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Preface

Training has no shortcuts.

Golden State Warriors
Ramp Run video,
October 24, 2012

([GoldenState])

This volume and its companion volume—Teaching School Mathematics:
Algebra ([Wu-Alg])—address the mathematics that is generally taught in
grades 5–9. They are not student texts, however, because they have been
written expressly for teachers, especially middle school teachers. These
two volumes are designed not to show you how mathematics is really just
common sense and lots of fun, but to help you teach the mathematics of
middle school in a way that meets the minimal standards of human com-
munication. In other words, problems are solved without recourse to tricks
or any ad hoc sleight-of-hand, every step is explained logically using only
concepts and skills already developed, and every concept is clearly defined
so that no clever guessing is needed for its understanding. There may be
an added bonus in that the mathematical development of these volumes
parallels that of the Common Core State Standards for Mathematics ([CC-
SSM]) for middle school.

These volumes differ from the usual presentations found in standard
school textbooks (and professional development materials as well) in sub-
stantial ways. First and foremost, the presentations in the standard text-
books, be they traditional or reform, are riddled with mathematical errors,
thanks to Textbook School Mathematics (TSM).1 While the Table of Contents
bears a superficial resemblance to what you normally find in school text-
books and other professional development materials, there are major dif-
ferences in terms of precision, sequencing, and reasoning. It is hoped that
these volumes will lead you to rethink some of this material even if you
believe you already know it very well.

1This is the name given to the mathematics in almost all standard school mathematics
textbooks of roughly the past four decades. It is notable for being antithetical to the five
principles listed on pages xv ff. A more elaborate discussion of TSM can be found in
[Wu2013b] and [Wu2015].

xi
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xii PREFACE

The first major departure from TSM in these volumes is the treatment
of fractions and rational numbers. Fractions (and rational numbers) are
the backbone of K–12 mathematics and are therefore the centerpiece of
not only these two volumes, but also the other volumes written for teach-
ers: [Wu2011a] and [Wu-HighSchool]. Contrary to the prevailing norm in
mathematics education, these volumes will ask you to spread the message
that:

(1) Fractions are numbers that you can compare to see which is big-
ger, and can add, subtract, multiply, and divide.

(2) The number line is home for all (real) numbers, including whole
numbers, fractions, and rational numbers.

(3) Fractions of a fixed denominator, when viewed as multiples of the
corresponding unit fraction, are just like whole numbers, at least
in terms of addition and subtraction.

(4) Students should get to know what a fraction is and what it means
to add, subtract, multiply, and divide fractions before they per-
form the formal procedures of fraction arithmetic.

(5) The least common denominator is not needed for adding fractions,
and there is no compelling mathematical reason to insist that frac-
tions be always reduced to lowest terms.

(6) Finite decimals are a special class of fractions.
(7) Everything we need to know about fractions, including multipli-

cation and division, can be explained using the definition of a
fraction as a point on the number line.

(These emphases were first put forth in [Wu1998], and can be found in
complete detail in [Wu2002]; they are also present in [Jensen].)

A second major departure lies in the heavy emphasis placed on geom-
etry in the middle school curriculum, especially on giving precise defini-
tions for the concepts of congruence and similarity. According to TSM,
congruence means same size and same shape and similarity means same shape
but not necessarily the same size. As mathematics, this is unacceptable be-
cause “same size” and “same shape” are words that can mean different
things to different people, whereas mathematics only deals with clear and
unambiguous information. What these volumes promote is a different ap-
proach to the teaching of these concepts. Take congruence, for example.
First make sure that you know what translations, reflections, and rota-
tions are, then devise hands-on activities for your students to familiarize
themselves with these transformations, and, finally, teach them that, by
definition, two geometric figures are congruent if one figure can be carried onto
the other by the use of a finite number of translations, reflections, and rotations.
Conceptually the same thing can be said about similarity. These volumes
will help you acquire the requisite knowledge you need to teach congru-
ence and similarity differently—and better.
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PREFACE xiii

The heavy emphasis on geometry all through both volumes is moti-
vated by the fact that—contrary to what TSM would have you believe—
familiarity with similar triangles is absolutely crucial to the learning of lin-
ear equations in algebra, particularly the concept of the slope of a line (see
Chapter 3 of [NMP2], [Wu2010b], and [Wu2010c]). Students’ understand-
ing of the concept of slope is a main stumbling block in beginning algebra
(see, e.g., [Postelnicu]), and one of the contributions of these volumes is
a different approach to the definition of slope that is more intuitive and
makes entirely obvious why certain lines have negative slope (see Section
4.3 in [Wu-Alg]).

While the geometric topics taken up are, with but one exception,2

what one normally finds in the standard middle school curriculum—
translations, reflections, rotations, congruence, length, area, volume, etc.—
they are not taken up as fun, optional activities. Rather, these are topics
that are essential for the learning of algebra and, to that end, are put to
use in [Wu-Alg] for substantive logical reasoning in the discussion of the
graphs of linear equations, linear functions, linear inequalities, and qua-
dratic functions. For example, having a correct definition of the slope of
a line makes it possible for teachers to explain, and for students to under-
stand (rather than merely memorize), why the graph of a linear equation
ax + by = c is a line (see Section 4.4 in [Wu-Alg]). The absence of this
reasoning in TSM has made the writing down of the equation of a line that
satisfies certain geometric data a fearsome task to many students of alge-
bra. But teachers who have been exposed to this reasoning will begin to
see how they might teach the graphing of linear equations differently and
liberate their students from this fear, because reasoning can now replace
rote memorization.

Beyond the implications for the teaching of algebra, the other reason
for the emphasis on geometry in the middle school curriculum is that
translations, rotations, reflections, and dilations provide a much more ac-
cessible introduction to the staple of a rigorous high school course on ge-
ometry: the study of triangles and circles (cf. Volumes I and II of [Wu-
HighSchool]). Because the learning of these transformations can be made
more accessible and greatly expedited through the use of hands-on geo-
metric experiments, the hands-on experiences serve to demystify congru-
ence and similarity for students. At a time when the school geometry
curriculum is beset by issues of fragmentation (because of the disconnect
between middle school geometry and high school geometry) and meaning-
less abstraction (as a result of the rote application of the axiomatic method
in a school setting), the middle course offered in these volumes is one po-
tential solution to this pressing curricular problem. For a more detailed
discussion of these ideas, see Section 4.1 on page 229.

2The one exception is the concept of dilation.
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xiv PREFACE

The final major departure from TSM in these volumes is the emphasis
put on the careful use of symbols. The concept of a “variable” is at present
the scourge of middle school mathematics that bars any meaningful entry
into algebra. In mathematics, “variable” is no more than an informal piece
of terminology that serves to remind us of an element in the domain of a
function. Yet in TSM and the education literature, “variable” has been ele-
vated to the status of a mathematical concept. The inevitable result of such
an aberration is to make introductory algebra unlearnable. The whole of
the companion volume [Wu-Alg] will testify to the fact that when careful
attention is given to the correct use of symbols, rather than to the contor-
tions involved in trying to make sense of “variable”, every foundational
concept and skill in introductory algebra (what is an equation? what does
it mean to solve an equation? what is an expression? etc.) gains in clarity
and conceptual simplicity, and algebra becomes once again a potentially
learnable subject.

Although these two volumes (an expansion of [Wu2010b] and
[Wu2010c]) have been used in my professional development institutes
since 2006, it has been difficult to convince teachers to put such a mathe-
matical development directly to use in their classrooms. Their reluctance is
entirely understandable because doing so would entail the need to develop
new classroom lessons—and probably new curricular units—on their own.
It would also require them to teach against the existing curriculum of TSM.
For example, according to TSM, fractions are best understood through the
use of analogies and metaphors (compare the critique in pages 34–39 of
[Wu2008]), the concept of a “variable” is central to middle school math-
ematics (page 102 of [NCTM]), and similar triangles are irrelevant to the
learning of school algebra (look up almost any school algebra textbook
in K–12 in the past four decades). It is unfair to ask teachers to single-
handedly defy such an entrenched tradition.

This situation has changed somewhat with the advent of the Com-
mon Core State Standards for Mathematics (CCSSM) (see [CCSSM]). The
CCSSM have come to substantial agreement with the main advocacies of
these volumes,3 especially the three major departures from TSM men-
tioned above. A recent article in Education Week ([Heitin]) indicates that,
perhaps, educators have finally come around to embracing the main em-
phases on the teaching of fractions in (1)–(7) above (one can gain a little
historical perspective on this issue by reading Chapter 24 of [Wu2011a]).
It should now be easier to convince teachers to learn and apply the con-
tent of these volumes (and to convince their administrators to allow them
to do so) because the CCSSM are now being implemented in most states.
This fact acquires additional significance because on the one hand, school
textbooks in general have not risen to the challenge of the CCSSM as of

3The document [Wu2010b] is the same document as the one cited as “Wu, H. ‘Lecture
Notes for the 2009 Pre-Algebra Institute,’ September 15, 2009” on page 92 of [CCSSM].
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PREFACE xv

November 2015, and on the other, there seems to be no other complete
mathematical exposition of middle school mathematics that is consistent
with the CCSSM—this is especially true for fractions, negative numbers,
and geometry. My hope is that these volumes can double as a stopgap
measure at a time when the implementation of the CCSSM seems not too
sure of its mathematical footing.

An original impetus for the writing of these volumes was to help solve
our nation’s severe mathematics education crisis.4 Back in 2004 when
this work was first conceived, the CCSSM did not exist, but the glaring
defects of TSM could not be ignored. There are good reasons to believe
that the writing of the CCSSM was inspired by this same crisis. It is finally
time to banish from schools the jumbled, chaotic, and even downright
anti-mathematical presentations that characterize and pervade TSM. To
this end, the present volumes strive to improve mathematics teaching
by emphasizing, throughout, the following five fundamental principles
(compare [Wu2011b]):

(I) Precise definitions are essential. In mathematics, precise definitions
are the bedrock on which all logical reasoning rests, because mathematics
does not deal with vaguely conceived notions. Yet definitions are looked
upon with something close to disdain by most teachers (and students) as
just “more things to memorize”. Such a fundamental misconception of
the basic structure of mathematics can only come from the TSM we all re-
member from our own schooling and now teach again to our students, and
from the flawed professional development we provide for our teachers. In
these volumes, we will respect this fundamental characteristic of mathe-
matics by offering—and employing—precise definitions for every concept,
including those that are commonly used, yet remain undefined, in TSM:
fractions, decimals, sum of fractions, product of fractions, division of fractions,
ratio, percent, rate, equation, congruence, similarity, slope of a line, graph of an
inequality, polygon, length, area, etc.

(II) Every statement must be supported by reasoning. There are no unex-
plained assertions in these volumes.5 If something is true, a logical ex-
planation will be given. Although it takes some effort to learn the logical
language used in mathematical reasoning, in the long run the presence of
reasoning in all we do has the advantage of disarming disbelief and remov-
ing the stress of learning-by-rote. It also has the salutary effect of putting
the learner and the teacher on the same footing, because the ultimate ar-
biter of truth will no longer be the teacher’s or the textbook’s authority,
but the compelling rigor of the reasoning.

4See, for example, [Askey], [RAGS], and [NMP1].
5Except those few explicitly designated as such, because their proofs require advanced

mathematics.
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xvi PREFACE

(III) Mathematical statements are precise. In mathematics, there is no room
for imprecision because imprecision leads to misunderstanding and there-
fore errors. TSM, however, is rife with imprecision, saying things such
as “the pizza is the whole” in the study of fractions. This leads to mis-
conceptions about the “whole” being a shape (the circle), whereas what is
meant mathematically is that the whole is the area of the pizza. TSM also
defines percent to be out of a hundred. This then leaves students confused
as to whether percent is an “action” or a number. If it is an “action”, how
does one add and divide “actions”, and if it is a number, what kind of
number is it? It is difficult to imagine how mathematics learning can take
place when learners’ minds are beset by such confusion. Another example
is TSM’s claim that “multiplication and division are inverse operations;
they undo each other”. But given two numbers such as 2 and 3, we have
2 × 3 = 6 and 2 ÷ 3 = 2

3 . TSM does not explain in which way 6 and 2
3

undo each other. What is meant is that if we fix a number k ( �= 0), then the
operation of multiplying a given number by k followed by the operation of
dividing the resulting number by k leaves the given number unchanged;
in this sense, multiplication and division indeed undo each other. It would
seem, however, that even this much precision is unattainable by TSM. This
is another reason why TSM is unlearnable.

This lack of precision is by no means limited to elementary school
mathematics; it pervades the K–12 curriculum. On the high school level,
for example, the definition that 3−x = 1/3x is too often offered amidst
a flurry of heuristic arguments that leave the readers with the impression
that the equality 3−x = 1/3x has been proved. Such persistent ambiguities
consequently leave many students as well as teachers confused about the
difference between a definition and a theorem.

(IV) Mathematics is coherent. The concept of mathematical coherence is
often brought up in educational discussions nowadays, but it is not some-
thing that can be understood through verbal descriptions any more than
the transcendental serenity of the adagio in the Schubert C major quintet
can be appreciated through the reading of an essay praising its beauty.
Very crudely speaking, the coherence of mathematics refers to the fact that
the body of knowledge that is mathematics has a tightly-knit structure,
but the only way one can get to know and appreciate this structure is
by wading into its details. For example, the concept of similarity in Sec-
tion 4.7 on page 320 relies on a knowledge of multiplying and dividing
fractions (Sections 1.5 and 1.6 on pages 56 and 70, respectively) and con-
gruence (Section 4.5 on page 287), and is itself used in a crucial way for
the definition of slope (Section 4.3 in [Wu-Alg]). Another example is the
omnipresence of the theorem on equivalent fractions in the discussion of
almost every topic in fractions, when TSM would have you believe that
it is only useful for simplifying fractions. Yet another example is the key
role played by congruence not only in the definition of similarity (Section
4.7 on page 320) but also in the considerations of length, area, and volume

Downloaded from bookstore.ams.org



PREFACE xvii

(see Chapter 5). As a final example, you will notice that the division of
whole numbers, the division of fractions (Section 1.6 on page 70), and the
division of rational numbers (Section 2.5 on page 174) are conceptually
identical.

The coherence of mathematics makes mathematics more teachable and
more learnable. This can be easily understood by an analogy: whereas
one can pore over a page from a phone book without any recollection of
what has been read afterwards, almost all readers have vivid memories of
Don Quixote—all one thousand pages of it—even after only one reading,
because it tells a coherent story.

Although coherence is difficult to describe, the lack of coherence can be
more easily illustrated. A striking example of the failure of coherence in
TSM is the common explanation of the theorem on equivalent fractions,
which states that m

n = km
kn for all fractions m

n and for all positive integers k.
TSM would have you believe that this is true because

m
n

= 1 × m
n

=
k
k
× m

n
=

km
kn

.

However, the last step depends on knowing how to multiply fractions, and
the multiplication of fractions is a topic that comes late in the development
of the subject.6 When the reasoning for the basic theorem in fractions—
the theorem on equivalent fractions—is given in terms of something more
complex and, in any case, not yet available, how can we expect students to
learn? Unfortunately, such subversions of logic abound in TSM.

(V) Mathematics is purposeful. Mathematics is goal-oriented, and
every concept or skill in the standard curriculum must be there for a
purpose. Teachers who recognize the purposefulness of mathematics gain
an extra tool for making their lessons more compelling and, therefore,
more learnable. When congruence and similarity are taught with no
apparent purpose except to do “fun activities”,7 students lose sight of the
mathematics and may wonder why they are required to learn it. However,
as noted above, the concept of congruence lies behind the concept of
similarity, and both are needed to make sense of basic issues in algebra
such as linear equations of two variables and their graphs, e.g., why is the
graph of such an equation a (straight) line? Students are more likely to
feel motivated to learn if presented with a curriculum that actually offers
explanations of why its basic facts are worth learning.

6Multiplication is the most subtle among the four arithmetic operations on fractions.
Its definition is nontrivial; the proof of the product formula is sophisticated; and its rela-
tionship with the area of a rectangle (with fractional sides) is subtle. See Section 1.5 on
page 56.

7This has been happening all too often lately as a result of the misunderstanding of
the CCSSM propagated by people immersed in TSM.
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Middle school mathematics is the bridge that leads from fairly concrete
concepts about numbers in elementary school to more abstract concepts
in algebra, geometry, and trigonometry in high school. Our nation’s
curriculum is traditionally weak in middle school; one can almost say
that it has been delinquent in its failure to provide careful guidance for
students’ transition from the concrete to the abstract. The teaching of TSM
has become the norm in those years. Instead of giving precise instruction
on the correct use of symbols and explaining the need for the idea of
generality in students’ next step on their mathematical journey, TSM harps
on the alleged profundity of the fictitious concept of a “variable”; instead
of guiding students’ tentative first steps to think abstractly about negative
numbers, TSM redirects them to replace abstract thinking by analogies
and heuristic patterns. By contrast, this volume and its companion
volume [Wu-Alg] take this bridge seriously. They confront the necessary
abstractions without compromise, but they do so by building on the
foundation of elementary school mathematics (cf. [Wu2011a]). I hope
these volumes will initiate change by making you more aware of the
overriding importance of this bridge in students’ mathematics learning
trajectory. Ultimately, the goal of these volumes is to help you teach your
students better.

Acknowledgements. This volume and its companion volume [Wu-
Alg] evolved from the lecture notes ([Wu2010b] and [Wu2010c]) for the
Pre-Algebra and Algebra summer institutes that I used to teach to mid-
dle school mathematics teachers from 2004 to 2013. My ideas on profes-
sional development for K–12 mathematics teachers were derived from two
sources: my understanding as a professional mathematician of the min-
imum requirements of mathematics (see the five fundamental principles
on pages xv ff.) and the blatant corrosive effects of TSM on the teaching
and learning of mathematics. Those summer institutes therefore placed a
special emphasis on improving teachers’ content knowledge. I would not
have had the opportunity to try out these ideas on teachers but for the
generous financial support from 2004 to 2006 by the Los Angeles County
Office of Education (LACOE), and from 2007 to 2013 by the S. D. Bech-
tel, Jr. Foundation. Because of the difficulty I have had with funding by
government agencies—they did not (and perhaps still do not) consider the
kind of content-based professional development I insist on to be worthy
of support—my debt to Henry Mothner and Tim Murphy of LACOE and
Stephen D. Bechtel, Jr. is enormous.

Through the years, I have benefited from the help of many dedicated
teachers; to Bob LeBoeuf, Monique Maynard, Marlene Wilson, and Betty
Zamudio, I owe the corrections of a large number of linguistic infelicities
and typos, among other things. Winnie Gilbert, Stefanie Hassan, and Sunil
Koswatta were my assistants in the professional development institutes,
and their comments on the daily lectures of the institutes could not help
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but leave their mark on these volumes. In addition, Sunil created some
animations (referenced in Chapters 2 and 4) at my request. Phil Daro gra-
ciously shared with me his insight on how to communicate with teachers.
Sergei Gelfand made editorial suggestions on these volumes—including
their titles—that left an indelible imprint on their looks as well as their
user-friendliness. R. A. Askey read through a late draft with greater care
than I had imagined possible, and he suggested many improvements as
well as corrections. I shudder to think what these volumes would have
been like had he not caught those errors. Finally, Larry Francis helped
me in multiple ways. He created animations for me that can be found in
Chapter 4. He is also the only person who has read almost as many drafts
as I have written. (He claimed to have read twenty-seven, but I think he
overestimated it!) He met numerous last minute requests with unfailing
good humor, and he never ceased to be supportive; more importantly, he
offered many fruitful corrections and suggestions.

To all of them, it gives me great pleasure to express my heartfelt thanks.
Hung-Hsi Wu

Berkeley, California
March 15, 2016
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CHAPTER 4

Experimental Geometry
4.1. Overview

In this chapter, we will be engaged mainly in an informal study of the
geometry of the plane, supplemented by a gentle introduction to proofs
of geometric theorems. The specific mathematical goals are twofold: to
make a working knowledge of similar triangles an integral part of the
middle school curriculum, and to set up the intuitive foundation for a
more precise discussion of the concepts of congruence and similarity in
high school geometry.

These are not quite the usual emphases in the conventional middle
school curriculum, and you may wonder about the call for change. A
meaningful explanation requires us to take a broad overview of three crit-
ical issues that directly impact the teaching of middle school and high
school geometry:

(1) The continuing crisis in the teaching of high school geometry.
(2) The role of similar triangles in the study of linear equations of two

variables.
(3) The discontinuity between the middle school and high school ge-

ometry curricula in TSM.1

A more expansive discussion follows.
(1) The continuing crisis in the teaching of high school geometry.
The teaching of high school geometry has been broken for more than

four decades, if not much longer. Until the 1990’s, it was always taught à
la Euclid, starting with axioms. For the first month or two, such a course
would be devoted to a mind-numbing litany of definitions, axioms, and
proofs of boring, obvious statements that were offered as theorems. A
well-known but notorious fact is that learning geometry in most class-
rooms became synonymous with regurgitating memorized two-column
proofs. Worse still, those proofs were often constructed according to—not
the demands of mathematical reasoning—but the idiosyncratic demands

1See page xi for the definition.
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230 4. EXPERIMENTAL GEOMETRY

of a teacher’s grading policy.2 Nevertheless, the learning of axiomatic ge-
ometry was supposed to be all about reasoning and mathematical rigor.

The untenable situation inevitably triggered radical reactions. For the
past twenty years or so, it has been common practice to teach high school
geometry with no proofs but only engage students in hands-on activities
to verify the validity of geometric theorems. The reliance on hands-on ac-
tivities was aided by the serendipitous emergence of increasingly versatile
geometry computer software that made experimentations with geometric
figures—such as observing that the three medians of a triangle continue
to meet at a point even when the vertices are randomly altered—not only
painless but even “fun”. We will further address this aspect of the crisis
on page 234.

Students’ ability to reason
needs careful long-term
nurturing for it to develop;
it cannot be turned on and
off like a faucet.

There are at least three reasons for this
crisis. Foremost is the fact that, in TSM,
reasoning is absent everywhere except in
high school geometry where proofs are ex-
plicitly demanded. Not having learned
how to reason anywhere else in TSM, stu-
dents are suddenly asked—in 9th or 10th
grade—to write proofs, and for everything
to boot. The cynical mindset behind the

design of such a math curriculum would seem to regard students’ ability
to reason as something one can turn on and off like a faucet. Unfortu-
nately, the ability to reason needs careful long-term nurturing for it to
develop: students cannot go directly from a Proof-Free Zone to a Proof-
Only Zone and be expected to acquit themselves respectably. It therefore
came to pass that in most high school geometry courses that did not reject
proofs outright, the rote-teaching of two-column proofs and the attendant
rote-learning by students became the norm.

Axiomatization is an
organizational
afterthought. It is a
learning tool for the
mathematically
sophisticated, but usually
not for beginners.

Until reasoning is insisted upon every-
where in the K–12 math curriculum and
not just in geometry, it would be out of
the question to talk about geometry ed-
ucation in schools. On the other hand,
if students are accustomed to reasoning,
geometric proofs then become part of the
normal mathematical activities, and high
school geometry would not be the fiasco
that it is now.

A second reason for the crisis is the
rigid adherence to the axiomatic development of school geometry. The ax-
ioms of any axiomatic system are in general abstract, and the nature of

2Some of these practices are documented in the article, “When good teaching leads
to bad results” ([Schoenfeld]). As a side remark, however, one should raise the question:
what kind of an education system would consider such teaching to be “good”?
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an axiomatic development makes matters worse by hurling multiple ab-
stractions at learners right from the start, when they are ill-prepared for
such a mathematical onslaught. And the immediate payoff? A succession
of theorems that are glaringly obvious but which can only be proved by
abstract, formal reasoning (see, e.g., Chapter 2 of [Hartshorne]), as anyone
who has gone though a standard course in plane geometry knows only
too well. Even professional mathematicians often find this kind of tedious
reasoning to be daunting. What complicates things further is the fact that
the axiomatic system for plane geometry is among the most complex in
classical mathematics. It is pedagogically unsound to confront school stu-
dents with something this difficult at the beginning of their journey in
mathematics. Mathematics educators should realize that axiomatization is
an organizational afterthought. It is a learning tool for mathematically so-
phisticated learners, but not for others, and certainly not for K–12 students
in something as complicated as geometry.

The undesirability of the axiomatic treatment in high school geome-
try can also be seen, for example, in the way the concepts of congruence
and similarity—the two cornerstones of school geometry—are typically
taught. First students are told in K–8 that congruence is “same size and
same shape”, and that similarity is “same shape but not necessarily the
same size”. Then in high school, all that is forgotten because both concepts
now have to be tied down to abstract axioms about triangles. The decision
to teach high school geometry axiomatically therefore necessitates an un-
warranted disruption of students’ learning trajectory: whereas congruence
and similarity are taught, in middle school, as (imprecise) metaphors that
apply to all geometric figures, they suddenly become abstractions in high
school that apply only to triangles and polygons. This is not the way we
want to promote student learning.

We can do better for our K–12 students. We will do better in this
volume as well as in the companion volume [Wu-Alg].

A final reason for the crisis is the vicious cycle created by TSM: today’s
geometry teachers were themselves brought up in TSM geometry and—
because our colleges do not see fit to help them overcome TSM by teaching
them correct school mathematics—they have no choice but to teach the
same TSM geometry to their own students. In due course, some of these
students will become teachers and take their turn inflicting TSM geometry
on their own students. In this way, from one generation to the next, the crisis
becomes self-replicating.

(2) The role of similar triangles in the study of linear equations of two vari-
ables.

TSM makes believe that geometry is connected to school algebra only
through the setting up of a coordinate system in the plane or space and the
drawing of the graph of an equation or a function. What is hidden in TSM
is the fact that a solid foundation in introductory algebra has to be built on
a knowledge of similar triangles. TSM defines the slope of a (nonvertical)
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line L in the coordinate plane in the following way: let P = (p1, p2) and
Q = (q1, q2) be distinct points on L. Then the slope of L is the ratio
p2 − q2

p1 − q1
.

X

Y

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

!
!

P

Q

L

O

The first thing you should ask is whether this definition of slope is well-
defined, i.e., whether it makes sense. The answer is “not yet”, because if
A = (a1, a2) and B = (b1, b2) are two other points, also on L, is the slope of

L equal to
a2 − b2

a1 − b1
? In other words, which of these ratios should be the

slope of L:

p2 − q2

p1 − q1
or

a2 − b2

a1 − b1
?
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✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

!
!

B
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!
!
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After all, there are an infinite number of pairs of such points A and B
on L, and if the preceding ratios are not equal, which of these ratios should
be called “the slope of the line L”? Fortunately, it turns out that for any
points A and B on L, it is always the case that

(4.1)
p2 − q2

p1 − q1
=

a2 − b2

a1 − b1
.
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Therefore any such ratio formed from two distinct points on L can be used
as the definition of the slope of L. The fact that (4.1) is true requires the
proof that △ABC is similar to △PQR (△ stands for triangle).3 Unfortu-
nately, TSM does not bother to let students know about equation (4.1).

It is difficult to solve problems related to slope without the explicit
knowledge that slope can be computed by choosing any two points on the line
that suit one’s purpose, but this very fact is missing in TSM. The natural
consequence of this omission is students’ well-known difficulty with learn-
ing all aspects of the geometry of linear equations. Unable to confidently
base their work with slope on mathematical reasoning, they are forced to
memorize—often without success—the four forms of the equation of a line
(two-point, point-slope, slope-intercept, and standard) by brute force.

It may not be obvious, but this concern about the correct definition of
slope is fundamental to students’ learning of algebra. A recent survey
([Postelnicu-Greenes]) of students’ understanding of (straight) lines in in-
troductory algebra shows that the most difficult problems for them are
those requiring the identification of the slope of a line from its graph. Think
about this for a second: how can a straightforward, simple skill of com-
puting a division,

p2 − q2

p1 − q1
,

be the most difficult problem for students learning about lines unless, of
course, they don’t even understand what they are supposed to compute?
So they haven’t the foggiest idea of what slope is because this concept, as
taught in TSM, makes no sense to them. Any redesign of the geometry
curriculum must therefore tackle the issue of helping students acquire a
working knowledge of similar triangles before they take up the algebra of
linear equations.

“Curricular coherence” is a concept that is gaining currency in present-
day education discussions. If such discussions are to be taken seriously,
then the first order of business would have to be the cementing of this
curricular rupture between the study of similar triangles and the algebra
of linear equations.

(3) The discontinuity between the middle school and high school geometry
curricula in TSM.

A main topic of this chapter is how to use translations, reflections, and
rotations to define the concept of congruence. Here are two observations:

(a) In TSM, translations, reflections, and rotations are
taught in the middle school curriculum, without men-
tioning congruence, as tools for art appreciation (sym-
metries), but in high school, they are tagged on—as an

3See Section 4.3 in [Wu-Alg] for the details.
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afterthought—at the end of the geometry course to sup-
plement the concept of congruence. The relationship be-
tween congruence on the one hand and translations, re-
flections, and rotations on the other seems tenuous at
best.

(b) In K–8, congruence is “same size and same shape”,
and similarity is “same shape but not necessarily the same
size”. In high school, congruence and similarity are defined
anew without any reference to “size” or “shape”, but only
for polygons in terms of degrees of angles and lengths of
segments. There is no more reference to “size”, “shape”,
or any geometric figure that is not a polygon.

This blatant chasm between middle school and high school geometry is
presumably not an example of “curricular coherence”.

Any reasonable school geometry education therefore must ease the
progression from middle school to high school by bridging the preced-
ing discontinuity and minimizing unnecessary abstractions. As mentioned
above, it must also introduce similar triangles into middle school to sup-
port the teaching of algebra. These are the problems confronting any rea-
sonable attempt at revamping the school geometry curriculum. Unfortu-
nately, the only such attempt we have on record would seem to be the
radical solution offered in the 1990’s that replaced the teaching of high
school geometry with hands-on activities alone containing no proofs at all.
See, e.g., [Serra]. Clearly, if a main issue with high school geometry is
the pervasive lack of reasoning, then one should not tackle this issue by
abandoning reasoning altogether. After all, two wrongs do not make a
right.

The present volume, together with Volumes I and II of [Wu-
HighSchool], directly address these three critical issues in the teaching
of school geometry.

This chapter begins by outlining a series of activities in geometry that
are designed to foster the acquisition of geometric intuition. In the process,
it also acquaints the reader with some working vocabulary and concepts
in geometry. The chapter then goes on to introduce translations, reflec-
tions, rotations, and dilations, mainly through the use of transparencies
and drawings. It culminates in the precise definitions of congruence and
similarity, as well as the explanations for some basic theorems related to
similarity that make possible a correct definition of the slope of a line. The
emphasis throughout will be on the applications of the concepts of congru-
ence and similarity and not so much on the internal logical structure that
underlies these concepts. The intention is to lay a robust intuitive foun-
dation for a more precise and more proof-oriented high school course in
geometry. Indeed, such a course can be developed—with precise assump-
tions and proofs—as a direct continuation of this intuitive treatment. See
Volumes I and II of [Wu-HighSchool].
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Developing students’ geometric intuition is important because, with-
out it, the learning of geometry will forever stay on a formal level and
therefore be easily forgotten. This chapter will not be overly concerned
with total precision or total accuracy; all the concepts introduced can be
formally defined and all proofs can be logically tightened in a course for
high school. Rest assured, however, that except for a few missing details,
every concept in this chapter has been defined correctly and every proof is
valid. The reason for sidestepping total precision in an introductory treat-
ment is that the requisite precision of formal definitions can sometimes
rob a simple concept (such as the “direction of a translation”) of its intu-
itive appeal. The main purpose of this chapter is therefore to make sure
that the underlying intuition is in place before formal definitions are intro-
duced. The latter part of the chapter shows how to use these concepts to
make some simple, logical deductions on the basis of this intuitive founda-
tion. It is worth repeating that—just as in the teaching of calculus—there
is nothing wrong with the strategy of emphasizing how to use the con-
cepts and skills correctly before confronting the intricacies of their internal
structure.

Having extolled the virtue of intuition, we wish to also sound the alarm
that a teacher cannot teach geometry (or any topic) knowing only its in-
tuitive content without a firm grounding in its theoretical underpinnings.
This explains the insistent presence of a significant amount of mathemati-
cal reasoning in what follows.

This and the following chapter (Chapter 5), with occasional exceptions,
present geometry in a way that can be taught (and learned), as is, in mid-
dle school provided one gives the presentation some obvious pedagogical
embellishments. The exceptions will be pointed out in due course (see,
for example, the discussions on pages 290 and 324). The implicit agenda
behind these two chapters is, of course, an attempt to solve the above-
mentioned curricular problem in middle school.

It remains to point out that the Common Core State Standards for
Mathematics ([CCSSM]) have adopted the same course of action regard-
ing the teaching of middle school and high school geometry. In so doing,
these Standards give all students an opportunity to learn school algebra
properly for the first time by removing TSM’s illegitimate approach to
slope from the school curriculum. In addition, they also provide a more
intuitive approach to high school geometry. By the same token, these Stan-
dards have also lent a sense of urgency to the need for all middle school
teachers to put TSM behind them and learn something about congruence
and similar triangles. This chapter has been written with such a need in
mind.
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