

bd
,
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and if also c 6= 0,
a/b

c/d
=

ad

bc
.

In fact, it is generally conceded that the understanding of fractions holds the
key to understanding algebra. For, beyond the matter of symbolic compu-
tations, a proper understanding of fractions —- again, when it is properly
taught —- requires an understanding of the structure of the integers. In dis-
cussing whole number algorithms or fractions, it is the ability to reason about
the operations on numbers that will safely lead students to algebraic compe-
tency. For example, in order to understand the meaning of the multiplication
of two fractions, one is forced to first achieve an abstract understanding of
the multiplication of two whole numbers. Similarly, understanding why “in-
vert and multiply” is the right way to divide fractions requires an abstract
understanding of the division of whole numbers. For this reason, the subject
of fractions occupies an intermediate position in school mathematics between
the arithmetic of whole numbers and algebra. One way to improve students’
success rate in algebra is naturally to improve the teaching of fractions.

In trying to achieve success in teaching algebra, we are confronted with
a basic fact in mathematics, namely, that mathematics is cumulative and
hierarchical: learning any one topic requires a knowledge of most, if not all,
of the topics preceding it.2 The discussion above is a testimony to this fact.
For this reason, if we hope to achieve the goal of teaching algebra to all
eighth graders, a solid and substantive mathematics curriculum in grades K
through 7 is absolutely essential. In this light, the rigorous demands of the
California Mathematics Content Standards in grades K through 7 now begin
to make sense.

2 We have to put this statement in the context of school mathematics. In higher math-
ematics, this same hierarchical structure still holds, but in a modified form.


