A characterization of regular polygons*

H. Wu

July 6, 2020

We will prove the following theorem, which is Theorem 4.14 on page 197 of Rational Numbers to Linear Equations (RNLE).

Main Theorem. A polygon whose sides have the same length and whose angles have the same degree can be inscribed in a circle if and only if it is convex.

This theorem is stated in Section 4.2 of RNLE purely for the benefit of readers' conceptual understanding of a regular polygon, which by definition is a polygon which has equal sides and equal angles and is inscribed in a circle in the sense that all its vertices lie on that circle. In a technical sense, it does not belong to RNLE because its proof requires some facts about triangles and circles that will not be available until Chapter 6 of Algebra and Geometry (the companion volume that follows RNLE). Since this theorem will not be put to use until Chapter 7 of Algebra and Geometry, there is no fear of circular reasoning in the proof below.

Preliminaries

For the understanding of a convex polygon, we will need the following Jordan Curve Theorem for Polygons, which is Theorem 4.13 on page 195 of RNLE.

Theorem 4.13. The complement of a polygon \mathcal{P} consists of two non-empty planar regions, B and E with the following properties:

[^0](i) B and E are both connected, B is bounded and E is unbounded, and \mathcal{P} is their common boundary. Moreover, the three sets B, E, and \mathcal{P} are disjoint and their union is the whole plane.
(ii) A segment joining a point of B to a point of E must intersect the polygon \mathcal{P}.

In addition, suppose we have two nonempty planar regions B^{\prime} and E^{\prime} so that \mathcal{P} is their common boundary and so that the plane is the disjoint union of the three sets B^{\prime}, E^{\prime}, and \mathcal{P}. Then, after a change of notation if necessary, we have $B^{\prime}=B$ and $E^{\prime}=E$.

We take this opportunity to make a correction in RNLE. In lines 4 and 5 of page 196 in RNLE, the phrase "the three sets B, E, and \mathcal{P} " should be "the three sets B^{\prime}, E^{\prime}, and \mathcal{P} ".

We recall the definition of a region being connected (RNLE, page 195). A polygonal segment is a finite collection of segments $A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{4}, \ldots, A_{n-2} A_{n-1}$, $A_{n-1} A_{n}$, with the understanding that these segments need not be noncollinear and that there may be intersections among them. Then a region \mathcal{R} in the plane is said to be connected if any two points in \mathcal{R} can be joined by a polygonal segment that lies completely in \mathcal{R}. The complement of a subset \mathcal{S} in the plane is the collection of all the points in the plane not lying in \mathcal{S}. A point Q is a boundary point of a region \mathcal{S} in the plane if in every disk (no matter how small) around Q, there is a point in \mathcal{S} and a point not in \mathcal{S}. The boundary of \mathcal{S} consists of all the boundary points of \mathcal{S}.

Referring to Theorem 4.13, the region E is called the exterior of \mathcal{P} and the union of \mathcal{P} and B is called the polygonal region of \mathcal{P}. Then we say P is a convex polygon if its polygonal region is convex.

Recall that, without further notice, an angle means the convex angle (RNLE, page 182), and that the convexity of a polygon refers to the fact that the polygonal region of the polygon is convex.

Proof: First part

We first prove half of the Main Theorem: A convex polygon whose sides have the same length and whose angles have the same degree can be inscribed in a circle.

We will show that the angle bisectors of all the angles of the given convex polygon meet at a common point that is equidistant from all of the vertices. To this end, the first step is to prove the following lemma.

Lemma 1. Let L be a line that contains a side of a convex polygon. Then the polygon lies in a closed half-plane of L.

The fact that this is a special property of convex polygons can be seen from the following picture where the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ fails to lie entirely in either closed half-plane of the line containing the side $A_{1} A_{2}$.

Proof of Lemma 1. Let the convex polygon \mathcal{P} have vertices $A_{1} A_{2} \cdots A_{n}$. Consider one side $A_{1} A_{2}$ of \mathcal{P}, and let the line containing $A_{1} A_{2}$ be denoted by L. Also denote the half-plane of L containing A_{3} by \mathcal{H} and its closed half-plane by $\overline{\mathcal{H}}$. We claim: $\overline{\mathcal{H}}$ contains all the vertices $A_{1}, A_{2}, \ldots, A_{n}$ of \mathcal{P}.

To see this, suppose (let us say) A_{5} lies in the opposite half-plane of \mathcal{H}. Then A_{3} and A_{5} lie in opposite half-planes of L and the segment $A_{1} A_{2}$ lies in both convex angles $\angle A_{1} A_{3} A_{2}$ and $\angle A_{1} A_{5} A_{2}$.

By Theorem 4.13, \mathcal{P} is the boundary of its polygonal region and, by the definition of a boundary point (see page 194 of RNLE), around each point Q of $A_{1} A_{2}$, there are points from the exterior E that are as close to Q as we please. Thus, let B be a point in E sufficiently near the midpoint of $A_{1} A_{2}$ so that it stays in both of the convex angles $\angle A_{1} A_{3} A_{2}$ and $\angle A_{1} A_{5} A_{2}$. Now B cannot lie in L because, if it does, it would lie in $A_{1} A_{2}$ which is part of \mathcal{P} and therefore disjoint from E. Therefore B lies in one of the two half-planes of L. For definiteness, let us say B lies in the opposite half-plane of \mathcal{H}. In particular, B and A_{5} lie in the same half-plane of L. By the crossbar axiom (see page 250 of RNLE), the ray $R_{A_{5} B}$ will intersect $A_{1} A_{2}$ at a point $B^{\prime} \in A_{1} A_{2}$ and B is between A_{5} and B^{\prime}. Since A_{5} and B^{\prime} are points in \mathcal{P}, the convexity of \mathcal{P} implies that the segment $A_{5} B^{\prime}$ lies entirely in the polygonal region of \mathcal{P}. By the disjointness of the polygonal region of \mathcal{P} from its exterior E (see Theorem $4.13(i)$, the segment $A_{5} B^{\prime}$ is disjoint from E. But $B \in A_{5} B^{\prime}$, so B does not belong to E. This contradiction proves the claim.

Since the closed half-plane $\overline{\mathcal{H}}$ is convex, the vertices of \mathcal{P} being in $\overline{\mathcal{H}}$ implies that the segments $A_{1} A_{2}, \ldots, A_{n-1} A_{n}, A_{n} A_{1}$ also lie in \mathcal{P}. Thus $\overline{\mathcal{H}}$ also contains \mathcal{P}.

Of course, there is nothing special about the side $A_{1} A_{2}$. The preceding reasoning therefore proves Lemma 1.

In view of Lemma 1, the following lemma now makes sense. Anticipating the resulting notational complexity in its proof, we adopt an ad hoc notational scheme for the statement of this lemma.

Lemma 2. Let $A B$ be one side of a convex polygon and let $\overline{\mathcal{H}}$ be the closed half-plane of $L_{A B}$ containing the polygon. Then the angle bisectors of the adjacent angles $\angle A$
and $\angle B$ intersect in the half-plane \mathcal{H}.

Proof of Lemma 2. Let C and D be points in \mathcal{H} so that $\angle A=\angle C A B$ and $\angle B=\angle A B D$. Also let M and N be points in \mathcal{H} so that the rays $R_{A M}$ and $R_{B N}$ are the angle bisectors of $\angle A$ and $\angle B$, respectively. We have to prove that the rays $R_{A M}$ and $R_{B N}$ intersect in \mathcal{H}.

Consider the two lines $L_{A M}$ and $L_{B N}$ and their transversal $L_{A B}$. On $L_{A B}$, choose points E and F so that A is between E and B and the point B is between A and F, as shown. Because the two angles $\angle B A M$ and $\angle F B N$ both lie in the closed half-plane $\overline{\mathcal{H}}$ of $L_{A B}$, they are corresponding angles with respect to $L_{A M}$ and $L_{B N}$. Now $|\angle B A M|=\frac{1}{2}|\angle B A C|<\frac{1}{2} \cdot 180^{\circ}=90^{\circ}$, therefore $\angle B A M$ is acute. On the other hand, $\angle N B A$ is also acute for the same reason, and therefore its supplementary angle $\angle F B N$ is obtuse. It follows that $\angle B A M$ and $\angle F B N$ are not equal. By Theorem G18 on page 277 of RNLE, $L_{A M}$ and $L_{B N}$ are not parallel and hence must intersect. It remains to show that their point of intersection lies in \mathcal{H}. If not, then let their point of intersection Q lie in the opposite half-plane of \mathcal{H} with respect to $L_{A B}$.

As we have observed above, $\angle B A M$ and $\angle N B A$ are both acute, and therefore their respective supplementary angles, $\angle Q A B$ and $\angle A B Q$, must be obtuse. This implies that the angle sum of $\triangle Q A B$ exceeds 180°, a contradiction (see Theorem G32 in Section 6.5 of Algebra and Geometry). Therefore Q has to lie in \mathcal{H} and Lemma 2 is
proved.

We can now finish the proof of the first half of the Main Theorem. Since the angles of the polygon \mathcal{P} all have equal degrees, we may denote this common degree by d°. So let $\mathcal{P}=A_{1} A_{2}, \cdots A_{n}$ as before. Let the angle bisectors of $\angle A_{1}$ and $\angle A_{2}$ meet at a point O. Let L be the line containing the side $A_{1} A_{2}$. By Lemma 2, O lies in the half-plane \mathcal{H} of L that contains \mathcal{P}. Join $O A_{3}$, as shown.

Consider the two triangles, $\triangle O A_{1} A_{2}$ and $O A_{3} A_{2}$. We claim: $\triangle O A_{1} A_{2} \cong O A_{3} A_{2}$. This follows from SAS because $\left|\angle O A_{2} A_{1}\right|=\left|\angle O A_{2} A_{3}\right|=\frac{1}{2} d^{\circ},\left|A_{1} A_{2}\right|=\left|A_{3} A_{2}\right|$ (by the hypothesis on \mathcal{P}), and the two triangles have the side $O A_{2}$ in common. Hence $\left|\angle O A_{3} A_{2}\right|=\left|\angle O A_{1} A_{2}\right|=\frac{1}{2} d^{\circ}$. Since $\left|\angle A_{3}\right|=d^{\circ}$ by the hypothesis on \mathcal{P}, this suggests that $O A_{3}$ is the angle bisector of $\angle A_{3}$. This will be true as soon as we can show that O lies in $\angle A_{3}$. A priori, however, this need not be the case because O and A_{4} could conceivably lie in opposite half-planes of the line containing A_{2} and A_{3}, as the following picture shows.

To show that this anomaly doesn't happen, we observe that the ray $A_{2} O$ is the angle bisector of $\angle A_{2}$ and is, in particular, in the convex $\angle A_{2}$. Let L_{23} be the line
containing $A_{2} A_{3}$. Then O and A_{1} lie in the same half-plane of L_{23} (see page 236 of RNLE). Call this half-plane \mathcal{H}_{23}. Since A_{1} lies in \mathcal{H}_{23}, by Lemma 1 , the polygon \mathcal{P} itself lies in the closed half-plane $\overline{\mathcal{H}_{23}}$ and therefore A_{4} also lies in \mathcal{H}_{23}.

Let O^{\prime} be a point in $\angle A_{3}\left(=\angle A_{2} A_{3} A_{4}\right)$ so that $A_{3} O^{\prime}$ is the angle bisector of $\angle A_{3}$. Observe that O^{\prime} being in $\angle A_{3}$ means that it lies in the half-plane of L_{23} that contains A_{4} and therefore O^{\prime} lies in \mathcal{H}_{23}. Thus, $\left|\angle A_{2} A_{3} O^{\prime}\right|=\frac{1}{2} d^{\circ}$. Now consider the two convex angles, $\angle A_{2} A_{3} O^{\prime}$ and $\angle A_{2} A_{3} O$: they have one side in common (the ray from A_{3} to A_{2}), O and O^{\prime} lie in the same half-plane \mathcal{H}_{23} of L_{23}, and $\left|\angle A_{2} A_{3} O\right|=\left|\angle A_{2} A_{3} O^{\prime}\right|=\frac{1}{2} d^{\circ}$. By Lemma 4.10 on page 190 of RNLE, the other sides of the angles coincide, i.e., $A_{3} O$ is the angle bisector of $\angle A_{3}$.

We may now look at O as the point of intersection of the angle bisectors of $\angle A_{2}$ and $\angle A_{3}$. A similar reasoning then shows that $O A_{4}$ is the angle bisector of $\angle A_{4}$, etc. In summary, the angle bisectors of all the angles $\angle A_{i}$, for $i=1,2, \ldots, n$ pass through the point O.

It remains to observe that O is equidistant from all the vertices A_{i} for $i=$ $1,2, \ldots, n$. This is because, for example, in $\triangle O A_{1} A_{2}$, the angles $\angle O A_{1} A_{2}$ and $\angle O A_{2} A_{1}$ are equal as they have the same degree, $\frac{1}{2} d^{\circ}$. Thus, $\left|O A_{1}\right|=\left|O A_{2}\right|$ (Theorem G29 in Section 6.2 of Algebra and Geometry). Similarly, $\left|O A_{1}\right|=\cdots=\left|O A_{n}\right|$, and therefore the circle with center O and radius $\left|O A_{1}\right|$ passes through all the vertices of \mathcal{P}. The proof of the first half of the main theorem is complete.

Proof: Second part

We next prove the converse: If a polygon whose sides have the same length and whose angles have the same degree can be inscribed in a circle, then it is convex.

We will prove something more general, which is of independent interest. .

Lemma 3. A polygon inscribed in a circle is convex.

Before embarking on the proof of Lemma 3, we would like to give a heuristic argument (not a proof) for a special case: If a polygon (pictured below as a pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$) is inscribed in a circle O and all its sides have the same length and all its angles have the same degree, how can we see intuitively that it has to be convex?

If we join all the vertices to the center O, then all the triangles, $\triangle A_{i} O A_{i+1}$ for $i=1,2,3,4,5$ (with $A_{6}=A_{1}$ understood), are congruent because of SSS. Therefore the central angles $\angle A_{i} O A_{i+1}$ for $i=1,2,3,4,5$ are all equal and, together, they fill up the full angle of 360° at O (remember that an angle is a region in the plane, not two rays). The vertices are thus "evenly distributed" on the circle O. Denote the line that contains the side $A_{i} A_{i+1}$ by $L_{i i+1}$ (recall $A_{6}=A_{1}$). Then each of the five lines, $L_{12}, L_{23}, \ldots, L_{51}$, has the special property that its closed half-plane that contains the center O also contains all the vertices of the polygon.

To appreciate the last statement, observe that it is false for a general pentagon. For example, the half-plane of the line L_{34} in the picture to the right that contains the center O does not contain the other vertices A_{1}, A_{2}, and A_{5}. If these vertices were "evenly distributed", then none of the vertices A_{2}, A_{1}, and A_{5} could have
 been squeezed into the "upper" arc $\widetilde{A_{3}} A_{4}$.

Now back to our heuristic argument about a polygon inscribed in a circle with equal sides and equal angles. Denote the closed half-plane of $L_{i i+1}$ that contains the center O by $\mathcal{H}_{i i+1}$ for $i=1,2,3,4,5$ (with $\mathcal{H}_{56}=\mathcal{H}_{51}$ understood). Glancing at the previous picture of a pentagon with vertices evenly distributed on the circle, one would be inclined to believe that the polygonal region enclosed by the pentagon is exactly the intersection of the closed half-planes $\mathcal{H}_{12}, \mathcal{H}_{23}, \mathcal{H}_{34}, \mathcal{H}_{45}$, and \mathcal{H}_{51}. But a closed half-plane of a line is convex, and intersections of convex sets are convex. So the polygonal region enclosed by $A_{1} A_{2} A_{3} A_{4} A_{5}$ is convex, and $A_{1} A_{2} A_{3} A_{4} A_{5}$ is, by definition, a convex polygon.

Proof of Lemma 3. Let \mathcal{P} be the polygon $A_{1} A_{2} \cdots A_{n}$ inscribed in a circle $O(O$ being the center). The idea is to make use of the idea in the preceding heuristic argument: show that the polygonal region of \mathcal{P} is equal to the intersection of a finite number of closed half-planes.

Let the closed disk inside circle O be denoted by $\overline{\mathcal{D}}$ as usual. Note that $\overline{\mathcal{D}}$ is convex (Theorem G47 in Algebra and Geometry). Let the line containing the chord $A_{i} A_{i+1}$ be denoted by $L_{i i+1}$ as before. Then the intersections of the circle O with the two closed half-planes of $L_{i i+1}$ are called the opposite arcs determined by the chord $A_{i} A_{i+1}$ (see Section 6.8 in Algebra and Geometry). We will need the following two observations.

Observation 1 . Let $1 \leq i \leq n$. Of the two opposite arcs determined by the chord $A_{i} A_{i+1}$ (always with $A_{n+1}=A_{1}$ understood), one of them contains no vertex of \mathcal{P} other than A_{i} and A_{i+1} while the other arc contains all the vertices of \mathcal{P}.

Observation 1 allows us to introduce a notation: we will use $A_{i} \widehat{A}_{i+1}$ to denote the arc determined by the chord $A_{i} A_{i+1}$ that contains no vertex of \mathcal{P} other than A_{i} and A_{i+1}.

Observation 2. Any point on the circle O lies in $A_{i} \widehat{A}_{i+1}$ for some $i=1,2, \ldots n$ (again, by definition, $A_{n+1}=A_{1}$).

The reason for Observation 1 is as follows. Suppose A_{j} and A_{k} lie on opposite arcs of the chord $A_{i} A_{i+1}$ for some j and k (neither j nor k being equal to i or $i+1$) as shown below. By the definition of opposite arcs, A_{j} and A_{k} lie in opposite half-planes of the line $L_{i i+1}$ containing the chord $A_{i} A_{i+1}$. By assumption (L4), the segment $A_{j} A_{k}$ intersects the line $L_{i i+1}$ at some point to be called Q.

Since $\overline{\mathcal{D}}$ is convex, $A_{j} A_{k}$ lies in $\overline{\mathcal{D}}$ and therefore $Q \in \overline{\mathcal{D}}$. Since also $Q \in L_{i i+1}$, we have $Q \in L_{i i+1} \cap \overline{\mathcal{D}}$. By Lemma 6.4 in Section 6.8 of Algebra and Geometry, $L_{i i+1} \cap \overline{\mathcal{D}}$ is the chord $A_{i} A_{i+1}$. Thus $Q \in A_{i} A_{i+1}$, and we see that Q is the intersection of $A_{i} A_{i+1}$ and $A_{j} A_{k}$. But the two sides of a polygon cannot intersect except for adjacent sides at a common vertex, so this contradiction proves Observation 1.

Next, Observation 2 is a simple consequence of the fact that, with the vertices $A_{1}, A_{2}, \ldots, A_{n}$ of \mathcal{P} lying on the circle O, the union of the $\operatorname{arcs} \widehat{A_{1}} A_{2}, \widetilde{A_{2}} A_{3}$, $\ldots A_{n} \widehat{A}_{n-1}$, and $\widehat{A_{n}} A_{1}$ is the circle O, as shown in the following picture.

We can now get serious about the proof of Lemma 3. According to Observation 1, a half-plane of $L_{i i+1}$ - which, we recall, does not contain $L_{i i+1}$ itself- either contains no vertex of \mathcal{P} or contains all the vertices of \mathcal{P} except A_{i} and A_{i+1}. Thus we can define for each $i=1,2, \ldots, n$,

$$
\begin{aligned}
& \mathcal{H}_{i i+1}^{-}=\text {the half-plane of } L_{i i+1} \text { that contains no vertex of } \mathcal{P} \\
& \mathcal{H}_{i i+1}^{+}=\text {the half-plane of } L_{i i+1} \text { opposite to } \mathcal{H}_{i i+1}^{-}
\end{aligned}
$$

Again, it is understood that $\mathcal{H}_{n n+1}^{+}=\mathcal{H}_{n 1}^{+}$and $\mathcal{H}_{n n+1}^{-}=\mathcal{H}_{n 1}^{-}$. Note that in this notation, we have

$$
\begin{equation*}
A_{i} \widehat{A}_{i+1}=\left\{\text { the closed half-plane of } \mathcal{H}_{i i+1}^{-}\right\} \cap \overline{\mathcal{D}} \tag{1}
\end{equation*}
$$

Because of Observation $1, \mathcal{H}_{i i+1}^{+}$contains every vertex of \mathcal{P} except A_{i} and A_{i+1}. Now let

$$
\begin{aligned}
B_{0} & =\bigcap_{i} \mathcal{H}_{i i+1}^{+}\left(=\text {the intersection of } \mathcal{H}_{12}^{+}, \mathcal{H}_{23}^{+}, \ldots, \mathcal{H}_{n 1}^{+}\right) \\
E_{0} & =\bigcup_{i} \mathcal{H}_{i i+1}^{-}\left(=\text {the union of } \mathcal{H}_{12}^{-}, \mathcal{H}_{23}^{-}, \ldots, \mathcal{H}_{n 1}^{-}\right)
\end{aligned}
$$

It is clear that B_{0} and E_{0} are both nonempty and that B_{0}, E_{0}, and \mathcal{P} are disjoint; the latter is the consequence of $\mathcal{H}_{i i+1}^{+}, L_{A_{i} A_{i+1}}$, and $\mathcal{H}_{i i+1}^{-}$being disjoint for every i (see Assumption (L4)(i) on page 176 of RNLE). Because each $\mathcal{H}_{i i+1}^{+}$(respectively, $\mathcal{H}_{i i+1}^{-}$) has the line $L_{i i+1}$ as its boundary, it is also easy to see that B_{0} (resp., E_{0}) has \mathcal{P} as its boundary and that the plane is the disjoint union of B_{0}, E_{0}, and \mathcal{P}.

We claim that B_{0} is bounded. In fact, we will show more:

$$
\begin{equation*}
B_{0} \subset \text { the closed disk } \overline{\mathcal{D}} \tag{2}
\end{equation*}
$$

We will prove this by contradiction. Suppose it is false, then there is a point $Q \in B_{0}$ in the exterior of the circle O. Since Q is in B_{0}, we have $Q \in \mathcal{H}_{12}^{+}$. Then Q is in the half-plane of L_{12} that contains $A_{3}, A_{4}, \ldots, A_{n}$. Let the segment $A_{1} Q$ intersect the circle O at a point $V{ }^{1}$ By Observation 2, V lies in $A_{i} \widehat{A}_{i+1}$ for some i.

Suppose V lies in $\widehat{A_{1}} A_{2}$. From the assertion in (1), V lies in \mathcal{H}_{12}^{-}, contradicting the fact that Q lies in \mathcal{H}_{12}^{+}. So $i \neq 1$. The reasoning for all the cases where $i \geq 2$ is similar, so let us say V lies in $\widetilde{A_{4}} A_{5}$. There are two possibilities. First, assume V is equal to one of the endpoints of the arc, say $V=A_{4}$, as in the picture on the left.

Then Q and A_{1} lie in opposite half-planes of the line L_{45} since the segment $A_{1} Q$ intersects L_{45} at A_{4}. Recall: \mathcal{H}_{45}^{+}is the half-plane of L_{45} containing all the vertices of \mathcal{P} except A_{4} and A_{5}. Therefore A_{1} has to be \mathcal{H}_{45}^{+}. Consequently, Q, being in the opposite half-plane of L_{45}, must lie in \mathcal{H}_{45}^{-}. This contradicts the fact that Q, being in B_{0}, lies in \mathcal{H}_{45}^{+}. So V cannot be an endpoint of the arc $\widetilde{A_{4}} A_{5}$.

It remains to consider the case of V lying in $\widetilde{A_{4}} A_{5}$ but not equal to A_{4} or A_{5}, as in the above picture on the right. By the assertion in (1), V is in the half-plane \mathcal{H}_{45}^{-}. But as before, since the half-plane of L_{45} that contains A_{1} is by definition the half-plane $\mathcal{H}_{45}^{+}, A_{1}$ and V lie in opposite half-planes of the line L_{45}. It follows that the segment $A_{1} V$ intersects L_{45} and, a fortiori, the segment $A_{1} Q$ also intersects the line L_{45}. Therefore A_{1} and Q lie in opposite half-planes of L_{45}. As A_{1} lies in \mathcal{H}_{45}^{+}, Q has to be in \mathcal{H}_{45}^{-}. Again, this contradicts the fact that Q, being in B_{0}, lies in \mathcal{H}_{45}^{+}.

Altogether, we see that there can be no such point Q in the exterior of the closed disc $\overline{\mathcal{D}}$. This proves the assertion in (2) and it follows that B_{0} is bounded (i.e., B_{0} is

[^1]contained in some closed disk).
By the last part of Theorem 4.13, the union of B_{0} and \mathcal{P} is the polygonal region of \mathcal{P}. It is now easy to see that the union of B_{0} and \mathcal{P} is equal to the intersection of the closed half-planes of $\mathcal{H}_{i i+1}^{+}$for $i=1,2, \ldots, n$. Since closed half-planes are convex (Exercise 9 in Exercises 4.1 on page 180 of RNLE) and the intersections of convex sets are convex (Exercise 7 in Exercises 4.1 on page 180 of RNLE), the polygonal region enclosed by \mathcal{P} is convex. By definition, \mathcal{P} is a convex polygon and the proof of Lemma 3 is complete.

We have proved the Main Theorem.

Exercises

1. Let \mathcal{P} be a convex polygon $A_{1} A_{2} \cdots A_{n}$ and let L_{i} be the line containing the side $A_{i} A_{i+1}, i=1,2, \ldots, n$ (with $A_{n+1}=A_{1}$ understood). Prove that the polygonal region of \mathcal{P} is equal to the intersection of all the closed half-planes of L_{i} containing the polygon \mathcal{P} for $i=1,2, \ldots, n-1$
2. If \mathcal{C} is a circle with center O, let A_{1}, A_{2} be two points on \mathcal{C} so that $\left|\angle A_{1} O A_{2}\right|=$ $\frac{360}{n}$ degrees for a positive integer n. Let ϱ be the rotation of $\frac{360}{n}$ degrees around the center O so that $\varrho\left(A_{1}\right)=A_{2}$. Now let $A_{3}=\varrho\left(A_{2}\right), \quad A_{4}=\varrho\left(A_{3}\right), \ldots$, $A_{n}=\varrho\left(A_{n-1}\right)$. Prove that $A_{1}=\varrho\left(A_{n}\right)$, and that $A_{1} A_{2} \cdots A_{n}$ is a regular n-gon.

[^0]: *I wish to thank Larry Francis for his excellent editorial assistance.

[^1]: ${ }^{1}$ We will assume the existence of this point of intersection V without proof, as the proof requires an understanding of the real numbers that is beyond the level of school mathematics. However, see the discussion near the top of page 195 in RNLE.

