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Inservice Mathematics Professional
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of Learning Mathematics
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11.1 Introduction

We all want to improve school mathematics education, but before making any
recommendations on how to take it to the next level, we would do well to first find
out where we stand. The answer: not in a good place. For the past five decades or so,
the mathematics we teach in school has been mostly flawed and unlearnable.1 For
example, the fractions that students have to compute extensively with from grade 5
to grade 12 are supposed to be thought of as pieces of pizza. The resulting fraction
phobia has been something of a national pastime for decades (see, e.g., https://www.
gocomics.com/peanuts/1966/04/21). Another example: we do not make any effort
to teach students proofs (reasoning) in the K-12 curriculum outside the high school
geometry course, and yet in that one geometry course alone, students are suddenly
called upon to prove everything—no matter how trivial or boring—on the basis of
a collection of new objects called “axioms.” The situation would not be as bleak if
we had educated our mathematics teachers properly so that they could help smooth
students’ learning path along such a rugged obstacle course, but we haven’t. Since
teachers are only equipped with this body of flawed and unlearnable mathematical
knowledge, they inevitably inflict the same flawed and unlearnable mathematical
knowledge on their students. So the vicious cycle continues to this day.

1We use “unlearnable” in this article to mean “unlearnable by a majority of students.” We note
that, in this case, learning mathematics includes learning how to reason; see Sect. 11.3 below for
the fundamental principles of mathematics.
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Obviously, two things must be in place before there can be any improvement in
school mathematics education: a correct and learnable version of mathematics is
made available in textbooks to students and a corps of teachers who are capable
of teaching the same. These are the tasks before us, and they have recently
acquired increased urgency because of the advent of the CCSSM (Common Core
State Standards for Mathematics, [CCSSM]). The mathematics advocated by the
CCSSM represents the first—but major—step towards meeting the goal of being
correct and learnable, so the need for better school textbooks and teachers who are
mathematically more knowledgeable can no longer be put off to the distant future.

To achieve the first goal of getting better school textbooks, some recent devel-
opments have given us hope, but in any case, there is now a detailed mathematical
guide on what constitutes correct and learnable school mathematics. To achieve the
second goal about a corps of mathematically competent teachers, we need a serious
commitment to content-based PD (professional development) to meet this problem
head-on. However, two large-scale impact studies of PD for teachers carried out
in the past decade by IES (the Institute of Education Sciences) have raised serious
doubts about the ability of content-intensive PD for inservice mathematics teachers
to improve student learning (see Garet et al. 2011 and Garet et al. 2016). We are
therefore forced to take a close look at this claim by the two IES studies. In our
view, the claim is not supported by the available evidence, and we will make some
effort to explain why not. Along the way, our explanation will also suggest the kind
of PD that may be more likely to produce mathematically knowledgeable teachers
who can improve student learning.

This article will expand on the preceding rather cryptic statements. A brief
outline follows. Section 11.2 gives a description of the flawed and unlearnable
body of knowledge—what we call TSM (Textbook School Mathematics)—that has
dominated school mathematics education for the past half century. Section 11.3
introduces the Fundamental Principles of Mathematics, which are the sine qua non
of mathematics. School mathematics that respects these fundamental principles will
be called PBM (principle-based mathematics, see Poon 2014), and we will explain
why PBM, because of its transparency, is learnable. In Sect. 11.4, we briefly discuss
the situation regarding school textbooks that respect PBM. In Sect. 11.5, we give a
fairly detailed discussion of the kind of PD needed to produce inservice teachers
who can teach PBM and of the obstacles that stand in the way of implementing
such PD. Section 11.6 presents an in-depth analysis of the aforementioned 2011 IES
impact study and explains why its PD could not have produced teachers capable of
teaching PBM: the PD did not help them overcome the handicap of knowing only
TSM but not correct mathematics. The last section offers a variety of comments,
including the need for “mathematics teachers” in elementary school and what
may be preventing effective preservice PD from becoming a reality on university
campuses.
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11.2 Mathematical Engineering and TSM

To understand the kind of “mathematics” that has dominated school mathematics
education for the past 50 years or so after the demise of the New Math around 1970,
we need to step back to get some perspective on the nature of school mathematics
and the overall state of school math education.

School mathematics is not part of mathematics proper—the mathematics we
teach in universities and use in science and mathematics research—but is, rather, a
particular version of mathematics that has been customized for consumption by K–
12 students (see Wu 2006). This is analogous to the case of electrical engineering,
which is not part of physics but is a customized version of it for the purpose of
creating electrical and electronic products to meet humans’ everyday needs. It is in
this sense that school mathematics is a product of mathematical engineering, and a
good part of school mathematics education is just mathematical engineering (Wu,
loc. cit.). Of the need to customize university mathematics for consumption in K–
12, there can be no doubt. After all, we do not introduce fractions to elementary
students as the positive elements in the quotient field of the ring of integers. Rather,
we directly develop fractions from whole numbers using the number line (Jensen
2003; Wu 1998, 1999a, and 2011a); this will be discussed in Sect. 11.3.2. Similarly,
in K–12, a line in the plane is not a linear map from R to R2 but the unique curve
joining any two of its points as specified by Euclid’s first postulate.2 And so on.

This engineering takes many forms. Sometimes it recasts the whole concept in
a different but equivalent setting, as in the case of fractions and rational numbers.
Sometimes it makes use of advanced theorems without any proof (so long as there
is no circular reasoning), such as the fundamental theorem of algebra, the Jordan
curve theorem for polygons, or the existence of the exponential function ex . At
other times it simply leaves out topics that are too conceptually sophisticated, such
as the structure of the real numbers3 or the concept of continuity. But regardless
of the engineering decisions, there will always be good and bad engineering. In
the same way that bad engineering in electrical engineering produces electronic
gadgets that are hazardous to users, bad mathematical engineering produces a body
of mathematical knowledge for K-12 that is unlearnable, basically because it is often
wrong as mathematics. The mathematical knowledge that has dominated school
mathematics education for the past five decades is unfortunately one example of
what bad mathematical engineering has wrought. We call it TSM, Textbook School
Mathematics, because its most complete realization resides in all the standard school
mathematics textbooks and almost all the textbooks for mathematics teachers’

2Nevertheless, some recent publications have done just that: defining a line in the plane as the
graph of an equation y = mx + b. See, e.g., page 711 of Billstein-Liebeskind-Lott 2007.
3This particular engineering decision makes a tremendous impact on the school curriculum
because, as a result, the principal number system in K–12 is actually the rational numbers Q and
not the real numbers R. This is the reason why fractions are so important in K–12.
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professional development (see Askey 2018; Baldridge 2013; Douglas 2015; Cuoco-
McCallum 2018; Wu 2011c and 2018).

Although TSM looks superficially like mathematics, it differs from mathematics
in important ways, especially in its lack of precise definitions and reasoning. TSM
is not concerned with students understanding concepts or developing a capacity
for reasoning, but instead focuses on getting right answers to problems that TSM
sees fit to pose. To this end, TSM offers students a set of procedures, which, when
followed conscientiously, lead to the right answers to these problems. To make the
procedures more attractive to students, TSM uses only intuitive language to describe
the concepts to make students believe that they “get it.” The absence of precise
definitions—and the attendant absence of reasoning—in TSM is therefore part of
the design.

We must confront TSM directly because of its tenacious and pervasive hold on
school mathematics education. It is the mathematics used by teachers and education
researchers in their work, and its omnipresence can be easily explained. Teachers
and educators4 learned TSM in their K-12 years, and when they were students in
institutions of higher learning, they learned mainly about the pedagogical issues of
the K–12 curriculum. On the rare occasion that they got to take a course on school
mathematics, almost all the textbooks for such courses—as mentioned above—
consisted of little more than polished presentations of TSM. Once teachers and
educators begin their professional lives, the mathematics they deal with is once again
TSM. This is especially true for teachers because textbooks are “the authority on
knowledge and the guide to learning . . .many teachers see their job as just ‘covering
the text’ ” (Romberg and Carpenter 1985). We therefore have a vicious cycle that
reinforces the dominance of TSM in American school mathematics education,
including education research. Thanks to this well-established recycling program, it
would be fair to say that TSM is now part and parcel of the mathematics education
literature. The article of Armstrong and Bezuk (1995) illustrates this point very well.
These authors discuss the difficulty teachers have trying to teach the multiplication
and division of fractions in middle school. They observe that teachers teach these
concepts procedurally (without reasoning) not because they intentionally want to
“withhold conceptual understanding from their students,” but because

It is quite possible that the teachers do not know that a conceptual base for multiplication
and division of fractions even exists. Nothing in their mathematics learning experiences
would have provided a hint of that existence. (loc. cit., page 91)

From our perspective, what this says is that most teachers have been denied the
opportunity to learn a correct approach to the multiplication and division of fractions
simply because all they have access to is TSM.

4We use the term “educators” to refer to university faculty in schools of education.
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11.2.1 Some Examples of TSM

Some examples will clarify why we object to TSM.

Example 11.1 TSM explains equivalent fractions by using what is often called the
Giant One. For example, to show 3

2 = 12
8 , TSM reasons as follows:

3
2

= 3
2

× 1 = 3
2

× 4
4

= 3 × 4
2 × 4

= 12
8

(11.1)

This “reasoning” is probably too well-known to require any comments. Formally,
the starting point of this “reasoning” is that 3

2 and 12
8 are fractions, and the

conclusion is that the two fractions are equal.

From the outset, this “reasoning” faces two insurmountable obstacles: TSM has
no precise definition of a fraction and, therefore, it is unclear what it means for
two fractions to be equal. So TSM begins with a vague hypothesis and arrives at a
conclusion that is equally vague. Hardly an ideal setting for doing mathematics. Yet,
the greater obstacle is the use of fraction multiplication in this attempted “proof.”
Since the concept of equivalent fractions appears almost as soon as fractions are
introduced, before students get to know how to add or multiply them, fractions are
not ready to be multiplied in this argument. In this light, the transgression implicit
in the first step, 3

2 = 3
2 × 1, seems relatively harmless because “1 times anything is

the thing itself.” The key step in Eq. (11.1) that

3
2

× 4
4

= 3 × 4
2 × 4

is, however, totally out of place because the validity of the product formula that says
a
b × c

d = ac
bd (for any positive integers a, b, c, and d) itself depends on the use of

equivalent fractions (see pp. 62-63 of Wu 2016a). Therefore, this “proof” in TSM is
guilty of circular reasoning at the very least.

TSM’s inability to define what it means for two fractions to be equal also plays a
role in the next example.

Example 11.2 The article of Otten et al. (2010) tries to give a demonstration of
the cross-multiplication algorithm (CMA): If two fractions a

b and c
d are equal,

then ad = bc. Because the authors were working within TSM, they had no precise
definition of a fraction at their disposal, so they made up an ad hoc definition of
equality for fractions by saying that a

b = c
d means that there is a nonzero whole

number k so that c = ka and d = kb . Then they used this definition of “equal
fractions” to prove the theorem. The fact that this definition of equality is incorrect
(e.g., 6

9 = 14
21 , but there is no whole number k so that 14 = k×6 and 21 = k×9) and

that such a hypothesis trivializes the theorem is almost beside the point here. What
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is striking is that we get to witness the struggle the authors were going through in
trying to break free from TSM, and how TSM ultimately defeated them.

Incidentally, CMA should be taught in grade 5, not long after the theorem on
equivalent fractions has been proved, and it (together with its various extensions)
belongs in the survival kit of every student and every teacher in K–12.

Example 11.3 What does it mean to add two fractions such as 3
8 + 5

6 , and what is
the sum? TSM provides no answer to the first question; for the second, it prescribes
the following procedure: Get the least common denominator (LCD) 24 of 8 and 6
and observe that 24 = 3 × 8, 24 = 4 × 6. Then add as follows:

3
8
+ 5

6
= 3 × 3

3 × 8
+ 4 × 5

4 × 6
= 9+ 20

24

In terms of students’ mathematics learning, one has to take note of the fact that when
elementary students encounter the addition of fractions for the first time, they expect
that it will be more or less the same as the addition of whole numbers, i.e., addition
is “putting things together.” However, not only is there no indication in TSM that
adding fractions has anything to do with “putting things together,” but there is also
nothing in the preceding procedure—LCD and all—to suggest any connection with
“putting things together.” TSM makes learning how to add any two fractions more
complicated and difficult than it needs to be.

Example 11.4 What does it mean to multiply two fractions such as 2
3 × 5

8 and
what is the product? Again TSM has nothing to say about the first question, and
it answers the second by declaring that fractions are multiplied by the following
rule: a

b × c
d = ac

bd for any whole numbers a, b, c, and d (with the understanding
that bd "= 0). It then follows easily that the preceding product is equal to 10

24 . No
explanation is given for this rule, but there is usually some effort to make this rule
seem reasonable by discussing the special case where b = 1 (i.e., a whole number
multiplies a fraction) and also the special case where d = 1 and b divides c (i.e.,
a fraction multiplies a whole number which is a multiple of the denominator of the
fraction). How then do we use multiplication in word problems? Again, do it by
rote: when the word “of” appears, it means “multiply” (see Moynahan 1996).

Example 11.5 TSM introduces the concept of a mixed number right after the
definition of a fraction—but before the addition of fractions is discussed. Thus, 2 3

4
is, by definition, “2 and 3

4 .” TSM also explains the conversion of mixed numbers to
improper fractions by rote, e.g.,

2
3
4

= (2 × 4)+ 3
4

= 11
4

This procedure has to be done by rote because of TSM’s refusal to define a
mixed number as the sum of a positive integer and a proper fraction, and that,
for example, 2 3

4 is the shorthand notation for 2 + 3
4 . Notice that the word “and”
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has been purposely used to hide the fact that the addition of fractions is involved,
an inexcusably bad piece of mathematical engineering. If mixed numbers were
introduced after the addition of fractions, they would be a perfectly simple topic
to learn.

Example 11.6 TSM considers finite decimals to be a different kind of number from
fractions and it teaches finite decimals on a parallel track, independent of fractions.
For example, a finite decimal such as 2.307 is defined to be “2 and 3 tenths and
7 thousandths.” Once again, the word “and” is purposely used to hide the fact that
the addition of fractions is involved, so that 2.307 is actually the following sum of
fractions,

2+ 3
10

+ 0
100

+ 7
1000

So TSM knows that a finite decimal is a fraction, but nonetheless tries to hide it.
Bad mathematical engineering again. Such an approach to the teaching of finite
decimals has produced misconceptions that are legendary (see, for example, https://
tinyurl.com/y6k59uqp).

These examples are cited for their relevance to our discussion, but we must
emphasize that they do not come close to exhausting the sins of TSM. A few other
examples are the obsession in TSM with the so-called order of operations, which
elevates a notational convention to a major topic in middle school mathematics, or
the use of FOIL in TSM to expand the product of two linear polynomials, or the
convention in TSM geometry that precludes a square from being a rectangle, an
equilateral triangle from being an isosceles triangle, a parallelogram from being
a trapezoid, etc. There is another glaring defect that should not be overlooked:
the cavalier way TSM handles real numbers. In middle school, irrational numbers
begin to encroach on many mathematical discussions because numbers such as
π and square roots of whole numbers can no longer be avoided. Real numbers
are not the province of K–12 mathematics, granted, but when students are asked
to believe—without a word of explanation—that

√
2 ·

√
3√

2
=

√
3 because of the

“usual” cancellation law for fractions (whose numerators and denominators are
whole numbers), things clearly have gotten out of hand.

In summary, TSM represents a major transgression against what is acceptable in
mathematics.

11.2.2 The Neglect of Definitions in TSM

To get an idea of the scope of TSM’s devastation of school mathematics, it may
be of some interest to see at least a partial list of the fundamental mathematical
concepts in K-12 that are either not defined or defined incorrectly in TSM:
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• the remainder in the division-with-remainder of whole numbers;
• fraction; equality of fractions; one fraction being bigger or smaller than another;

addition of fractions; multiplication of fractions; division of fractions;
• finite decimal; equality of decimals; one decimal being bigger or smaller than

another; addition of decimals; multiplication of decimals; division of decimals;
• ratio; percent; rate; constant rate;
• expression, equation; graph of an equation; graph of an inequality; half-plane;
• slope of a line;
• the 0-th power of a number, negative power of a number;
• polygon, regular polygon, parabola;
• congruent figures; similar figures; scale-drawing;
• length of a curve; area of a plane region; volume of a solid.

Because reasoning is impossible without definitions, TSM has to teach the skills
related to all the concepts on this list entirely by rote. For example, because there
is no definition for either the “graph of a linear inequality in two variables” or
a “half-plane,” there is no explanation in TSM for the fact that the graph of a
linear inequality in two variables is a half-plane. The absence of precise definitions
for fraction, decimal, ratio, percent, and rate will be particularly pertinent to the
discussion of the PD program of the 2011 IES impact study (mentioned in the
Introduction) in Sect. 11.6.2 below.

Beyond its failure to define key concepts, TSM also does great harm to
mathematics learning by introducing spurious concepts, notably “variable” and
“proportional reasoning.” It is not difficult to see that neither can be defined in a
way that makes any sense as mathematics, but if a fuller explanation is needed for
why these are not mathematical concepts, see Section 3.2 of Wu (2018). (One can
find a more detailed discussion of “variable” in pp. 2–3, 28–29, 38–39 of Wu 2016b,
and of “proportional reasoning” in Section 7.2 of Wu 2016b.)

11.3 Fundamental Principles of Mathematics and PBM

Thus far, we have criticized TSM for its many mathematical flaws, and we have
referred vaguely to the need for correct and learnablemathematics in the classroom.
Now it is time to explain in greater detail what “correct and learnable” school
mathematics is.

11.3.1 Fundamental Principles of Mathematics

First, consider the following five Fundamental Principles of Mathematics:

(I) Every concept has a precise definition.
(II) Every statement is supported by reasoning.
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(III) Precision attends every statement.
(IV) The progression from topics to topics is coherent.
(V) The progression from topics to topics is purposeful.

It will be clear from the following discussion that all five overlap each other and that
the first three form a close-knit unit. The examples of the last section illustrate the
fact that TSM violates every one of these principles, but we will provide more of
such examples below.

These principles form a minimal set of characteristic properties of mathematics,
and any mathematical exposition of that violates any one of these principles is not
a faithful representation of mathematics. For our present purpose, we call school
mathematics that respects these five fundamental principles PBM (principle-based
mathematics; this term was coined by Poon 2014). Thus PBM is a body of knowl-
edge that is consonant with both the progression of the K-12 school mathematics
curriculum and the fundamental principles of mathematics. Henceforth, we will use
PBM as a shorthand for correct and learnable mathematics.

We now explain the preceding fundamental principles from the specific vantage
point of learning school mathematics.

(I) The need for precise definitions stems from the fact that the learning of
mathematics involves the learning of many new concepts. A precise definition of
a concept tells students what it is (a number? a pair of numbers? a function? an
equality? a geometric figure? etc.), and what properties it is assumed to possess.
From a pedagogical perspective, the purpose of having precise definitions is
to lighten students’ cognitive load by clearly setting forth—for the purpose of
learning—everything they need to know about the concept in question. A precise
definition of a concept eliminates second-guessing: it assures students that they are
already in possession of all they need to know for any reasoning involving this
concept, no more and no less. This is how mathematics works. There is no need for
students to wonder whether the textbook and the teacher have something up their
sleeve that is not being shared with them.

To understand what this means, suppose a fraction is defined to be like a piece of
pizza. But every student knows that the metaphorical piece of pizza will inevitably
turn into something else at a moment’s notice. After all, if TSM asks them how long
it will take a faucet to fill a tub of 571

2 gallons given that the rate of the water flow
is a constant 142

3 gallons per minute, their common sense would tell them to forget
whatever has been taught about fractions-as-pizzas and, instead, concentrate on their
rote skills. This illustrates how students in TSM are put in a state of constant distrust.
How can real learning take place under the circumstances? Worse, if a concept such
as the division of fractions is taught without a definition, students are left to cope
with problems about fraction division without knowing what they are doing. This is
why we have “ours is not to reason why, just invert and multiply” and the attendant
fraction phobias.

Having a precise definition of a concept—and consistently basing any reasoning
involving this concept only on what is in the definition—is therefore a necessary first
step to build trust and make it possibly for students to learn about reasoning with the
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concept. The precise definition eliminates any need for students to constantly look
over their shoulders and try to guess what additional information about the concept
may be coming their way.

Two further comments about definitions will round out the picture. The first is
that, insofar as a definition is supposed to inform students of everything they need
to know about a concept, the need for simplicity in a definition should be obvious.
For example, consider the following “definition” of a right triangle: it is a triangle
so that one of its angles is 90◦ and so that if a, b, and c are the lengths of its sides
and c is the largest, then c2 = a2 + b2. Such a “definition” is not wrong in a formal
sense, but it clearly fails to be informative because students would wonder whether
there are any “right triangles” in this world that can meet both requirements. After
all, what is the equality c2 = a2 + b2 all about? If students’ first reaction to this
definition is one of disbelief, how to convince them to learn about right triangles?
Therefore, we have to pare such a definition down to “a right triangle is a triangle
so that one of its angles is 90◦” and then show how to use reasoning on the basis of
this definition to prove the equality c2 = a2 + b2.

The second general comment about definitions is that the connection between
precise definitions and reasoning—to the effect that any reasoning about a concept
must be based only on what is contained in the definition—seems to have stayed
under the radar in the mathematics education literature for the past few decades.
This could be because of the dominance of TSM, which considers “definitions” to
be largely superfluous and completely separate from the many rote-learning rules
that make up TSM.

(II) We have just seen that having precise definitions is not an end in itself but,
rather, the means to an end, the end being to make reasoning possible. Reasoning
is the lifeblood of mathematics; there is no difference between reasoning and what
is called problem solving in the education literature5 when the latter is correctly
interpreted. However, for the purpose of mathematics learning, reasoning plays the
pivotal role of serving as the glue that connects concepts and skills. It is well-
known that such connections make mathematics more learnable than a collection
of concepts and skills that are memorized by rote (see pp. 118–120 of National
Research Council 2001 for the large body of research evidence supporting this
claim). Another way that reasoning helps to make school mathematics learnable is
that it empowers all students to decide for themselveswhether what they are doing is
correct or not without having to submit themselves to the authority of their teacher
or textbook. Learning how to reason therefore enhances students’ self-confidence
and their disposition6 toward learning, which will in turn generate more learning.

5Problem solving is currently the main goal of school mathematics education in certain circles. It
is well to note that there is no way to get students ready for problem solving (i.e., reasoning, which
is the second fundamental principle of mathematics) without the help of the other four fundamental
principles.
6Compare the fifth strand of mathematical proficiency—productive disposition—in Chapter 4 of
National Research Council (2001).
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(III) It is a truism that precision minimizes misunderstanding in teaching and
learning. In the case of mathematics, however, we can be more specific: without
precision, learning about reasoning becomes well-nigh impossible. For example, a
typical definition of the division of fractions in TSM is the following:7

Division and multiplication are inverse operations. Inverse operations are operations that
undo each other.

These sentences sound plausible, but ultimately make no sense because multiplica-
tion sends two numbers, e.g., 2 and 3, to the third number (2 × 3 = 6 in this case).
Similarly, division sends two numbers, e.g., 6 and 3, to the third number (6÷ 3 = 2
in this case). So start with 2 and 3 (let us say), multiplication sends them to 6. Now
how to “undo” 6 to send it back to 2 and 3 by division? If the definition does not
make sense, how can we teach students to reason about fraction division using the
definition?

A little bit more attention to precision would likely have averted this travesty
by rephrasing the preceding “definition” as follows: if a fraction a

b is fixed, then
dividing it by a nonzero c

d yields a fraction so that, when the latter is multiplied by
c
d , we get back

a
b .

Perhaps a more telling example of the need for precision is the way CMA
(cross-multiplication algorithm) is used in TSM. Let x be a number that satisfies
a proportion:

4.6

134
5

= x

81
2

(11.2)

Then, a standard procedure to solve for x is to use CMA to get 134
5 · x = 4.6 · (81

2 ),
thereby obtaining x = 25

6 . This solution method has unquestioned authority until
we stop to ask: why is CMA applicable to Eq. (11.2)? Here, we need the fact that
a
b = c

d implies ad = bc. In TSM, CMA is either not proved (see Example 11.2
in Sect. 11.2.1) or proved only for fractions a

b and c
d , in which case, a, . . . , d

are whole numbers. The numerators and denominators in (11.2) are definitely not
whole numbers, and it is shocking to realize that TSM never proves the CMA when
the numbers involved are not whole numbers! How then can we inspire students to
learn how to reason when they consistently bear witness to the fact that TSM plays
fast and loose with results obtained by reasoning? What is the point of reasoning?

Such imprecision also has a pernicious side effect: it implicitly invites students
not to take what they read literally, because anything they read is likely to be correct
in a wider context. Consequently, students who are taught that

if A, B, and C are nonzero fractions, then A < B implies CA < CB

7This is taken directly from a textbook.
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have every right to believe that this must also be true when A, B, and C are any
numbers. Reports that the author heard consistently from teachers in the field is that
many students are dismayed by the fact that

if A, B, and C are rational numbers and C < 0, then A < B implies CA > CB.

Such imprecision puts students in a difficult position: how to decide when to
believe—or not to believe—what they are taught?

Moral For mathematical learning to take place, precision must be the rule so that
students know at each step exactly what is true and what is false.

(IV) Roughly, the coherence of mathematics means that mathematics, far from
being a mere random collection of facts, is a tapestry in which all the concepts
and skills are logically interwoven to form a single fabric. Mathematics unfolds
logically, from basic assumptions (axioms) and definitions to theorems, and from
theorems and other definitions to more theorems. Because of this logical progres-
sion, different parts of mathematics, even when far apart, often echo each other
or are interconnected. It is this interconnectedness that comes from the unfailingly
logical development of mathematics that we call coherence.8

The impact of coherence on learning can be seen in the learning of the arithmetic
operations on whole numbers, fractions, rational numbers, and eventually real
numbers. These operations are conceptually the same across the various number
systems. (This fact is a main emphasis in Wu 2011a.) As a consequence of this
coherence, if these operations on whole numbers are taught correctly, then the
learning of these operations on fractions becomes streamlined and the popular
perception in TSM that “fractions are such different numbers from whole numbers”9

will be banished forever from school mathematics education. (Again, see Wu
2011a.)

The impact of coherence on learning can also be seen in a smaller scale in
the most mundane of all school mathematics topics: the standard algorithms for
whole numbers. When taught as rote skills, these algorithms are the embodiment of
mindless tedium. But they are in fact held together by a single leitmotif:

A knowledge of the addition, subtraction, multiplication, and division of single-digit
numbers empowers us to perform all arithmetic operations with ease on any whole numbers,
no matter how large. (See Chapter 3 of Wu 2011a.)

8According to Cuoco-McCallum (2018), what we have just defined is the coherence of content.
The Cuoco-McCallum article is, in their terminology, concerned with the curricular coherence of
the school mathematics curriculum.
9This is a direct quote of what one parent told the author. Such a popular perception is in fact a
reflection of not only what transpires in a TSM classroom (compare, e.g., Examples 11.3 and 11.4
in Sect. 11.2.1 above), but also what is in the education literature. For example, “Such difficulty
with fractions is often attributed to the fundamental differences between whole numbers and
fractions.” (Namkung and Fuchs 2016). Or, “Children must adopt new rules for fractions that often
conflict with well-established ideas about whole numbers.” (Bezuk and Kramer 1989).
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The phrase “with ease” refers to the fact that any one of these operations on large
numbers can be indescribably tedious (e.g., 2573 × 496 means adding 2573 copies
of 496), but when reduced to single-digit computations (which is what the standard
algorithms do) it becomes relatively simple. If this leitmotif is made known to
elementary students—and of course if the algorithms are explained to them too—
they are more likely to learn the algorithms and especially the multiplication table
with greater enthusiasm and, more importantly, they will also learn a substantial
amount of valuable mathematics because these four algorithms bring to light a
recurrent theme in all of mathematics: reducing the complex to the simple.

Yet another example of how coherence can impact learning is in the teaching of
fractions. Here are the seven most basic topics in fractions:

divisionfractionsfractions
comparing equivalent fraction−as−

fraction
addition

fraction
subtraction

fraction
multiplication

fraction
division

It is difficult to make sense of them when they are presented starkly as seven rote
skills. But when reasoning is introduced into the discussion, a clear picture emerges:
the other six topics are now seen to follow from the one central fact on equivalent
fractions (see, e.g., Chapters 13-18 of Wu 2011a). From this perspective, we can
make sense of all seven topics, and fractions begin to be learnable.

divisionfractions
comparing equivalent fraction−as−

subtractionaddition

fraction
multiplication

fraction

fraction fraction

division

fractions
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Incidentally, this is analogous to the phenomenon that while it is impossible
to commit to memory the contents of even one page from a telephone book,10 a
thousand-page book like Don Quixote is quite memorable.

(V) Purposefulness refers to the fact that everything in mathematics is done with
a purpose; this fact is of vital importance for the purpose of doing and learning
mathematics but is unfortunately not something that is brought out in most books in
mathematics education, least of all in TSM.

It is easy to explain the important role of purposefulness in school mathematics.
Many skills and concepts have competed to stay in the (more or less) universally
accepted school curriculum for more than a century, if not longer, and those that
have survived to stay in the present day curriculum are the winners of many rounds
of elimination. The reason these skills and concepts are still here could only be
because they serve a vital purpose. If we can bring out this purpose to make
students see why these skills and concepts are worth learning, students will be
more motivated to learn them and student achievement will improve as a result. For
example, we have already alluded to the likelihood that emphasizing the purpose
(the leitmotif) of teaching the standard algorithms will increase student learning.

There is probably no better illustration of how purposefulness can impact student
learning than the topic of rounding whole numbers. During my many years of doing
inservice PD, I was once asked by a teacher why we bother to teach rounding, a
skill that she considered to be meaningless. She said her students had no idea why
they should learn it. Subsequently, other teachers concurred. Their complaint was
entirely justified because TSM never explains that, quite often, one wants to round
off a number because precision is not wanted or is simply unattainable, or both.

For example, the Census Bureau’s estimated population of Houston was
2,303,482 in 2016. If a visitor from afar asks you how many people live in Houston,
are you going to say “2,303,482”? You had better not, because you would sound
ridiculous. Such precision is not the intent of the question. Your visitor probably
only wants to know, roughly, how Houston compares with New York (population
approx. 8,540,000) or San Francisco (population approx. 870,000). In other words,
you are probably only expected to say whether the Houston population is closer to
nine million or nine hundred thousand. With this in mind, you would likely round
2,303,482 to the nearest million to get two million. Then you look at your visitor in
the eye and say with great confidence, “about two million.”

One can also point to another kind of purpose for rounding: when precision
is not attainable. Consider the 2016 estimate of Houston’s population again. The
Census Bureau probably had to release the figure of 2,303,482 for bureaucratic
reasons, but such precision clearly makes no sense given the instability of a major
city’s population due to the unending cycle of births and deaths, the presence of a
large transient population, and its ever-changing homeless population. Therefore,
the most conservative estimate of Houston’s population in 2016 is that the last three

10If a reader doesn’t know what a “telephone book” is, please ask anyone over 60 or email the
author!
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digits, 482, are completely meaningless. We can de-emphasize them by rounding
to the nearest thousand and list 2,303,000 as Houston’s population in 2016. But if
you round it to the nearest hundred thousand and list Houston’s population as 2.3
million, I doubt that eyebrows would be raised.

If TSM would take the trouble to explain the purpose of rounding, many of our
teachers probably would cease being exasperated by having to teach it. Students too
would likely approach the learning of this skill with greater enthusiasm.

Of course, there is no end of examples to illustrate how the teaching of a concept
or skill would be enhanced by bringing out the purpose of introducing said concept
or skill. In addition to the four standard algorithms, think of place value (no, it is
not due to a decree from on high that the 3 in 35 must be 30; see Chapter 1 of Wu
2011a), the introduction of negative numbers (see, for example, Chapter 26 of Wu
2011a), the introduction of absolute value (see Section 31.3 in Wu 2011a), etc.

11.3.2 PBM vs. TSM

Thus far, we have discussed in general terms some special features of TSM and
PBM. Because the overriding theme of this article is to help teachers get rid of their
knowledge of TSM and replace it with PBM, we will now revisit the six examples
in Sect. 11.2.1 from the perspective of PBM. Because all these examples are about
fractions, we will begin with a brief presentation of the definition of a fraction using
the number line (first presented in Wu 1998, but see Wu 2002 and Chapter 1 in Wu
2016a). We will try to be brief, except that the discussions of Example 11.3 (adding
fractions) and Example 11.4 (multiplying fractions) will be intentionally detailed
because we want to illustrate explicitly how to use definitions in reasoning (see the
discussion on learning about definitions in Sect. 11.5.1 below).

We begin with a (horizontal) number line on which a sequence of equidistant
points marching to the right are labeled by the whole numbers. Now proceed as
follows to get the fractions with denominator 3 (and by extension any and all of
the other fractions). Partition the unit segment [0,1] into three equal parts (=
three segments of equal length). The part adjoining 0 is the third. Denote its right
endpoint by 1

3 .

0 1 2 3 4

1
3

Fix the distance between 0 and 1
3 . Marking off equidistant points to the right of 1

3
as we have done with whole numbers, we obtain a sequence of points, denoted by
2
3 ,

3
3 ,

4
3 , etc.
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0 1 2 3 4

1
3

2
3

3
3

4
3

5
3 etc.

The segment [0, 1
3 ], by convention, is identified with its right endpoint, 1

3 . Similarly,
the segment [0, 2

3 ] is identified with its right endpoint 2
3 , the segment [0, 5

3 ] with its
right endpoint 5

3 , etc. Call these the sequence of thirds. Also call n
3 the length of

the segment [0, n
3 ] for any nonzero whole number n.11

Similarly, the nonzero fractions with denominator 5 are the sequence of fifths,
determined by the partition of [0, 1] into 5 equal parts and by repeating the
construction as in the sequence of thirds. For example, 8

5 is the last point on the
right:

0 1

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

Then we call 8
5 the length of the segment [0, 8

5 ], etc. (See Wu 1998; Chapter 12 of
Wu 2011a has more details.)

If n is any nonzero whole number, then we obtain the sequence of nths by
partitioning the unit segment [0, 1] into n equal parts, denoting the right endpoint
of the part adjoining 0 by 1

n , and marking off equidistant points to the right of 1
n .

The union of 0 and the collection of all the sequences of nths for n = 1, 2, 3, . . .
is what we call the fractions.

Now that we know what a fraction is, we may ask if this definition amounts to
anything. First of all, a fraction is an abstract concept and there is no point in hiding
this fact12 because introducing students gradually to abstractions is an integral part
of school mathematics education. Defining a fraction as a certain point on the
number is therefore nothing more than an honest acknowledgement of the abstract
nature of the fraction concept. A teacher can mention to elementary students the
fact that “ 23” is an abstraction the same way “5” is an abstraction.13 But if fractions
are just abstractions, i.e., points on the number line, how do they get involved in
describing so many things that seem to have nothing to do with the number line?
Furthermore, does the definition shed light on the addition and multiplication of
fractions?

Let us answer the first question first. The key is the meaning we assign to the unit
1: it is the meaning of the unit that connects the number line to every possible real-
world situation involving fractions. Consider, for example, the following problem:

11By convention, we also define 0
n to be 0 for every nonzero n.

12But there is also no need to emphasize it in elementary school either.
13It is all too easy to forget that the symbol “5” is emphatically an abstraction.
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if 1
4 of a bucket of water is added to a 2

3 of a bucket of water, how much water is
now in the bucket? To do this problem, we let the unit 1 on the number line be the
volume of this bucket of water. The length of the unit segment [0, 1] now has to be
interpreted as the volume of one bucket of water. So 1

4 of a bucket of water—which
is one part when the bucket of water is divided into 4 equal parts by volume—will
be represented on the number line by one segment when the length of unit segment
(= the volume of one bucket of water) is divided into 4 equal parts (= 4 segments
of equal length). Therefore 1

4 of a bucket of water is represented on this particular
number line by the point 1

4 (= the first point to the right of 0 in the sequence of
fourths). In a similar way, 2

3 of a bucket of water is represented by the fraction 2
3

on this number line (= the second point to the right of 0 in the sequence of thirds).
The total volume of water obtained by adding 1

4 buckets of water to 2
3 buckets of

water is therefore what we normally call “( 14+ 2
3 ) buckets of water.” We will explain

this sum in the discussion of Example 11.3.
Notice that the unit segment [0, 1] is what TSM calls “the whole,” and that is

a blatant error. The unit 1 has to be the volume of one bucket of water, but not
“one bucket of water.” The latter would leave open the question of whether we are
dividing the bucket of water into “equal parts” by height, weight, or volume, or in
fact, by another kind of measurement. Mathematics has no room for such ambiguity.
It is sobering to realize that, in TSM, even the meaning of “the whole” is not correct.

There is another way the number line makes contact with other real-world
situations, and we should touch on this briefly. Consider the following problem:
if Helena walks 31

2 miles in 1 hour and 20 minutes, what is her average speed in
this walk? Here we have to deal with two number lines: one whose unit is 1 mile,
and another whose unit is 1 h. Since 1 h and 20min is 11

3 h, we have the following
two number lines:

0 1
(= 1 mi)

2 3 4

1
2 31

2 mi

0 1
(= 1 hr)

2 3 4

11
3 hr

Now the average speed of Helena’s walk is, by definition, the division

average speed of walk =
(
distance traveled
time duration

)
= 31

2

11
3

(11.3)
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Since division takes place only between two numbers on the same number line (see
Wu 2011a, Chapter 18), Eq. (11.3) does not make sense as it stands. We rectify the
situation by identifying the two number lines,14 i.e., by identifying the two units,
and obtain this picture:

11
3 hr

0 1
(= 1 mi = 1 hr)

2 3 4

31
2 mi1

2
1
3

The division in Eq. (11.3) can now take place.
It is time to return to the six examples in Sect. 11.2.1.

Example 11.1 Revisited We can show 3
2 = 12

8 as follows. 3
2 is the third point (to the

right of 0) in the sequence of halves.

0

1
2

2
2

3
2

1

Now divide each of the segments [0, 1
2 ], [ 12 , 1], [1, 3

2 ], etc., into 4 equal parts. Then
together with the sequence of halves, these new division points become the sequence
of eighths. The point 3

2 now becomes the 12th point in the sequence of eighths, and
it follows from the definition of fractions that 3

2 = 12
8 .

The reasoning for showing equivalent fractions in general, ca
cb = a

b for all
fractions a

b and nonzero whole numbers c, is entirely similar (see page 29 of Wu
2016a).

Example 11.2 Revisited We will prove CMA, i.e.,

a

b
= c

d
implies ad = bc (11.4)

by making use of equivalent fractions (see Example 11.1), but without making use
of the multiplication of fractions. We have a

b = ad
bd and c

d = bc
bd by equivalent

fractions. Therefore the hypothesis means ad
bd = bc

bd . Thus in the sequence of bd-
ths, the ad-th point coincides with the bc-th point. This can happen only if ad = bc.

It may be mentioned that in the mathematics education literature, CMA is
regarded as an algorithm that is “rote and without meaning” (see page 348 of
Billstein-Liebeskind-Lott 2007, for example). This is a piece of misinformation

14By combining the two number lines into one, if one prefers to think of it this way.
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that begs to be corrected. As we already remarked at the end of Example 11.2 in
Sect. 11.2.1, CMA is a basic skill in K–12 that should be in the repertoire of every
student and every teacher. In addition, the fact that CMA in the form of (11.4)
continues to hold for rational numbers a, b, c, and d is given on page 180 of Wu
(2016a). The extension to real numbers a, b, c, and d is guaranteed by what is called
FASM (Fundamental Assumption of School Mathematics); seeWu (2016a), Section
2.7 (the proof of FASM is given in Section 2.1 of the third volume of Wu 2020).

Example 11.3 Revisited To compute 3
8 + 5

6 , we begin by defining the addition
of fractions. To this end, we look to whole numbers for guidance because, as
points on the number line, whole numbers and fractions are on an equal footing.
For whole numbers, addition holds no mystery: 4 + 3, for example, is the total
length obtained by combining segments of lengths 4 and 3, respectively. Precisely,
consider the concatenation of the two segments of lengths 4 and 3, which is the
segment obtained by placing these segments end-to-end on the number line:

4 3

•

Now suppose we are given two fractions 4
7 and 1

5 (for example). By definition (Wu
1998; also Section 14.1 of Wu 2011a), the fraction addition 4

7 + 1
5 is the length of

the concatenation of the two segments of lengths 4
7 and 1

5 :

4
7

1
5

10
•

This definition of fraction addition immediately shows that addition—even for
fractions—is still just putting things together. (See the discussion of the coherence
of mathematics in (IV) of Sect. 11.3.1.)

Now that we know what we are asked to do regarding 3
8 + 5

6 , we can try to
compute it, i.e., obtain a formula for 3

8 + 5
6 . First, observe that the addition of

fractions with the same denominator becomes very simple. For example,

4
7
+ 6

7
= 4+ 6

7
(11.5)

because 4
7 is the total length of 4 segments of length 1

7 and 6
7 is the total length of

6 segments of length 1
7 , so that by the definition of fraction addition, the left side of

Eq. (11.5) is the total length of (4+ 6) segments of length 1
7 and is therefore equal

to the right side of (11.5). Observe that, conceptually, there is no difference between
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4
7 + 6

7 and 4+ 6. In general, a
b + c

b = a+c
b for all fractions a

b and c
b , for the same

reason.
Although 3

8 and 5
6 do not have the same denominator, we can “make them

have the same denominator” by appealing to equivalent fractions (see Example 11.1
Revisited above). Thus, both fractions 3

8 and 5
6 belong to the sequence of 48-ths

(48 = 6 × 8) because

3
8

= 18
48

and
5
6

= 40
48

(11.6)

Therefore

3
8
+ 5

6
= 18

48
+ 40

48
(11.7)

By the preceding observation (see (11.5)), we have

18
48

+ 40
48

= 18+ 40
48

(11.8)

Putting equations (11.7) and (11.8) together, we obtain

3
8
+ 5

6
= 58

48
(11.9)

More generally, if we retrace our steps and do not multiply out everything, then what
this computation shows is actually that

3
8
+ 5

6
= (3 × 6)+ (5 × 8)

6 × 8

Now if we introduce symbolic notation, the same reasoning shows in general that
for all fractions a

b and c
d ,

a

b
+ c

d
= ad + bc

bd

(Whether or not this symbolic formula should be proved in a 5-th grade classroom
will depend on the teacher’s judgment of the quality of the students. In general, a
symbolic proof may be too much of a good thing for the average fifth grader.)

Critical Observations The computation in Eq. (11.9) is the culmination of steps
(11.6)–(11.8), and each of which is based strictly on the definition of what a fraction
is, the definition of what fraction addition means, the prior established facts on
equivalent fractions and (11.5), and standard logical deduction. There is nothing
about some abstruse higher-order “conceptual understanding” that students are
supposed to “get” but often don’t, and nothing that students have never seen before.
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So it is learnable. Furthermore, this reasoning only requires that the two fractions
a
b and c

d be changed to two fractions with the same denominator (as in (11.6)),
and it doesn’t matter what that denominator is. Therefore, any thoughts about the
least common denominator would be extraneous to this reasoning. Apparently, this
approach to the addition of fractions (Wu 1999a) has been implemented in school
classrooms with some success (Bingea undated).

Example 11.4 Revisited To compute 2
3 × 5

8 , once again, we have to first find out
what these symbols mean. So we need a definition of the multiplication of fractions:
2
3 × 5

8 means the total length of 2 of the parts if we partition the length of the
segment [0, 5

8 ] between 0 and 5
8 into 3 parts of equal length.

Now, how to partition the segment [0, 5
8 ] into 3 parts of equal length? For this

purpose, we call on equivalent fractions to rewrite 5
8 as

5
8

= 3 × 5
3 × 8

(11.10)

The motivation for doing this is that the numerator of the right side, 3 × 5 now
exhibits an obvious partition into 3 equal parts, namely 3 × 5 = 5 + 5 + 5. This
then leads to the following simple fact (since we are doing fraction multiplication,
of course the addition of fractions is already an established skill ):

5
8

= 5+ 5+ 5
3 × 8

= 5
24

+ 5
24

+ 5
24

(11.11)

According to the definition of fraction addition (see the preceding Example 11.3
Revisited ), the right side of (11.11)—being a concatenation of 3 segments each of
length 5

25 —exhibits a partition of [0, 5
8 ] into three parts of equal length, with each

part having length 5
24 . Therefore, using “part” as an abbreviation for “one of the

parts when [0, 5
8 ] is partitioned into 3 parts of equal length,” we obtain

total length of 2 parts = 5
24

+ 5
24

= 10
24

(11.12)

In view of the definition of 2
3 × 5

8 , (11.12) implies that

2
3

× 5
8
= 10

24
(11.13)

Once again, if we retrace our steps and do not multiply out everything, what this
reasoning demonstrates is the fact that

2
3

× 5
8
= 2 × 5

3 × 8
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Critical Observations As in the case of adding fractions, the conclusion in
Eq. (11.13) is reached via steps (11.10)–(11.12), and each of the latter is based on
either a definition (e.g., fraction addition, fraction multiplication) or an established
fact (e.g., equivalent fractions, how to add fractions), or both, and the use of logic.
This kind of reasoning, i.e., the ability to envision a rough sketch of the intermediate
steps (11.10)–(11.12) together with the argument supporting each step, does not
come easily to most people, especially beginners. It takes plenty of exposure and
practice to learn it, and we have to convince students that it is worth learning because
this process of reasoning is the basic methodology of mathematics.15 Of course,
beginners learn by imitation (as do we all, including professional mathematicians)
during their halting first steps towards proficiency, so a classroom teacher can ask
students, right after showing this piece of reasoning, to go to the board to explain
something like 2

3 × 11
7 = 22

21 or 4
5 × 5

8 = 20
40 . Then, perhaps, also

5
8 × 2

3 = 10
24 . In due

course, the teacher can point out the obvious, namely the fact that if the preceding
reasoning is written out in greater detail, then it actually proves that 2

3 × 5
8 = 2×5

3×8 ,
that 2

3 × 11
7 = 2×11

3×7 , etc., so that in general,

a

b
× c

d
= a × c

b × d

for all fractions a
b and c

d . (The symbolic statement likely will not be appropriate
for all classrooms.) There is no end of variations on this pedagogical theme, and
each teacher will find his or her own preferred method of delivery.

In the two preceding examples, the method of logical inference used is standard
and therefore available to all, and the established facts (such as equivalent fractions)
are also available to all. If precise definitions are also routinely given in textbooks,
then the whole process of reasoning will become an open book that is available to
all. This is the necessary first step that will make mathematics learnable to one and
all. Therefore having precise definitions for all concepts is a critical ingredient in
making reasoning—and hence mathematics itself—learnable.

At this point, it should be clear that we insist on having precise definitions and
reasoning in school mathematics education, not because they are mathematicians’
professional fixations, but because, as we said earlier, school mathematics is not
learnable without them. Concepts and skills not connected by reasoning become
isolated factoids that can only be learned by brute force memorization. Therefore
one may speculate that, as students go up through the grades, such concepts and
skills pile up in TSM and, at some point, they overwhelm students’ memory banks16

by sheer volume and TSM ceases to be learnable even by memorization. This
speculation about the effects of TSM on student learning is consistent with the
performance of US students on TIMSS in 1995 (TIMSS 1995 Results, 1995).
However, when reasoning is there to connect the concepts and skills, it includes

15To a large extent, this is the basic methodology of science as well.
16In the terminology of computers, not enough RAM.
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them in a story line that makes sense of them; it renders them learnable (also see pp.
118-120 of National Research Council 2001).

Example 11.5 Revisited As noted in Sect. 11.2.1, if mixed numbers are introduced
after the addition of fractions, then the mixed number 72

3 would be defined as the
abbreviation for 7+ 2

3 , so that

7
2
3

= 7+ 2
3

= 7 × 3
3

+ 2
3

= 23
3

and no memorization would be necessary.

Example 11.6 Revisited The correct definition of a finite decimal is that it is a
fraction whose denominator is 10n for some whole number n. For example, 2.307
is the fraction

2307
1000

Once we know how to add fractions, then the expanded form of 2307 being 2307 =
2000+ 300+ 7, we get

2307
1000

= 2000+ 300+ 7
1000

= 2000
1000

+ 300
1000

+ 7
1000

= 2+ 0.3+ 0.007

Hence, the fact that 2.307 is “2 and 3 tenths and 7 thousandths” becomes a provable
theorem if students are taught about finite decimals after fractions.

11.4 Textbooks

We can now return to the first of our two main concerns: how to give students access
to PBM rather than TSM.

A main thrust of this article is about how to repair the damage inflicted on
teachers and students by TSM, Textbook School Mathematics. An obvious question
is why we are wasting our time here talking about damage control instead of directly
going to the source and writing better school mathematics textbooks. The simple
answer is that most of the school textbooks come from major publishers, and there
are no ready-made tools to combat the bottom-line mentality of big business (in this
regard, the article Keeghan 2012 is very informative). For this reason, most of the
nation’s schools are still dependent on TSM textbooks from the major publishers.
It is also the case that the publishing industry is not under any kind of federal or
state control and is free to produce any textbooks it can afford to put out. From a
publisher’s standpoint, so long as its products are welcomed by enough teachers,
there is little incentive to change anything, TSM and all. Since there are many
teachers out there who were brought up by TSM and are therefore comfortable
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teaching TSM as of 2019, there is still a ready-made market for the publishing
industry to exploit. It therefore seems likely that, until the majority of teachers reject
TSM-infested textbooks, TSM will live on in school classrooms. This then adds
urgency to our second topic of concern: how to produce inservice teachers who are
capable of teaching PBM. Getting better-informed teachers who reject TSM out of
hand would seem to be the best hope of breaking the vicious cycle of TSM.

Since the release of CCSSM in 2010, there have been several attempts to
write curricula according to the CCSSM by exploiting the internet using online
publishing. A few of the new curricula show promise, according to some reports.
However, since so few in the world of education seem to be at all concerned with
mathematical content or aware of the continued menace of TSM, many of the
textbook evaluation agencies should be approached with a great deal of caution.
Overall, much remains to be done in the arena of curricular evaluation.

Common Core was quite aware of the inadequacy of existing textbooks for
the implementation of CCSSM. It has published two documents for the benefit of
publishers: a 24-page document (Common Core 2012) on the K–8 curriculum and
a 20-page document (Common Core 2013) on the high school curriculum. They
exhort publishers to meet the goals of focus, coherence, and rigor in their textbooks.
Neither document mentions the phenomenon of TSM, however.

A more ambitious undertaking is a six-volume, 2500-page project from this
author that gives a complete exposition17 of the K-12 mathematics curriculum
according to PBM (Wu 2011a, 2016a,b, and 2020). There are presumably many
ways to present the school mathematics curriculum in accordance with the fun-
damental principles of mathematics, but for now we can make use of what we
have got. These six volumes are not student textbooks; they are textbooks for
teachers’ PD. Given the level of detail in these 2500 pages, however, it should
not be difficult to create student texts out of them with the help of some standard
pedagogical embellishments. In any case, an eighth-grade student textbook based
on these volumes will be offered online (https://math.berkeley.edu/~wu/) in the near
future. Since the drafts of some of these six volumes have served as blueprints for a
good many standards in CCSSM, there is no fear that any curricular materials based
on these volumes will be out-of-date anytime soon.

11.5 Professional Development

Everything we have said so far points to the urgency of replacing our teachers’
knowledge of TSM by PBM. This will certainly tax our ability to do effective PD.
Let us be clear about what we expect the PD to accomplish. It will not be about

17Strictly speaking, these six volumes do not cover geometry in grades K-5 because the file on this
topic promised in Wu (2011a), has not yet been made available. However, Chapters 4 and 5 in Wu
(2016a), serve to fill this gap to a large extent.
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tweaking teachers’ content knowledge here and there but, rather, about a revamping
of their knowledge of mathematics from the ground up. Because of our systemic
negligence, teachers have never been exposed to anything resembling PBM (see,
e.g., Wu 2011b), yet we want them to master PBM in short order and turn around to
teach it to their students. This is not going to be easy.

In the first subsection, we will go into some detail to explain the kind of hard
work that is involved. We will focus on PD for inservice teachers18 because the
current implementation of CCSSM (Common Core 2010) requires teachers who
can teach PBM. For example, CCSSM asks teachers to teach mathematics in a
way that is “coherent,” “stresses conceptual understanding of key ideas,” helps
students to “reason abstractly and quantitatively,” encourages students to “construct
viable arguments and critique the reasoning of others” and “attend to precision,”
etc. (pp. 3-7 in Common Core 2010). The long-term neglect of the mathematical
education of teachers leads us to believe that most teachers may not be able to rise
to this lofty challenge and that their need for content-based inservice PD will be
considerable. Although there is apparently no hard data as yet to substantiate this
belief, the available anecdotal evidence (cf. Education Week 2014; Loewus 2016,
2017, and Sawchuk 2016) does point in this direction. In addition, what the author
has personally learned from teachers and math coaches in several states—including
California—is also consistent with this belief. Our proposed PD therefore cannot be
the routine variety and its parameters must be carefully prescribed. This is what we
will try to do in the second subsection. In the third subsection, we will describe—for
the sake of providing a point of reference—one PD program that has been tried with
some success to teach teachers PBM.

There is a jarring note hidden behind this optimistic discussion of PD, however.
In the last decade, two studies by IES on the impact of content-based PD on student
learning have appeared, Garet (2011) and Garet (2016). They seem to shut the door
on any hope that PD can help teachers raise student achievement. If there is any
validity to the IES studies, the present article on what “good” PD is and how to
implement it would simply be a waste of everybody’s time. For this reason, we must
make an effort to examine these studies critically. This will be carried out in the
next section.

11.5.1 The Hard Work of Learning PBM

For inservice mathematics teachers trying to learn PBM, a useful analogy may be
learning the second language.19 The immense difference between PBM and TSM

18We will also make some comments about PD for preservice teachers in the last section of this
article (Sect. 11.7).
19One should not push this analogy too far, however. No language has anything like the logical
coherence of mathematics.
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dwarfs what little they happen to have in common: the topics and the skills, for
instance. Since PBM asks teachers to repackage these topics and sometimes even
to teach them in a different order (e.g., define mixed numbers only after fraction
addition has been discussed; see Example 11.5 Revisited in Sect. 11.3.2), the
prospect of learning PBM will be daunting to most. There is also a paradoxical
aspect to the attempt by inservice teachers to learn PBM, and it is the fact that
while we find fault with TSM for oversimplifying school mathematics to a few
sound bites, it is actually easier to just “teach” sound bites! Some teachers who
have gotten used to “teaching” the sound bites of TSM may find teaching PBM with
its many attendant cognitive complexities to be a very big stretch. What is good for
the learners may not always be easy for the teachers! Let this be a warning. What
follows is a more detailed explanation of the hard work involved in learning PBM.

Learning About Reasoning
Learning how to reason is painstaking work under the best of circumstances.20

Except for the most rudimentary, one-step variety that we inherit from our ancestors
on the African savanna tens of thousands years ago, such as “fright→flight,”
reasoning is not an inborn skill like speech or running. For most teachers who have
been immersed in TSM all their lives, learning how to reason about basic tasks that
they used to teach by rote with ease is difficult enough. Having to also learn how
to explain the reasoning process to students makes it doubly difficult, and trying to
empower students with the fundamentals reasoning skills is trebly difficult.

Take the case of adding fractions (see Example 11.3 in Sect. 11.2.1). We can
complain all we want about the use of LCD and the absence of any explanation of
what “addition” means in TSM, but to most inservice teachers, this rote skill has
probably become second nature. This LCD skill is simple to teach by rote! The
procedure is short, and all a teacher has to do is give students lots of drills. Now
PBM changes all that: a teacher has to explain what it means to add two fractions,
use equivalent fractions to put the two given fractions into the same sequence of
nths for some n, and remind students of the meaning of adding whole numbers (see
Example 11.3 Revisited in Sect. 11.3.2). We know how some students hate to be
reminded of anything other than what is right in front of them! It is definitely a lot
more work than teaching the rote skill using LCD.

The case of multiplying fractions (see Example 11.4 in Sect. 11.2.1) is somewhat
similar. Even some mathematicians mistakenly consider fraction multiplication to
be a pleasure to teach because it is procedurally so simple (see, e.g., Aharoni 2015):
just multiply across the top and the bottom. By contrast, look at Example 11.4

20It has been suggested that there is an apparent contradiction between this statement and the
earlier one made in Example 11.4 Revisited, to the effect that PBM will make reasoning learnable
to one and all. But there isn’t. Such a misunderstanding would arise only if one erroneously equates
“learning” with “learning without effort.” Learning anything worthwhile in life requires effort, e.g.,
learning how to read require the strenuous effort of memorizing the alphabet and a continuous
influx of new vocabulary. What is at issue is whether unnecessary roadblocks are thrown in the
learner’s path. TSM throws such roadblocks—too many to count—but PBM doesn’t.
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Revisited in Sect. 11.3.2: the definition of fraction multiplication is among the
longest and most complex in elementary mathematics, and the reasoning in the
teaching of this so-called simple skill becomes quite delicate according to PBM
(see Eqs. (11.10)–(11.12) therein). Real effort is now required for its mastery.

We should mention another telling example about reasoning: the teaching of
speed problems and the related so-called rate problems. Consider the following:

Luis usually walks the 1.5 miles to his school in 25 minutes. However, due to road repair,
he has to take a 1.7-mile route today. If he walks at his usual speed, how much time will it
take him to get to his school? (Siegler et al. 2010, page 38.)

In TSM, the phrase “at his usual speed” (or “at this speed”) is code for setting up a
proportion. In other words, given that Luis walks 1.5 miles in 25min, if Luis walks
1.7 miles in x minutes “at his usual speed,” TSM instructs us to invoke what is
known as proportional reasoning to set up a proportion:

1.5
25

= 1.7
x

(11.14)

Now use CMA21 to get 1.5x = 25 × 1.7. So x = 281
3 min.

In the present context of getting teachers to learn about reasoning, something
almost leaps off the page: the simple solution involves a rote skill but no reasoning!
But how can one arrive at (11.14) by the use of reasoning?

The fact is that, as is, the problem cannot be solved because since we have no
idea how Luis normally walks to school,22 we know nothing about how he walks
“at his usual speed.” Consequently, we have no information about how he walks to
school during the road repair either. We have not been given sufficient information
to know how to proceed.

If we want to base mathematics on reasoning, then we will have to add some
precise assumptions about the way he walks. Here is a standard one: let Luis walk
a total distance of f (t) miles after t minutes, then we assume that f (t) is a linear
function of t without constant term, i.e., f (t) = vt for a fixed constant v. This
assumption would justify equation (11.14) because all it says is that

f (25)
25

= f (x)

x

Indeed, both are equal to v in this case.
Now, because such problems are usually introduced into the curriculum before

students learn about linear functions, we will describe another way—suitable for

21As noted at the end of Example 11.2 Revisited in Sect. 11.3.2, what is being used here is actually
not CMA but the extension of CMA to rational numbers.
22Does he run the first mile in 10min and slowly stroll to school in the remaining 15min?
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use in the 6th or 7th grade—to deal with Eq. (11.14). For an object in motion, we
introduce the concept of its average speed over the time interval from t1 to t2,
(t1 < t2), as

total distance traveled from time t1 to t2
t2 − t1

(11.15)

In terms of average speed, the Luis problem can be properly reformulated as
follows:

Luis usually walks the 1.5 miles to his school in 25 minutes. However, due to road repair,
he has to take a 1.7-mile route today. If his two trips have the same average speed, how
much time will it take him to get to his school?

Now equation (11.14) is correct because it is based on the assumption that the two
average speeds are the same. We are using the definition of “average speed”!

The more common way—and a more nuanced way—of handling the Luis
problem is to formulate it in terms of constant speed. By definition, a motion has
constant speed v if its average speed over any time interval is always equal to v.
Then a correct formulation of the preceding problem in terms of constant speed is
the following:23

Luis usually walks the 1.5 miles to his school in 25 minutes. However, due to road repair,
he has to take a 1.7-mile route today. If he always walks at the same constant speed, how
much time will it take him to get to his school?

Equation (11.14) is now justified by recognizing the fact that its left side is Luis’
average speed over the time interval it takes him to walk the normal 1.5 miles, and
the right side is the average speed over the time interval it takes him to walk the 1.7
miles. The assumption that he walks at the same constant speed then implies that
these two average speeds are equal, which is Eq. (11.14).

In all three cases, we get to witness one of the basic characteristics of reasoning:
make explicit use of precise definitions to draw conclusions. The goal of PBM is to
get students used to the habit of analyzing each problem on its own merits by the
use of explicit assumptions, explicit definitions, and reasoning.

One may object that the amount of reasoning used to solve the preceding problem
formulated in terms of constant speed is too little to be cause for celebration.
Granted, but look at the alternative of appealing to “proportional reasoning”: the
latter is rote learning, plain and simple.

Let us not forget that our teachers were brought up in TSM and are used to setting
up proportions. If they want to teach PBM, then they must know this background
information about speed problems to be able to answer students’ questions, e.g.,
“why don’t we just set up a proportion?” Above all else, teachers who want to

23It can be shown that the assumption of constant speed is equivalent to the earlier assumption that
the distance function describing Luis’ distance from his starting point is a linear function without
constant term. See Theorem 7.1 on page 138 of Wu (2016b).
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promote PBM have to know why “proportional reasoning” is not reasoning at all.
For example, let us do the following problem by proportional reasoning:

A free-falling stone is dropped from 600 ft. It drops 64 ft in 2 seconds. How far does it drop
in 3 seconds?

Obviously, proportional reasoning yields an answer of 96 ft, whereas physics gives
the correct answer of 144 ft. The reason is that the falling stone does not move at
constant speed. So unless teachers insist on having precise definitions for all the
relevant concepts—so that constant speed gets defined—and unless teachers insist
on solving problems by reasoning, they cannot even explain to students why the
free-falling stone problem cannot be done by setting up a proportion.

Altogether, we see that we are imposing a heavy cognitive load on teachers in
trying to get them to embrace PBM. Nevertheless, we must do all we can to help
teachers acquire the reasoning skill because we have no choice. Students must learn
to reason for their survival in year 2019, and if teachers cannot learn to reason
mathematically, how can we hope that their students will? So we must try harder.

It remains to make some general remarks on the need for flexibility in teaching
reasoning in the school classroom. When we say reasoning should attend every
statement in mathematics, we actually mean grade-appropriate reasoning. For
example, in Example 11.3 Revisited of Sect. 11.3.2, we mentioned that although
the reasoning suffices to prove the general formula for addition,

a

b
+ c

d
= ad + bc

bd

it may not be appropriate to give this general reasoning in a typical fifth grade
classroom. A more reasonable alternative is to prove the formula only for many
specific values of a, b, c, and d. We also made a similar remark about the product
formula for arbitrary fractions in Example 11.4 Revisited of the same subsection:

a

b
× c

d
= a × c

b × d

To firm up this message, we will use an example from middle and high school
geometry: the teaching of the theorem that the angle sum of a triangle is 180◦. There
is the standard, intuitive proof obtained by drawing a line parallel to side AB and
passing through the vertex C of the following triangle:

A

EB C

D
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Then there is a correct proof that fills in all the nonintuitive gaps of this standard
intuitive proof. The latter is unfortunately very subtle as well as very boring. For
middle school students, the correct proof is not worth the investment of time and
effort. Thus, on page 316 of Wu (2016a) (which was written for mathematics
educators and middle school teachers), the standard, intuitive proof is given,
followed by the remark on page 317, (loc. cit.) to the effect that the steps in the
given proof are

essentially correct. Nevertheless, from a strictly mathematical standpoint, one can find fault
with them for certain omissions in the details.

Then it goes on to say that insofar as

our main purpose here is to acquire geometric intuition and make the first step towards the
mastery of geometric proofs,

the intuitive proof will serve. Needless to say, a correct proof should be given when
the occasion calls for it in the high school course on geometry (see Section 6.5 of
the second volume, Algebra and Geometry, of Wu 2020).

Teaching is, among many things, the result of negotiations between what is
correct and what is possible in the face of the reality in a classroom The purpose
of our effort to get teachers ready to teach PBM is to provide them with the needed
mathematical information so that they have the freedom to decide what is possible
in a given classroom.

Learning About Definitions
It should be clear from the discussion up to this point that definitions and reasoning
are essentially intertwined, but there are a few things about definitions that deserve
to be discussed separately.

For teachers brought up in TSM, perhaps the most difficult thing to accept about
PBM is that the definition of a concept ceases being something to be memorized for
standardized tests and then cast aside, but is now the foundation for any reasoning
about the concept. TSM has no reasoning to speak of, so definitions play no role in
its version of “mathematics learning.” Teachers with a TSM background therefore
have difficulty getting used to the fact that PBM puts every definition to use for
the purpose of reasoning. We have seen how the definition of a fraction and the
definition of the addition of fractions are used, literally, to derive the formula
for the addition of fractions (see Example 11.3 Revisited in Sect. 11.3.2), how
the analogous derivation happens with fraction multiplication (see Example 11.4
Revisited in Sect. 11.3.2), and how Luis’ walking problem in the early part of this
subsection can be solved simply by the use of reasoning once a precise definition
of constant speed is given. This point is stressed throughout all six volumes of Wu
(2011a, 2016a,b), and 2020, but if personal experience is any guide, it still does not
come easily to teachers.

One may speculate that things would go more smoothly in the ongoing effort
to convince teachers about the importance of precise definitions if the education
literature would also make such an advocacy. This is not happening, however,
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because TSM has held sway over many educators as well.24 Consequently, some
educators downplay the importance of precise definitions. In discussing ratio and
rate, for example, Susan Lamon makes the following statement:

Even if we could precisely define ratios and rates and the difference between them,
definitions do not discharge the full meaning of the idea being defined. The nature and
meaning of rates and ratios come from problem situations. (Lamon 1999, page 165.)

There is an obvious misunderstanding here about the role of definitions in mathe-
matics: the mathematical definition of a concept is not required to “discharge the
full meaning” of the concept so defined. All that it is obligated to do is furnish all
the information that is needed for any reasoning regarding that concept, no more
and no less. In this connection, what Polya has to say is very much to the point:
“The mathematician is not concerned with the current meaning of his technical
term.. . . The mathematical definition creates the mathematical meaning” (Polya
1957, page 86). As we mentioned in Sect. 11.3.1, the main virtue of presenting a
precise definition of a concept is to tell the whole mathematical truth from the
beginning to facilitate mathematics learning.25 This no-hidden-agenda feature of
mathematics is essential to making mathematics learnable because, above all else,
it establishes a sense of trust between the learner and the mathematics. It tells the
learner that all the cards are now on the table, so just look closely at what you have
got! The failure of TSM to develop mathematics according to precise definitions has
so far resulted in gnawing suspicions and distrust from learners at the outset. This is
no way to make mathematics learnable.

Having argued for the need to make teachers see the importance of precise
definitions in PBM, we also want to supplement the argument with the remark that
by no means are we advocating for the unmotivated (highhanded) presentation of
definitions that we sometimes see in advanced mathematics. Any PD must also pay
attention to the art of persuasion in giving definitions. This is why the definition of
a fraction in terms of the number line in Wu (2016a), is preceded by eight pages
explaining why a precise definition of a fraction is necessary (pp. 3-10, loc. cit.).
Likewise, the definition of slope on page 66 of Wu (2016b) is preceded by almost
five pages of discussion about the intuitive meaning of the concept of slope and how
this intuition may be captured in a precise definition. There are many other such
suggestions about how to present a precise definition in those two volumes as well
as in Wu (2011a). Teachers should be aware of the many pedagogical flexibilities in
making precise definitions an integral part of their teaching.

Finally, let us consider one more objection to the recommendation that there
be precise definitions for every concept in school mathematics, to the effect that

24When all is said and done, mathematicians have to be held mainly accountable for the
deterioration of the content component in mathematics education (see Wu 2011b).
25This view of the role of definitions in mathematics in general is a product of the twentieth century,
as a result of many trials and errors to make mathematics more transparent and less prone to
obscurantism. The attitude towards definitions of the mathematicians in centuries past was actually
remarkably close to that of Lamon’s (cf. e.g., Quinn 2012).
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students should not be told the definition of a concept because a definition is
something that one formulates at the end of an exploration. So the theory is that
we should let students explore a new concept until they themselves come up with
something resembling a correct definition. This viewpoint about how to teach math-
ematics in general, and teach definitions in particular, is part of an old pedagogical
debate about the Moore Method vs. direct instruction. It will not be productive
to wade into this debate here except to point out that, however, the exploration
approach is done, it is very time-consuming and one must take the availability
of instructional time into account (see Section 3 of Wu 1999c). Moreover, after
a precise definition has been formulated at the end of the exploration, one must
bring mathematical closure by retracing the steps of the exploration to let students
see how the relevant mathematics can be developed on the basis of the precise
definition. This will further decrease the available instructional time. Thus far,
discussions in the education literature seem to be oblivious to the need for retracing
the steps to show students how mathematics is developed using definitions and the
need for additional instructional time to make room for the retracing. This is but
one manifestation of the tendency in the education literature to make an advocacy
without also meticulously enumerating the possible detrimental side effects (see
Section 4 of Wu 1999c for a fairly comprehensive discussion).

Other Issues
For teachers transitioning from TSM to PBM, a minor—though a significant—issue
to be confronted is that they will have to learn how to teach certain topics in a
different logical order. We have already remarked in Sect. 11.3.2 that the concept
of mixed numbers can no longer be taught right after fractions are introduced
(as in TSM) but must wait until after the discussion of the addition of fractions
(Example 11.5 Revisited ). In the same subsection, we also remarked that finite
decimals can no longer be taught in a separate track independent of fractions but
must be taught as a special kind of fractions ( Example 11.6 Revisited ); this
profoundly changes the teaching of finite decimals because we can now explain the
algorithms for decimal addition, subtraction, and multiplication (for division, see pp.
81-86 in Wu 2016a). Perhaps the most prominent change of this kind is the teaching
of the slope of a line in middle school. In PBM, the definition of the slope depends
on having available the angle-angle criterion for similar triangles so that slope has
to be taken up after a serious discussion of the concept of similar triangles (Wu
2016b, Section 4.3). Now, although similar figures in TSM are those “with the same
shape but not necessarily the same size,” PBM will insist on a precise definition of
similarity. This, in turns, requires that the school curriculum pave the way for such a
precise definition. Teachers must therefore be prepared for these massive changes in
their internal conception of school mathematics. Since such a change in the teaching
of slope is also part of CCSSM, I received an email from an indignant teacher in the
state of Washington right after the release of CCSSM in June of 2010. He wrote:

After 13 years of teaching high school algebra, I wonder why you see similarity as critically
important to Algebra I mastery—that certainly never occurred to me as a teacher of algebra.
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. . .What makes you say that a student needs to understand similar triangles in order to write
the equation of a straight line between two points?

Clearly, teachers have to be willing to keep an open mind to learn PBM.
Among the fundamental principles of mathematics, the longitudinal coherence

of school mathematics may be one of the hardest things for teachers to appreciate.
The only way they can learn it is to be exposed to several grades’ worth of PBM
over a long stretch of time. For elementary school mathematics, we can be more
specific. Take, for instance, the coherence of the four standard algorithms for whole
numbers. We already pointed out that all four revolve around a single idea: if we
can compute with single-digit numbers, then we can compute with any numbers no
matter how large (see Sect. 11.3.1). It would be impossible to see such coherence
unless one knows how to prove this fact for each of +, −, ×, and ÷, and this may
not be so easy especially for the long division algorithm. (Is that algorithm even
a theorem? And if it is, what does it say in the first place? see Sections 7.3–7.5
of Wu 2011a.) Thus a PD session devoted to making elementary teachers see such
coherence has to first give the detailed proofs of four separate theorems, and then
has to give them time to digest them so that they can step back and take note of
the similarity in these proofs. It should take no less than three full days. Teaching
elementary teachers about fractions in a way that enables them to see the coherence
between the four arithmetic operations on whole numbers and fractions should take
at least another five full days. And so on.

It takes time to learn PBM.

11.5.2 The Inservice PD We Need

Our tentative conclusion is that, for real improvement in school mathematics
education to materialize, we will need a massive investment in long-term, content-
based, inservice PD to get our teachers ready to teach PBM. But can we put our trust
in PD to get this done? The answer is unfortunately not straightforward.

First of all, we have to provide more details about this proposed long-term,
content-based, inservice PD. By long-term, we have in mind a long stretch of time
of 1 week to 3 weeks during the summer. One may believe that, for example, instead
of 1 week in the summer, we can parcel out the 40 h of PD into 20 two-hour sessions
during the school year, with one session per week. The problem with breaking up
1 week in the summer into 20 sessions in the school year is that teachers have
too many obligations during the school year to remember what they learn from
week to week. If we have any design on impressing the coherence of PBM on
teachers, these 2 h sessions will not be the answer. Moreover, learning mathematics
requires serious mental concentration. Given how teachers already have to multi-
task all through the school year, summer may be the only time they can summon
this kind of concentration necessary for learning. Creating a learning environment
for teachers by holding the PD in consecutive days in the summer is thus the only
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viable option. Holding the PD in consecutive days also tends to yield the pleasant
dividend of promoting collaboration among teachers. Beyond the summer session,
we should also help them retain—or remind them to apply—the new knowledge in
the following school year. To this end, some Saturday review sessions throughout
the school year would also be advisable.

About the content of the content-based PD, we hope no argument is necessary
at this point that this content refers to the content of PBM and not TSM. We note in
passing that, because most professional developers were brought up in TSM, getting
and vetting competent providers for the needed PD will be a nontrivial problem.

“Long-term” and “content-based” are certainly not qualities one normally
attributes to most of the PD currently provided by school districts. Thirty years
ago, Judith Warren Little wrote about the PD system in California and showed
that, instead of providing learning opportunities for teachers, PD had too often
devolved into a series of uncoordinated rituals (Little 1989). To those working in
the trenches with the firsthand knowledge of mathematics PD in the past decades,
not much has changed since the appearance of Little’s article (see, e.g., Wu 1999b
and U. S. Department of Education 2009, p. 95). This is by way of saying that
if we are committed to using PD to help teachers learn PBM, we must be ready
to fight for long-term and content-based as nonnegotiable requirements. By a
happy coincidence, the 2017 publication of Effective Professional Development
(Darling-Hammond et al. 2017) also comes to a similar conclusion. The work of
Darling-Hammond et al. set out to discover the common features of effective PD in
all fields and is not exclusively about mathematics, so it has little overlap with the
present article. Nevertheless, it too concludes that effective PD must be “content
focused” and “of sustained duration.”26

In addition to these intellectual concerns, there is also a practical matter that is no
less important. Learning mathematics is almost never a fun activity in the everyday
sense of “fun”; it is hard work, and the PD cannot succeed without teachers’
willingness to work hard. The only way to ensure that the teachers will put in the
hard work is to pay them generously for their daily attendance. This therefore means
that the desired PD will not only be of sustained duration and PBM-based, but also
expensive.27

We should also address the role of pedagogy in PD. Let it be noted that our
concept of “content” already takes pedagogy into account because PBM addresses
not mathematics but school mathematics, i.e., how mathematics should be taught in
schools. In addition, while specific pedagogical issues will inevitably arise in any
PD, we must be careful to keep the amount of purely pedagogical discussions in the
PD in check. I took note of this fact for the first time when I had the opportunity to
observe other people’s PD in California back in the late 1990s (Wu 1999b). What I
found was that when content knowledge was only one of many topics of concern in

26We also agree with Darling-Hammond et al. on the need to “support collaboration,” as we shall
see in the next subsection.
27Though a generous stipend by itself will not guarantee hard work or success.
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PD, it would not get the attention it deserved, nor would it inspire the needed effort
on the part of teachers to make foundational changes in their content knowledge.

It remains to point out that while we have been talking about PBM as if it is a
common entity that is easily accessible, the fact is that it is not. The PD providers
for the PD under discussion will have to create their own materials because the PD
literature is almost completely immersed in TSM. If people want to take a look at
PBM, however, they can always look up the six volumes of Wu (2011a, 2016a,b),
and (2020).

Having pinned down the general parameters of the PDwe need, we are now ready
to go to work—except that, as we mentioned at the beginning of Sect. 11.5, there is
one more hurdle to overcome: recent research by the Institute of Education Sciences
(IES) asserts that even “teachers who received the best of the best PD” are unlikely
to “see large, lasting improvements in their practice, knowledge, or student learning”
(Hasiotis 2015). More precisely, the two studies by Garet et al., one in 2011
(conducted over a 2-year period in 2007–2009) and another in 2016 (conducted
in 2013–2014), raised serious doubts about the ability of content-intensive PD
for inservice mathematics teachers to raise student achievement. Fortunately, a
closer examination of these two studies—which will be given in the next section,
Sect. 11.6—reveals serious flaws in the design of their PD that might have led them
astray. Thus the jury on the alleged ineffectiveness of PD is still out, and we all have
every reason to proceed with the PD that has just been carefully outlined above. The
next subsection gives a slight nudge in this direction.

11.5.3 An Inservice PD Program

The kind of PD proposed in the preceding subsection did not come out of the blue.
It is based on the author’s personal experience and it serves the modest goal of
providing one data point that attests to the possible validity of such an approach
to PD.

Each summer, from 2000 to 2013, I gave 3-week PD institutes for mathematics
teachers of K–8, mostly in Berkeley, CA, and sometimes more than once a year. The
goal of these institutes was for inservice teachers not only to learn PBM, but to also
achieve long-term retention of the new knowledge. The institutes met 5 days a week
(M–F), about 8 h a day (including lunch), with homework assignments every day.
I would lecture to the whole group for 4–5 h each day, and the day would always
end in small group meetings lasting 60–90min, led by my three assistants. Each PD
institute was followed by five Saturday follow-up sessions (one every 2 months) in
the following school year to review the new content knowledge and to discuss the
progress teachers were making putting it into practice in their classrooms.

Each year we put the word out about these institutes and asked teachers to apply
to participate. Every participating teacher who attended all 3 weeks of the institute



274 H.-H. Wu

received a stipend of $1500, i.e., $100 a day.28 For every follow-up Saturday
session, each participant received a stipend of $100. We actively encouraged group
applications by teachers from schools in the same district because we believed
that being able to consult with colleagues about mathematics would ensure better
learning as well as better retention of PBM. It is gratifying to report that we did
witness many cases of collaboration during and after the summer institutes that have
continued to this day.

There were three kinds of institutes:

(1) Elementary Institute: whole numbers (4 days), elementary number theory (2 days),
fractions—including decimals—and their arithmetic (6 days), percent, ratio, and rate
(3 days). (Reference: Wu 2011a.)

(2) Pre-Algebra Institute: Review of fractions, percent, ratio, and rate (4 days), rational
numbers (3 days), experimental geometry (3 days), geometric vocabulary, congruence,
and similarity (4 days), length and area (1 day). (Reference: Wu 2016a.)

(3) Algebra Institute: use of symbols (2 days), linear equations in one and two variables,
including a correct definition of the slope of a line (3 days), simultaneous linear
equations (1 day), laws of exponents, exponential functions and their graphs (4 days),
quadratic functions and their graphs (3 days). (Reference: Wu 2016b.)

Although these institutes were unapologetically devoted to the dissemination of
PBM, pedagogy also played a role. In the first few years, I arranged for a short
session of about an hour on pedagogical discussions at the end of each day, but it
turned out that almost all the teachers were so absorbed in learning the mathematics
that essentially nobody wanted to broach the subject of pedagogy. So I stopped
making time for the discussion of pedagogy in the institutes thereafter. Instead, I
made sure that pedagogy and content were given equal emphasis in the Saturday
follow-up sessions. Teachers were asked to share personal stories about their own
attempts to integrate the newly acquired knowledge into their classrooms, and their
pedagogical strategies were then openly discussed and critiqued. It seemed quite
clear that the teachers began to understand the mathematics on a deeper level when
they tried to build their pedagogy on a foundation of correct school mathematics.
Year after year, teachers would tell me that it was usually not until the fifth (and
last) Saturday follow-up session, 9 months after their first exposure to the new
content, that they began to feel that they owned the material. Apparently, it took
the combination of the intensive three-week immersion in content (120 h) and the
leisurely 9 months of gestation and fledgling attempts at classroom applications for
them to begin making foundational changes in their content knowledge.

Naturally, I was interested in whether these institutes had any effect on the
participating teachers’ performance. Together with a school district’s Director of
Instruction, we applied twice to federal agencies, in 2012 and 2013, for a grant
to teach fractions to elementary teachers and then (1) videotape the PD sessions
and make them available online, and (2) follow each participating teacher’s student
scores for 3 years to examine their value-added measurements. However, our

28In the last six or so institutes, I tried to raise the daily stipend to $125, but there was insufficient
funding to do it.
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applications were rejected. This explains why I have no hard data to report.
Nevertheless, a few individual teachers have privately contacted me to share their
personal successes, and these are recorded in Section 2.4 of Wu (2018). The
anonymous evaluations by the teachers of the PD institutes from 2009 to 2013 are
also available on request: please write wu@berkeley.edu.

11.6 The IES Impact Studies

In this section, we will closely examine the study by (Garet et al. 2011) on the
impact of content-intensive PD on inservice mathematics teachers’ ability to raise
student achievement. Some attention will also be given to the impact study of Garet
et al. (2016).

First of all, these two studies differ from earlier ones in their built-in method-
ological credibility: they used a rigorous experimental design and, in addition, had
large meaningful sample sizes: the 2011 study involved some 150 teachers and the
2016 study 221 teachers. The bleak conclusion of the 2011 study was that

after two years of implementation, the PD program did not have a statistically significant
impact on teacher knowledge or on student achievement in rational numbers (page 53 of
Garet et al. 2011).

The outcome of the 2016 study was that “the PD did not have a positive impact
on student achievement” but “the PD had a positive impact on teacher knowledge”
(page 40 and page 35, respectively, of Garet et al. 2016).

Together with an earlier impact study on early reading instruction (Garet et al.
2008), the 2011 impact study of Garet et al. led to the 68-page report published by
TNTP, The Mirage (TNTP 2015), on the ineffectiveness of inservice PD in general,
not just in mathematics or reading. The main conclusion of The Mirage was:

In short, we bombard teachers with help, but most of it is not helpful—to teachers as
professionals or to schools seeking better instruction. We are not the first to say this: In
the last decade, two federally funded experimental studies of sustained, content-focused
and job-embedded professional development have found that these interventions did not
result in long-lasting, significant changes in teacher practice or student outcomes. (TNTP
2015, page 2)

The two “federally funded experimental studies” referred to above are the 2008 and
2011 studies of Garet et al. These studies, together with The Mirage and the 2016
impact study of Garet et al., were written up in the popular press (Layton 2015, and
Loewus 2016), and the perception began to take hold that inservice PD as a means of
achieving education improvement is a blind alley (see, e.g., Dynarski 2018). Were
the conclusions of these impact studies valid, we would be wasting our time here
talking about the use of PD to help teachers learn PBM.

For all these reasons, a critical examination of (at least) the 2011 impact studies
on mathematics is overdue. Although the 2016 study is about fourth grade teachers
(rather than seventh grade teachers as in the 2011 study), the flaws of the two studies
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are essentially the same from a broader perspective—both ignore the crippling effect
of TSM on school mathematics in their PD design. For our purpose here, we will
simply concentrate on the 2011 study.

11.6.1 The PD Program of the 2011 Impact Study

To better understand the PD program of Garet et al. (2011), we begin with a brief
description of its design. It was a 2-year program for 7th grade mathematics teachers
on the following topics: “fractions, decimals, percent, ratio, rate, and proportion.”
In the first year, teachers were given:

a 3-day summer institute on content instruction (18 hours)
5 one-day follow-up seminars during the school year (30 hours)
10 days of coaching (20 hours)

Of the 8 days of content instruction and seminars, 4 were devoted to fractions and
decimals and the other 4 to ratio, rate, proportion, and percent. In the second year,
teachers were given:

a 2-day summer institute on content instruction (12 hours)
3 one-day follow-up seminars during the school year (18 hours)
8 days of coaching (16 hours)

Of the 5 days of content instruction and seminars, 4 were devoted to ratio, rate,
proportion, and percent, and 1 day to fractions and decimals. (By the second year,
the PD organizers realized that teachers were having real trouble with ratio, rate,
proportion, and percent, and they adjusted accordingly.)

The report states that the PD provided by the impact study made use of the
number line for the discussion of fractions and emphasized precise definitions, but
the report also states that it was not designed to improve teachers’ content knowledge
(page 21 of Garet et al. 2011). Rather, the focus of the PD was on pedagogical
enhancements such as developing their ability to

identify and address persistent student misconceptions. . . The pedagogical techniques that
received the most attention were eliciting and responding to student thinking, using charts
to keep track of particular student misconceptions. . . (page 21 of Garet et al. 2011)

Since students’ most serious misconceptions regarding ratio, rate, proportion,
and percent stem from TSM itself—which we will demonstrate in the next
subsection—it is not clear how this PD could “address” these misconceptions
without identifying and uprooting TSM and replacing it with PBM. We are not
aware of any pedagogical strategy that can transform TSM into PBM.

In greater detail, this impact study refers to “the knowledge of topics in rational
numbers that students should ideally have after completing the seventh grade” as
CK (common knowledge), and to “the additional knowledge of rational numbers that
may be useful for teaching rational number topics” as SK (specialized knowledge
for teaching). Keep in mind that the “CK” as stated consists of nothing but TSM.
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Of the total number of 13 (= 8 + 5) days devoted to content instruction and seminar
in the PD program,

the focus of the presentation in both years was on SK, and instruction in common knowledge
of mathematics content CK was mainly implicit. . . . the PD was not presented to teachers as
an opportunity to improve their understanding of rational number content. (p. 21 of Garet
et al. 2011)

Overall, we may summarize the PD program of the impact study as maintaining
teachers’ knowledge of TSM at the level of students’ grade 7 textbooks and
empowering them with better pedagogical techniques.

We note that such a PD program, favoring SK over CK, is not compatible with
a recommendation from the National Mathematics Advisory Panel, to the effect
that “teachers be given ample opportunities to learn mathematics for teaching.
That is, teachers must know in detail and from a more advanced perspective the
mathematical content they are responsible for teaching and the connections of that
content to other important mathematics, both prior to and beyond the level they
are assigned to teach” (Recommendation 19 on page xxi of National Mathematics
Advisory Panel 2008). In the next subsection, Sect. 11.6.2, we will explain why
without a far better content knowledge than the grade-level TSM they possess at
present, teachers cannot hope to become more effective in teaching ratio, rate,
proportion, and percent. Granting this, the conclusion of the impact study would
have been more accurately described as follows:

The study results are consistent with the expectation, as of 2019, that a mathematics PD
program that does not replace teachers’ content knowledge of TSM with PBM will not be
likely to have a statistically significant impact on student achievement.

11.6.2 Ratio, Percent, and Rate in TSM

Recall that the stated goal of the PD in the impact study was to raise teachers’
content knowledge to the level of what “students should ideally have after complet-
ing the seventh grade,” and its main focus was on improving the teaching of ratio,
percent, rate, and proportion. Simply put, what the IES impact study aspired to do
was equip teachers with the best knowledge base that TSM had to offer students in
the 7th grade curriculum, with the hope that these teachers would then be able to
boost student achievement by better pedagogy alone.

This strategy was bound to fail because percent, ratio, and rate are among the
most feared topics by middle school teachers and students.Why fear? Because:

(1) Understanding ratio, percent, and rate requires a fluent knowledge of fractions in the
first place. Since the knowledge of fractions for most students is precarious, they are
handicapped before they begin.

(2) These three topics come after the division of fractions, and we have to remember: “ours
is not to reason why, just invert and multiply.”

(3) The presentations of percent, ratio, and rate in TSM are seriously flawed.
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Let us elaborate on (3).

Ratio and Percent
We first consider ratio and percent. How are they defined for students in TSM?
Percent and ratio are words in our daily conversation, and we all have a vague
idea what “the ratio of Democrats to Republicans in this gathering is about 2 to
3” means: if there are about 200 Democrats in the gathering, there will be about 300
Republicans there. But what if there are about 2365 Republicans, can students still
figure out roughly how many Democrats there are? Mathematics is a discipline of
precision, so students need a precise meaning of “ratio.” In TSM, ratio is “defined”
in a variety of ways, but the following are typical:29

• A ratio is a comparison of two numbers, a and b, written as a fraction a
b . You

can write a ratio in three ways.

1 to 45 or 1 : 45 or
1
45

You can write a ratio to compare two amounts—a part to a part, a part to the
whole, or the whole to a part.

• A ratio is a comparison of two numbers. It may be written in three different ways.
The ratio of the number of people who picked “hazardous waste material” (18)
to the number of people who picked “greenhouse effect” (9) [in the preceding
survey] can be written as:

18 to 9, 18 : 9, 18
9

. . . If you think of a ratio as a fraction, then 18
9 = 2

1 . They are equal ratios.
• Ratios are encountered in everyday life. For example, there may be a 2-to-3 ratio

of Democrats to Republicans on a certain legislative committee, a friend may be
given a speeding ticket for driving 69 miles per hour, or eggs may cost 98 cents
a dozen. Each of these illustrates a ratio. Ratios are written a

b or a : b and are
usually used to compare quantities.

A ratio of 1 : 3 for boys to girls in a class means that the number of boys is 1
3

that of girls, that is, there is one boy for every three girls. Notice we could also
say that the ratio of girls to boys is 3 : 1, or that there are three times as many
girls as boys. The ratio of 1 : 3 for boys to girls in a class does not tell us how
many boys and how many girls there are in the class. It only tells us the relative
size of the groups.

Does any one of these abstruse “definitions” tell students clearly what a ratio is?
In the first bullet, for instance, it suggests that a ratio is a comparison of two numbers
that is written as a fraction. Since a fraction is a number, is ratio therefore also a

29These bulleted statements are taken directly from textbooks.
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number? If so, why say it is a “comparison,” which suggests that it is some kind
of an “action”? But wait: a fraction a

b implies that, by definition, a and b are both
whole numbers. Does this mean we can only “compare” two whole numbers? Since
people also use “ratio” to compare fractions—the ratio of flour to sugar in a recipe
is 13

4 cups to
2
3 cups—shouldn’t the definition have been replaced by something like

the following?

A ratio is a comparison of two fractions, a and b, obtained by dividing the fractions: a
b .

In addition, the last sentence of the first bullet talks about comparing “two amounts”
instead of two numbers. What is an “amount,” and what is “a part to a part, a part to
the whole, or the whole to a part” all about?

We can go further. For example, the statement that “the ratio of Democrats to
Republicans in this gathering is about 2 to 3” has a well-known interpretation of
“to every 2 Democrats there are 3 Republicans.” Every student needs to know (1)
what it means to say “to every 2 Democrats there are 3 Republicans” and, more to
the point, (2) how does the definition of ratio lead to this interpretation? TSM does
not even pretend to address these questions. (see Chapter 22 of Wu 2011a for some
answers to the preceding questions.)

A mathematical definition must at least address these basic, mundane issues, but
the first bullet does not. It is therefore easy to see why, given such a variety of
“definitions” of a ratio, it is very difficult for learning to take place. This is why
students fear ratios.

Without a definition of ratio that makes sense, there can be no reasoning to
speak of (see the discussion of learning about definitions in Sect. 11.5.1). Similar
comments can easily be made about the other two bullets.

We have thus seen that ratio is a confused concept both within TSM and in daily
life. To introduce school students to ratio, we must find a definition that provides an
entry point into such a vague concept that is correct, simple, and therefore learnable.
If we introduce the concept of a complex fraction as the division of two fractions
(see Chapter 19 of Wu 2011a), then a ratio of two fractions A and B can be simply
defined to be the complex fraction A

B . All the standard ratio problems can then be
easily solved by the use of reasoning (see Chapter 22 of Wu 2011a).

The sins of TSM on the subject of ratio run deeper. Implicit in the preceding
“definitions” is the belief that ratio is an ineffable concept, so that even a verbose
description will not “discharge its full meaning” (Lamon 1999, page 165). Yet, later
in the school curriculum, TSM has no hesitation in defining a ratio simply as a
division. For example, the ratio of the circumference to the diameter of a circle
is the number π , the ratio of “rise over run” of a straight line in the coordinate
plane is one number, the slope, and the ratio of the opposite side of an acute angle
of t radians in a right triangle to the hypotenuse of the right triangle is also one
number, sin t . But TSM never addresses the disconnect between this and its earlier,
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inscrutable “definition” of a ratio,30 and every middle school teacher is aware of
that. This is why teachers, too, fear ratios.

Next, percent. Here are some typical TSM “definitions.”31

• Percent is a special kind of ratio in which the second quantity is always 100.
• Remember that percent means “out of 100.” You find a percent by first dividing

to find a decimal.
• Percent: part of 100, or per hundred.

Do these “definitions” tell us what “percent” means? If students already have trouble
understanding what a “ratio” is, how is the first bullet going to help them understand
“percent”? Is “out of a hundred” or “of each hundred” a number, and if so, what
number is it?

TSM is apparently indifferent to these concerns, but it will tell you how to solve
“percent” problems by laying down some “rules.” For example, the second bullet
already has a built-in rule: divide to find a decimal. What is the reasoning that leads
from “out of 100” to “divide to find a decimal”? None that we can see. It is an
arbitrary rule dictated by TSM.

On the basis of the second bullet, the suggested way to solve “what percent of
80 is 45? ” is this: 45 ÷ 80 = 0.5625, “which when rounded to the nearest 100th”
is 0.56. So the answer is: about 56%. Notice that we are using the fact that one can
obtain the decimal representation of a fraction by long division to get the answer
to this simple question. This fact about “dividing numerator by denominator to get
a decimal” is in fact very difficult to prove at the level of school mathematics (for
a preliminary explanation, see pp. 81-86 of Wu 2016a, and for the full proof, see
Section 3.4 in the third volume of Wu 2020), and is in any case only taught by
rote in TSM. Thus, to find an approximate answer to “what percent of 80 is 45?”,
students have to follow an arbitrary rule, and also use a difficult fact they could only
memorize by rote.No reasoning in any case.What are we teaching and learning here
except how to follow rules?

For another example, starting with the third bullet (“Percent: part of 100”), the
answer to what is 45% of 80? can be found by one of two “rules,” according to
TSM. First rule: set up a proportion: 45

100 = n
80 . By the CMA (cross-multiplication

algorithm), 45×80 = 100n and therefore n = 36. Second rule: multiply the number
by the percent: 45%× 80 = 36. TSM is silent about how to start with “part of 100”
and arrive at either of these solution methods by the use of reasoning.32 TSM is also
silent on whether there is any connection between the two methods. As far as TSM
is concerned, it is enough that both methods seem intuitively related to “part of 100,”
and that both methods yield the correct answer. This is why, in TSM, percent is not
learnable as mathematics, and this is why teachers and students both fear it.

30A blatant example of incoherence (see the fundamental principles of mathematics in
Sect. 11.3.1).
31These bulleted statements are taken directly from textbooks.
32See Nike’s trademarked slogan: “Just do it.”
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One can consult Chapter 20 of Wu (2011a) for a simple definition of percent
and see how—on the basis of this definition—reasoning leads to straightforward
solutions of all such standard problems.

Rate
A great deal can be said about how the concept of rate is abused in TSM (see
Section 7.2 of Wu 2016b), but we will limit ourselves here to discussing only
continuous rates33(those related to, e.g., motion, water flow, lawn-mowing). We
already touched on the most troubling aspect of TSM’s treatment of rate problems
when we discussed Luis’ walking problem in Sect. 11.5.1: its reliance on the
fictitious concept of proportional reasoning to solve problems. But there are other
issues.

TSM should make clear at the outset that rate, as it is understood intuitively,
cannot be taught as mathematics in K–12 (it requires the use of the derivative and is
therefore a calculus concept). But this message has never gotten out. As we noted in
Sect. 11.5.1, what can be taught in K–12 are the concepts of average rate (over
a fixed time interval) and constant rate, but TSM shows little or no inclination
to define either precisely or teach either seriously. Instead, TSM serves up the
following brew of “definitions” for rate:34

• A rate is a ratio that involves two different units. A rate is usually given as a
quantity per unit such as miles per hour.

• A rate is a ratio that compares two quantities having different units of measure.
• A rate is the quotient of two quantities with different units. A quantity whose unit

contains the word “per” or “for each” or some synonym.

Again, these “definitions” are not informative because, this time around, none of
them even makes any pretense at trying to give students any usable mathematical
information. In two out of three cases, these definitions are built on the concept of
ratio. Since TSM never explains clearly what ratio is, how can students use what
little they know about ratio to find out what “rate” is?

In Summary
The many mathematical flaws in the way percent, ratio and rate are taught in TSM
make these topics unlearnable, and that is why they are feared by one and all.

When the 2011 IES impact study considered teachers’ content knowledge to be
adequate for teaching ratio, percent, rate, and proportion if it was equal to “the
knowledge of topics in rational numbers that students should ideally have after
completing the seventh grade” (page 21 of Garet et al. 2011), it failed to recognize
the damage TSM had done to teachers and to school mathematics education as
a whole. This is tantamount to saying that TSM is good enough. If the foregoing

33The concepts of what is “continuous” and what is “discrete” are well understood in mathematics,
but for the case at hand, the ad hoc explanation of “continuous” given in the parentheses is
sufficient.
34These bulleted statements are taken directly from textbooks.
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analysis in this subsection means anything at all, it is that TSM is not good enough.35

By not providing teachers with an improved content knowledge base, the IES
impact study in effect forced them to present the standard unlearnable TSM to their
students. Was it the teachers’ fault that they turned out to be ineffective in raising
student achievement?

In this light, the IES impact study—while its good intentions are undeniable—
cannot serve as a reliable gauge of whether PD can improve teachers’ effectiveness
or student achievement. It would make sense to do a similar study with a PD
program that teaches PBM to teachers in the first place.

11.6.3 Final Thoughts

We want to come to a real appreciation for why the 2011 IES impact study failed to
raise student achievement.

Our first thought is that grade 7 is probably not the best grade to choose
for the purpose of an impact study, for the following reason. We saw in the
preceding subsection, Sect. 11.6.2, that ratio, rate, and percent are concepts that
have been made more difficult by TSM than they actually are. Any attempt to
improve teachers’ mastery of these concepts must begin by providing teachers with
precise definitions for these concepts and showing teachers—on the basis of these
definitions—how to use reasoning to solve all the standard problems with ease. In
other words, the PD must help teachers relearn these topics from the standpoint of
PBM. There is a catch, however. Teachers cannot learn the new content knowledge
about ratio, rate, and percent without first acquiring a new foundation for fractions
such as that presented in Sect. 11.3.2. To help teachers of 7th grade to better teach
ratio, rate, and percent, it is necessary to first revamp their knowledge of fractions.
We are thus suggesting that the PD program of the 2011 impact study should have
been more comprehensive in terms of content, and it should also be held over a
longer time duration. A future impact study may try to avoid grade 7 and work with
teachers in an earlier grade.36

If we accept the foregoing explanation that teachers’ faulty knowledge of
fractions and ratio, percent, and rate, based on TSM, cannot be used in a school
classroom, then it immediately raises the question of whether the impact study’s
emphasis on SK (specialized knowledge for teaching) at the expense of CK
(common knowledge) was a good decision (see Sect. 11.6.1). The impact study

35This conclusion is also consistent with the fact that, by the second year of the impact study, it
became apparent to the researchers that the teachers were having trouble with the 7th-grade topics
of ratio, percent, and rate.
36We may note that the 2016 impact study of Garet et al. (2016) did avoid this pitfall and chose to
work with 4th grade teachers. However, the content component of the 2016 study has some issues
of its own, including a lack of awareness of the damage TSM has done to teachers.
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made the decision to essentially leave teachers’ knowledge of TSM for 7th grade
intact and empower them with some new pedagogical techniques, hoping that the
same teachers would nevertheless raise student achievement. Having the benefit of
hindsight, we would put the emphasis of the PD program on CK to help teachers
eradicate their knowledge of TSM and replace it with PBM. Mindful of teachers’
need for intensive content immersion, we would also increase the number of summer
institute days37 from 3 to 8, expand the length of the day from 6 to 8 h (including
lunch), and give out daily homework assignments. (There is nothing like doing
exercises to improve one’s understanding of mathematics.) Of the eight summer
institute days, a tentative suggestion would be to spend 5 days on the definition of
fractions, the comparison of fractions and the arithmetic operations on fractions.
Middle school teachers really need a firm foundation on fractions because almost
everything they teach rests on this foundational knowledge. The remaining 3 days
could then be devoted to a thorough discussion of complex fractions (see Chapter
19 of Wu 2011a), ratio, percent, and rate. We should add that complex fractions are
absolutely essential for any discussion of ratio, percent, and rate. One of the reasons
that TSM cannot make sense of these three concepts is precisely its neglect of the
concept of complex fractions (see Wu 2016a, Section 1.7).

It goes without saying that the content of the eight summer institute days would
be PBM rather than TSM (Sect. 11.3). Given the present lack of usable PBM
materials (cf. the discussion in Sect. 11.4), allow me to suggest Chapter 1 of Wu
(2016a), without the long Section 1.10 on probability, as a reference. (Wu 2016a
was actually written explicitly for this kind of PD for middle school teachers.) A
slightly different suggestion would be Part 2 of Wu (2011a), without Chapters 23
and 24.

The 10 days of coaching in the original PD design of the impact study is an
excellent idea, but having to send so many coaches to different school districts
poses a problem of getting qualified coaches. This also brings up a similar issue
of how to get enough PD facilitators for the summer institutes to be given in the
participating school districts. As we have indicated all along, most PD providers
are themselves products of TSM. For them to be effective in helping teachers learn
PBM, they themselves will have to undergo training to learn PBM first. Therefore,
before teaching teachers, we will have to teach coaches and PD facilitators. There
is no getting around this difficulty, the fact that the preparation for such an impact
study—in addition to the usual logistical issues—would have to take place months
before the study itself for the purpose of creating a corps of qualified coaches and
facilitators. The content-intensive training for this purpose is similar to the content-
intensive PD for the teachers, except that there will be less room for failure because
the coaches and facilitators will be responsible for the PD after all. We will not go
into the details of this training because much of it will take us far away from our
main concern with PD for teachers.

37If my own experience in PD is any guide, 8 days of content instruction do not really count as
“intensive immersion.” But we do have to compromise with reality.
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In summary, this discussion may give a better idea of why one should not jump
to conclusions about the non-effectiveness of inservice PD for improving school
mathematics education on the basis of one or two impact studies. We hope there
will soon be a follow-up impact study with a better design.

11.7 Miscellaneous Remarks

(1) As of 2019, elementary teachers are generalists, and it is impractical to ask all
generalists to teach PBM. The reality is that learning and teaching PBM will
take more dedication and time than a typical generalist can afford. Any real
improvement in elementary mathematics education will inevitably require the
creation of mathematics teachers—often called math specialists—to teach the
mathematics of elementary school (see Wu 2009). These math specialists will
certainly need the content-intensive training in PBM mentioned above.

(2) If we want more effective teachers, we cannot talk only about inservice PD
because we must teach PBM to all preservice teachers so that the new teachers
coming out of the pipeline will help solve the TSM-infestation problem rather
than adding to it. Now preservice PD is understandably a different beast from
inservice PD, and we will only lightly touch on a few of the major issues that
complicate the preservice picture.

First of all, few colleges are willing to offer a mathematics course for
teachers because teaching such a course on PBM will likely require extensive
cooperation between the school of education and the department of mathe-
matics. Given the often frosty relationship between these two units on many
campuses, this obstacle can be overcome only by a leadership with intellectual
vision and dedication to social justice. On top of that, there is the obvious
problem with textbooks because an overwhelming majority of the available
preservice PD textbooks are mired in TSM. The presence of these books is
part of the reason that TSM is continually recycled in the world of education.
There is also a less obvious personnel problem, as we now explain.

In year 2019, those with the requisite mathematical knowledge to teach
PBM—regardless of grade level—are overwhelmingly found in mathematics
departments. A typical mathematician is, however, ill-equipped to teach a
course on correct school mathematics, for several reasons. Such a course is “ele-
mentary” in the sense of the usual mathematical hierarchy and will therefore be
treated like calculus, and it is sad but true that calculus is usually taught as TSM.
Moreover, teaching a course on PBM requires mathematical sophistication on
a level with teaching an upper division course like introductory analysis (ε’s
and δ’s) or abstract algebra (groups, rings, and fields). But teaching the former
like an upper division course for math majors would be unfair to future teachers
and ill-equip those teachers to teach their future students. Very often, the proofs
(explanations) in a course for teachers—if done correctly—would be the most
intuitive, not the shortest possible. Short proofs tend to be mathematically
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sophisticated and, therefore, generally not appropriate for school students. We
would prefer that preservice teachers learn something close to what they will
have to teach. For example, the explanation that (−a)(−b) = ab for rational
number a and b is something that bedevils most middle school students along
with many of their teachers. In Wu (2016a), the explanation of this fact takes
a full five pages (middle of page 166 to the middle of page 171). The usual
three-line mathematical proof, expanded to half a page, is finally given in the
lower half of the last page, page 171. A typical mathematician, approaching
such a course for teachers as one in pure mathematics, would surely scoff at
such verbosity as a waste of time. There are many such mathematical issues
that can potentially reduce the relevance of such a course on PBM to future
teachers. Ideally, one can smooth over such bumps on the road if there is a
good working relationship between the School of Education and the Department
of Mathematics, but such a spirit of cooperation is currently in short supply.
Getting the right people to teach such a course will probably be a thorny issue
for a long time to come.

(3) Finally, we have advocated for sustained PD to teach teachers correct school
mathematics. While this seems not to be happening yet, several education
centers around the country have been offering PD for mathematics teachers that
focusses on solving hard problems or doing mathematical research. Any effort
at raising the content knowledge of mathematics teachers is welcome, so there
is no doubt that these centers are doing something right for a certain population
in school mathematics education. Nevertheless, we must not lose sight of the
fact that we have to raise the general level of content knowledge of the average
teacher if better school mathematics education is our goal. If those centers that
teach problem solving or helping teachers do research could convey the message
that the problem solving and the mathematical research are means to an end,
the end being the replacement of TSM by PBM, they would be making a major
contribution to the cause of better school mathematics education for all.
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