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We will prove the following theorem, which is Theorem 4.14 on page 197 of Ra-
tional Numbers to Linear Equations (RNLE).

Main Theorem. A polygon whose sides have the same length and whose angles have
the same degree can be inscribed in a circle if and only if it is convex.

This theorem is stated in Section 4.2 of RNLE purely for the benefit of readers’
conceptual understanding of a regular polygon, which by definition is a polygon
which has equal sides and equal angles and is inscribed in a circle in the sense that all
its vertices lie on that circle. In a technical sense, it does not belong to RNLE because
its proof requires some facts about triangles and circles that will not be available until
Chapter 6 of Algebra and Geometry (the companion volume that follows RNLE). Since
this theorem will not be put to use until Chapter 7 of Algebra and Geometry, there is
no fear of circular reasoning in the proof below.

Preliminaries

For the understanding of a convex polygon, we will need the following Jordan
Curve Theorem for Polygons, which is Theorem 4.13 on page 195 of RNLE.

Theorem 4.13. The complement of a polygon 𝒫 consists of two non-empty planar
regions, 𝐵 and 𝐸 with the following properties:

*I wish to thank Larry Francis for his excellent editorial assistance.
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(𝑖) 𝐵 and 𝐸 are both connected, 𝐵 is bounded and 𝐸 is unbounded, and
𝒫 is their common boundary. Moreover, the three sets 𝐵, 𝐸, and 𝒫 are
disjoint and their union is the whole plane.

(𝑖𝑖) A segment joining a point of 𝐵 to a point of 𝐸 must intersect the
polygon 𝒫.

In addition, suppose we have two nonempty planar regions 𝐵′ and 𝐸 ′ so that 𝒫 is
their common boundary and so that the plane is the disjoint union of the three sets
𝐵′, 𝐸 ′, and 𝒫. Then, after a change of notation if necessary, we have 𝐵′ = 𝐵 and
𝐸 ′ = 𝐸.

We take this opportunity to make a correction in RNLE. In lines 4 and 5
of page 196 in RNLE, the phrase "the three sets 𝐵, 𝐸, and 𝒫" should be
"the three sets 𝐵′, 𝐸 ′, and 𝒫".

We recall the definition of a region being connected (RNLE, page 195). A polyg-
onal segment is a finite collection of segments 𝐴1𝐴2, 𝐴2𝐴3, 𝐴3𝐴4, . . . , 𝐴𝑛−2𝐴𝑛−1,
𝐴𝑛−1𝐴𝑛, with the understanding that these segments need not be noncollinear and
that there may be intersections among them. Then a region ℛ in the plane is said to
be connected if any two points in ℛ can be joined by a polygonal segment that lies
completely in ℛ. The complement of a subset 𝒮 in the plane is the collection of all
the points in the plane not lying in 𝒮. A point 𝑄 is a boundary point of a region
𝒮 in the plane if in every disk (no matter how small) around 𝑄, there is a point in 𝒮
and a point not in 𝒮. The boundary of 𝒮 consists of all the boundary points of 𝒮.

Referring to Theorem 4.13, the region 𝐸 is called the exterior of 𝒫 and the
union of 𝒫 and 𝐵 is called the polygonal region of 𝒫 . Then we say 𝑃 is a convex
polygon if its polygonal region is convex.

Recall that, without further notice, an angle means the convex angle (RNLE, page
182), and that the convexity of a polygon refers to the fact that the polygonal region
of the polygon is convex.
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Proof: First part

We first prove half of the Main Theorem: A convex polygon whose sides have the
same length and whose angles have the same degree can be inscribed in a circle.

We will show that the angle bisectors of all the angles of the given convex polygon
meet at a common point that is equidistant from all of the vertices. To this end, the
first step is to prove the following lemma.

Lemma 1. Let 𝐿 be a line that contains a side of a convex polygon. Then the polygon
lies in a closed half-plane of 𝐿.

The fact that this is a special property of convex polygons can be seen from the
following picture where the quadrilateral 𝐴1𝐴2𝐴3𝐴4 fails to lie entirely in either closed
half-plane of the line containing the side 𝐴1𝐴2.
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Proof of Lemma 1. Let the convex polygon 𝒫 have vertices 𝐴1𝐴2 · · ·𝐴𝑛. Consider
one side 𝐴1𝐴2 of 𝒫 , and let the line containing 𝐴1𝐴2 be denoted by 𝐿. Also denote
the half-plane of 𝐿 containing 𝐴3 by ℋ and its closed half-plane by ℋ. We claim: ℋ
contains all the vertices 𝐴1, 𝐴2, . . . , 𝐴𝑛 of 𝒫.

To see this, suppose (let us say) 𝐴5 lies in the opposite half-plane of ℋ. Then
𝐴3 and 𝐴5 lie in opposite half-planes of 𝐿 and the segment 𝐴1𝐴2 lies in both convex
angles ∠𝐴1𝐴3𝐴2 and ∠𝐴1𝐴5𝐴2.

3



𝐴1 𝐴2
𝐿

c
c
c
c
c
c
c
c
c
c

C
C
C
C
C
C
C
C

𝐴3

��
��

��
��

��

�
�
��

𝐴5
J
J
J
J
J
J
J
JJ
𝐵′r
𝐵

ℋ

By Theorem 4.13, 𝒫 is the boundary of its polygonal region and, by the definition
of a boundary point (see page 194 of RNLE), around each point 𝑄 of 𝐴1𝐴2, there
are points from the exterior 𝐸 that are as close to 𝑄 as we please. Thus, let 𝐵 be
a point in 𝐸 sufficiently near the midpoint of 𝐴1𝐴2 so that it stays in both of the
convex angles ∠𝐴1𝐴3𝐴2 and ∠𝐴1𝐴5𝐴2. Now 𝐵 cannot lie in 𝐿 because, if it does,
it would lie in 𝐴1𝐴2 which is part of 𝒫 and therefore disjoint from 𝐸. Therefore
𝐵 lies in one of the two half-planes of 𝐿. For definiteness, let us say 𝐵 lies in the
opposite half-plane of ℋ. In particular, 𝐵 and 𝐴5 lie in the same half-plane of 𝐿. By
the crossbar axiom (see page 250 of RNLE), the ray 𝑅𝐴5𝐵 will intersect 𝐴1𝐴2 at a
point 𝐵′ ∈ 𝐴1𝐴2 and 𝐵 is between 𝐴5 and 𝐵′. Since 𝐴5 and 𝐵′ are points in 𝒫 , the
convexity of 𝒫 implies that the segment 𝐴5𝐵

′ lies entirely in the polygonal region of
𝒫 . By the disjointness of the polygonal region of 𝒫 from its exterior 𝐸 (see Theorem
4.13(𝑖), the segment 𝐴5𝐵

′ is disjoint from 𝐸. But 𝐵 ∈ 𝐴5𝐵
′, so 𝐵 does not belong

to 𝐸. This contradiction proves the claim.
Since the closed half-plane ℋ is convex, the vertices of 𝒫 being in ℋ implies that

the segments 𝐴1𝐴2, . . . , 𝐴𝑛−1𝐴𝑛, 𝐴𝑛𝐴1 also lie in 𝒫 . Thus ℋ also contains 𝒫 .
Of course, there is nothing special about the side 𝐴1𝐴2. The preceding reasoning

therefore proves Lemma 1.

In view of Lemma 1, the following lemma now makes sense. Anticipating the
resulting notational complexity in its proof, we adopt an ad hoc notational scheme
for the statement of this lemma.

Lemma 2. Let 𝐴𝐵 be one side of a convex polygon and let ℋ be the closed half-plane
of 𝐿𝐴𝐵 containing the polygon. Then the angle bisectors of the adjacent angles ∠𝐴
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and ∠𝐵 intersect in the half-plane ℋ.

Proof of Lemma 2. Let 𝐶 and 𝐷 be points in ℋ so that ∠𝐴 = ∠𝐶𝐴𝐵 and
∠𝐵 = ∠𝐴𝐵𝐷. Also let 𝑀 and 𝑁 be points in ℋ so that the rays 𝑅𝐴𝑀 and 𝑅𝐵𝑁 are
the angle bisectors of ∠𝐴 and ∠𝐵, respectively. We have to prove that the rays 𝑅𝐴𝑀

and 𝑅𝐵𝑁 intersect in ℋ.
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Consider the two lines 𝐿𝐴𝑀 and 𝐿𝐵𝑁 and their transversal 𝐿𝐴𝐵. On 𝐿𝐴𝐵, choose
points 𝐸 and 𝐹 so that 𝐴 is between 𝐸 and 𝐵 and the point 𝐵 is between 𝐴 and
𝐹 , as shown. Because the two angles ∠𝐵𝐴𝑀 and ∠𝐹𝐵𝑁 both lie in the closed
half-plane ℋ of 𝐿𝐴𝐵, they are corresponding angles with respect to 𝐿𝐴𝑀 and 𝐿𝐵𝑁 .
Now |∠𝐵𝐴𝑀 | = 1

2
|∠𝐵𝐴𝐶| < 1

2
· 180∘ = 90∘, therefore ∠𝐵𝐴𝑀 is acute. On the other

hand, ∠𝑁𝐵𝐴 is also acute for the same reason, and therefore its supplementary angle
∠𝐹𝐵𝑁 is obtuse. It follows that ∠𝐵𝐴𝑀 and ∠𝐹𝐵𝑁 are not equal. By Theorem
G18 on page 277 of RNLE, 𝐿𝐴𝑀 and 𝐿𝐵𝑁 are not parallel and hence must intersect.
It remains to show that their point of intersection lies in ℋ. If not, then let their
point of intersection 𝑄 lie in the opposite half-plane of ℋ with respect to 𝐿𝐴𝐵.

𝐴 𝐵

𝑄

J
J
J
J
J
J
J
J
J
JJ























𝑀 𝑁

𝐸 𝐹

ℋr r

As we have observed above, ∠𝐵𝐴𝑀 and ∠𝑁𝐵𝐴 are both acute, and therefore
their respective supplementary angles, ∠𝑄𝐴𝐵 and ∠𝐴𝐵𝑄, must be obtuse. This im-
plies that the angle sum of △𝑄𝐴𝐵 exceeds 180∘, a contradiction (see Theorem G32
in Section 6.5 of Algebra and Geometry). Therefore 𝑄 has to lie in ℋ and Lemma 2 is
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proved.

We can now finish the proof of the first half of the Main Theorem. Since the
angles of the polygon 𝒫 all have equal degrees, we may denote this common degree
by 𝑑∘. So let 𝒫 = 𝐴1𝐴2, · · ·𝐴𝑛 as before. Let the angle bisectors of ∠𝐴1 and ∠𝐴2

meet at a point 𝑂. Let 𝐿 be the line containing the side 𝐴1𝐴2. By Lemma 2, 𝑂 lies
in the half-plane ℋ of 𝐿 that contains 𝒫 . Join 𝑂𝐴3, as shown.
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Consider the two triangles, △𝑂𝐴1𝐴2 and 𝑂𝐴3𝐴2. We claim: △𝑂𝐴1𝐴2
∼= 𝑂𝐴3𝐴2.

This follows from SAS because |∠𝑂𝐴2𝐴1| = |∠𝑂𝐴2𝐴3| = 1
2
𝑑∘, |𝐴1𝐴2| = |𝐴3𝐴2| (by

the hypothesis on 𝒫), and the two triangles have the side 𝑂𝐴2 in common. Hence
|∠𝑂𝐴3𝐴2| = |∠𝑂𝐴1𝐴2| = 1

2
𝑑∘. Since |∠𝐴3| = 𝑑∘ by the hypothesis on 𝒫 , this

suggests that 𝑂𝐴3 is the angle bisector of ∠𝐴3. This will be true as soon as we can
show that 𝑂 lies in ∠𝐴3. A priori, however, this need not be the case because 𝑂 and
𝐴4 could conceivably lie in opposite half-planes of the line containing 𝐴2 and 𝐴3, as
the following picture shows.
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To show that this anomaly doesn’t happen, we observe that the ray 𝐴2𝑂 is the
angle bisector of ∠𝐴2 and is, in particular, in the convex ∠𝐴2. Let 𝐿23 be the line
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containing 𝐴2𝐴3. Then 𝑂 and 𝐴1 lie in the same half-plane of 𝐿23 (see page 236 of
RNLE). Call this half-plane ℋ23. Since 𝐴1 lies in ℋ23, by Lemma 1, the polygon 𝒫
itself lies in the closed half-plane ℋ23 and therefore 𝐴4 also lies in ℋ23.
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Let 𝑂′ be a point in ∠𝐴3 (= ∠𝐴2𝐴3𝐴4) so that 𝐴3𝑂
′ is the angle bisector of ∠𝐴3.

Observe that 𝑂′ being in ∠𝐴3 means that it lies in the half-plane of 𝐿23 that contains
𝐴4 and therefore 𝑂′ lies in ℋ23. Thus, |∠𝐴2𝐴3𝑂

′| = 1
2
𝑑∘. Now consider the two convex

angles, ∠𝐴2𝐴3𝑂
′ and ∠𝐴2𝐴3𝑂: they have one side in common (the ray from 𝐴3 to 𝐴2),

𝑂 and 𝑂′ lie in the same half-plane ℋ23 of 𝐿23, and |∠𝐴2𝐴3𝑂| = |∠𝐴2𝐴3𝑂
′| = 1

2
𝑑∘.

By Lemma 4.10 on page 190 of RNLE, the other sides of the angles coincide, i.e.,
𝐴3𝑂 is the angle bisector of ∠𝐴3.

We may now look at 𝑂 as the point of intersection of the angle bisectors of ∠𝐴2

and ∠𝐴3. A similar reasoning then shows that 𝑂𝐴4 is the angle bisector of ∠𝐴4, etc.
In summary, the angle bisectors of all the angles ∠𝐴𝑖, for 𝑖 = 1, 2, . . . , 𝑛 pass through
the point 𝑂.

It remains to observe that 𝑂 is equidistant from all the vertices 𝐴𝑖 for 𝑖 =

1, 2, . . . , 𝑛. This is because, for example, in △𝑂𝐴1𝐴2, the angles ∠𝑂𝐴1𝐴2 and
∠𝑂𝐴2𝐴1 are equal as they have the same degree, 1

2
𝑑∘. Thus, |𝑂𝐴1| = |𝑂𝐴2| (The-

orem G29 in Section 6.2 of Algebra and Geometry). Similarly, |𝑂𝐴1| = · · · = |𝑂𝐴𝑛|,
and therefore the circle with center 𝑂 and radius |𝑂𝐴1| passes through all the vertices
of 𝒫 . The proof of the first half of the main theorem is complete.
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Proof: Second part

We next prove the converse: If a polygon whose sides have the same length and
whose angles have the same degree can be inscribed in a circle, then it is convex.

We will prove something more general, which is of independent interest. .

Lemma 3. A polygon inscribed in a circle is convex.

Before embarking on the proof of Lemma 3, we would like to give a heuristic
argument (not a proof) for a special case: If a polygon (pictured below as a pentagon
𝐴1𝐴2𝐴3𝐴4𝐴5) is inscribed in a circle 𝑂 and all its sides have the same length and all
its angles have the same degree, how can we see intuitively that it has to be convex?
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If we join all the vertices to the center 𝑂, then all the triangles, △𝐴𝑖𝑂𝐴𝑖+1 for
𝑖 = 1, 2, 3, 4, 5 (with 𝐴6 = 𝐴1 understood), are congruent because of SSS. Therefore
the central angles ∠𝐴𝑖𝑂𝐴𝑖+1 for 𝑖 = 1, 2, 3, 4, 5 are all equal and, together, they fill
up the full angle of 360∘ at 𝑂 (remember that an angle is a region in the plane, not
two rays). The vertices are thus "evenly distributed" on the circle 𝑂. Denote the line
that contains the side 𝐴𝑖𝐴𝑖+1 by 𝐿𝑖 𝑖+1 (recall 𝐴6 = 𝐴1). Then each of the five lines,
𝐿12, 𝐿23, . . . , 𝐿51, has the special property that its closed half-plane that contains
the center 𝑂 also contains all the vertices of the polygon.
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To appreciate the last statement, observe that

it is false for a general pentagon. For example,

the half-plane of the line 𝐿34 in the picture to

the right that contains the center 𝑂 does not

contain the other vertices 𝐴1, 𝐴2, and 𝐴5. If

these vertices were "evenly distributed", then

none of the vertices 𝐴2, 𝐴1, and 𝐴5 could have

been squeezed into the "upper" arc
⌢

𝐴3𝐴4.
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Now back to our heuristic argument about a polygon inscribed in a circle with
equal sides and equal angles. Denote the closed half-plane of 𝐿𝑖 𝑖+1 that contains the
center 𝑂 by ℋ𝑖 𝑖+1 for 𝑖 = 1, 2, 3, 4, 5 (with ℋ56 = ℋ51 understood). Glancing at
the previous picture of a pentagon with vertices evenly distributed on the circle, one
would be inclined to believe that the polygonal region enclosed by the pentagon is
exactly the intersection of the closed half-planes ℋ12, ℋ23, ℋ34, ℋ45, and ℋ51. But
a closed half-plane of a line is convex, and intersections of convex sets are convex.
So the polygonal region enclosed by 𝐴1𝐴2𝐴3𝐴4𝐴5 is convex, and 𝐴1𝐴2𝐴3𝐴4𝐴5 is, by
definition, a convex polygon.

Proof of Lemma 3. Let 𝒫 be the polygon 𝐴1𝐴2 · · ·𝐴𝑛 inscribed in a circle 𝑂 (𝑂
being the center). The idea is to make use of the idea in the preceding heuristic
argument: show that the polygonal region of 𝒫 is equal to the intersection of a finite
number of closed half-planes.

Let the closed disk inside circle 𝑂 be denoted by 𝒟 as usual. Note that 𝒟 is convex
(Theorem G47 in Algebra and Geometry). Let the line containing the chord 𝐴𝑖𝐴𝑖+1 be
denoted by 𝐿𝑖 𝑖+1 as before. Then the intersections of the circle 𝑂 with the two closed
half-planes of 𝐿𝑖 𝑖+1 are called the opposite arcs determined by the chord 𝐴𝑖𝐴𝑖+1

(see Section 6.8 in Algebra and Geometry). We will need the following two observations.

Observation 1. Let 1 ≤ 𝑖 ≤ 𝑛. Of the two opposite arcs determined by the chord
𝐴𝑖𝐴𝑖+1 (always with 𝐴𝑛+1 = 𝐴1 understood), one of them contains no vertex of 𝒫
other than 𝐴𝑖 and 𝐴𝑖+1 while the other arc contains all the vertices of 𝒫 .
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Observation 1 allows us to introduce a notation: we will use
⌢

𝐴𝑖𝐴𝑖+1 to denote
the arc determined by the chord 𝐴𝑖𝐴𝑖+1 that contains no vertex of 𝒫 other than 𝐴𝑖

and 𝐴𝑖+1.

Observation 2. Any point on the circle 𝑂 lies in
⌢

𝐴𝑖𝐴𝑖+1 for some 𝑖 = 1, 2, . . . 𝑛

(again, by definition, 𝐴𝑛+1 = 𝐴1).

The reason for Observation 1 is as follows. Suppose 𝐴𝑗 and 𝐴𝑘 lie on opposite
arcs of the chord 𝐴𝑖𝐴𝑖+1 for some 𝑗 and 𝑘 (neither 𝑗 nor 𝑘 being equal to 𝑖 or 𝑖+1) as
shown below. By the definition of opposite arcs, 𝐴𝑗 and 𝐴𝑘 lie in opposite half-planes
of the line 𝐿𝑖 𝑖+1 containing the chord 𝐴𝑖𝐴𝑖+1. By assumption (L4), the segment 𝐴𝑗𝐴𝑘

intersects the line 𝐿𝑖 𝑖+1 at some point to be called 𝑄.

+1Ai Ai+1

Ak

A j

Q
Li i

Since 𝒟 is convex, 𝐴𝑗𝐴𝑘 lies in 𝒟 and therefore 𝑄 ∈ 𝒟. Since also 𝑄 ∈ 𝐿𝑖 𝑖+1, we have
𝑄 ∈ 𝐿𝑖 𝑖+1 ∩ 𝒟. By Lemma 6.4 in Section 6.8 of Algebra and Geometry, 𝐿𝑖 𝑖+1 ∩ 𝒟 is
the chord 𝐴𝑖𝐴𝑖+1. Thus 𝑄 ∈ 𝐴𝑖𝐴𝑖+1, and we see that 𝑄 is the intersection of 𝐴𝑖𝐴𝑖+1

and 𝐴𝑗𝐴𝑘. But the two sides of a polygon cannot intersect except for adjacent sides
at a common vertex, so this contradiction proves Observation 1.

Next, Observation 2 is a simple consequence of the fact that, with the vertices
𝐴1, 𝐴2, . . . , 𝐴𝑛 of 𝒫 lying on the circle 𝑂, the union of the arcs

⌢

𝐴1𝐴2,
⌢

𝐴2𝐴3,
. . .

⌢

𝐴𝑛𝐴𝑛−1, and
⌢

𝐴𝑛𝐴1 is the circle 𝑂, as shown in the following picture.
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We can now get serious about the proof of Lemma 3. According to Observation 1,
a half-plane of 𝐿𝑖 𝑖+1—which, we recall, does not contain 𝐿𝑖 𝑖+1 itself—either contains
no vertex of 𝒫 or contains all the vertices of 𝒫 except 𝐴𝑖 and 𝐴𝑖+1. Thus we can
define for each 𝑖 = 1, 2, . . . , 𝑛,

ℋ−
𝑖 𝑖+1 = the half-plane of 𝐿𝑖 𝑖+1 that contains no vertex of 𝒫

ℋ+
𝑖 𝑖+1 = the half-plane of 𝐿𝑖 𝑖+1 opposite to ℋ−

𝑖 𝑖+1

Again, it is understood that ℋ+
𝑛𝑛+1 = ℋ+

𝑛1 and ℋ−
𝑛𝑛+1 = ℋ−

𝑛1. Note that in this
notation, we have

⌢

𝐴𝑖𝐴𝑖+1 = {the closed half-plane of ℋ−
𝑖 𝑖+1} ∩ 𝒟 (1)

Because of Observation 1, ℋ+
𝑖 𝑖+1 contains every vertex of 𝒫 except 𝐴𝑖 and 𝐴𝑖+1.

Now let

𝐵0 =
⋂︁
𝑖

ℋ+
𝑖 𝑖+1 (= the intersection of ℋ+

12, ℋ+
23, . . . , ℋ+

𝑛1)

𝐸0 =
⋃︁
𝑖

ℋ−
𝑖 𝑖+1 (= the union of ℋ−

12, ℋ−
23, . . . , ℋ−

𝑛1)

It is clear that 𝐵0 and 𝐸0 are both nonempty and that 𝐵0, 𝐸0, and 𝒫 are disjoint; the
latter is the consequence of ℋ+

𝑖 𝑖+1, 𝐿𝐴𝑖𝐴𝑖+1
, and ℋ−

𝑖 𝑖+1 being disjoint for every 𝑖 (see
Assumption (L4)(𝑖) on page 176 of RNLE). Because each ℋ+

𝑖 𝑖+1 (respectively, ℋ−
𝑖 𝑖+1)

has the line 𝐿𝑖 𝑖+1 as its boundary, it is also easy to see that 𝐵0 (resp., 𝐸0) has 𝒫 as
its boundary and that the plane is the disjoint union of 𝐵0, 𝐸0, and 𝒫 .

We claim that 𝐵0 is bounded. In fact, we will show more:

𝐵0 ⊂ the closed disk 𝒟 (2)

11



We will prove this by contradiction. Suppose it is false, then there is a point 𝑄 ∈ 𝐵0

in the exterior of the circle 𝑂. Since 𝑄 is in 𝐵0, we have 𝑄 ∈ ℋ+
12. Then 𝑄 is in the

half-plane of 𝐿12 that contains 𝐴3, 𝐴4, . . . , 𝐴𝑛. Let the segment 𝐴1𝑄 intersect the
circle 𝑂 at a point 𝑉 .1 By Observation 2, 𝑉 lies in

⌢

𝐴𝑖𝐴𝑖+1 for some 𝑖.

Suppose 𝑉 lies in
⌢

𝐴1𝐴2. From the assertion in (1), 𝑉 lies in ℋ−
12, contradicting

the fact that 𝑄 lies in ℋ+
12. So 𝑖 ̸= 1. The reasoning for all the cases where 𝑖 ≥ 2 is

similar, so let us say 𝑉 lies in
⌢

𝐴4𝐴5. There are two possibilities. First, assume 𝑉 is
equal to one of the endpoints of the arc, say 𝑉 = 𝐴4, as in the picture on the left.

V

1
A

2
A

A
5

Q

L

L

12

45

A
4
=

5

1
A

2
A

V

Q
A

4

A
5

L
12

L
4

Then 𝑄 and 𝐴1 lie in opposite half-planes of the line 𝐿45 since the segment 𝐴1𝑄

intersects 𝐿45 at 𝐴4. Recall: ℋ+
45 is the half-plane of 𝐿45 containing all the vertices

of 𝒫 except 𝐴4 and 𝐴5. Therefore 𝐴1 has to be ℋ+
45. Consequently, 𝑄, being in the

opposite half-plane of 𝐿45, must lie in ℋ−
45. This contradicts the fact that 𝑄, being in

𝐵0, lies in ℋ+
45. So 𝑉 cannot be an endpoint of the arc

⌢

𝐴4𝐴5.
It remains to consider the case of 𝑉 lying in

⌢

𝐴4𝐴5 but not equal to 𝐴4 or 𝐴5,
as in the above picture on the right. By the assertion in (1), 𝑉 is in the half-plane
ℋ−

45. But as before, since the half-plane of 𝐿45 that contains 𝐴1 is by definition the
half-plane ℋ+

45, 𝐴1 and 𝑉 lie in opposite half-planes of the line 𝐿45. It follows that
the segment 𝐴1𝑉 intersects 𝐿45 and, a fortiori, the segment 𝐴1𝑄 also intersects the
line 𝐿45. Therefore 𝐴1 and 𝑄 lie in opposite half-planes of 𝐿45. As 𝐴1 lies in ℋ+

45, 𝑄
has to be in ℋ−

45. Again, this contradicts the fact that 𝑄, being in 𝐵0, lies in ℋ+
45.

Altogether, we see that there can be no such point 𝑄 in the exterior of the closed
disc 𝒟. This proves the assertion in (2) and it follows that 𝐵0 is bounded (i.e., 𝐵0 is

1We will assume the existence of this point of intersection 𝑉 without proof, as the proof requires
an understanding of the real numbers that is beyond the level of school mathematics. However, see
the discussion near the top of page 195 in RNLE.
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contained in some closed disk).
By the last part of Theorem 4.13, the union of 𝐵0 and 𝒫 is the polygonal region

of 𝒫 . It is now easy to see that the union of 𝐵0 and 𝒫 is equal to the intersection of
the closed half-planes of ℋ+

𝑖 𝑖+1 for 𝑖 = 1, 2, . . . , 𝑛. Since closed half-planes are convex
(Exercise 9 in Exercises 4.1 on page 180 of RNLE) and the intersections of convex
sets are convex (Exercise 7 in Exercises 4.1 on page 180 of RNLE), the polygonal
region enclosed by 𝒫 is convex. By definition, 𝒫 is a convex polygon and the proof
of Lemma 3 is complete.

We have proved the Main Theorem.

Exercises

1. Let 𝒫 be a convex polygon 𝐴1𝐴2 · · ·𝐴𝑛 and let 𝐿𝑖 be the line containing the
side 𝐴𝑖𝐴𝑖+1, 𝑖 = 1, 2, . . . , 𝑛 (with 𝐴𝑛+1 = 𝐴1 understood). Prove that the
polygonal region of 𝒫 is equal to the intersection of all the closed half-planes of
𝐿𝑖 containing the polygon 𝒫 for 𝑖 = 1, 2, . . . , 𝑛− 1

2. If 𝒞 is a circle with center 𝑂, let 𝐴1, 𝐴2 be two points on 𝒞 so that |∠𝐴1𝑂𝐴2| =
360
𝑛 degrees for a positive integer 𝑛. Let 𝜚 be the rotation of 360

𝑛 degrees around
the center 𝑂 so that 𝜚(𝐴1) = 𝐴2. Now let 𝐴3 = 𝜚(𝐴2), 𝐴4 = 𝜚(𝐴3), . . . ,
𝐴𝑛 = 𝜚(𝐴𝑛−1). Prove that 𝐴1 = 𝜚(𝐴𝑛), and that 𝐴1𝐴2 · · ·𝐴𝑛 is a regular
𝑛-gon.
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