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Today I want to share with you some of my thoughts

on the teaching of algebra and geometry in secondary

school.

These thoughts were originally prompted by my work

with teachers from 2000 to 2013. Due to the neglect

of the American education establishment, teachers in

the U.S. generally have a serious content-knowledge

deficit. My goal has always been to eliminate this

deficit as best I can.



I did not have any ambitious plans about teaching

teachers “higher” mathematics and waiting for them

to digest it and use it to elevate their own knowledge

of school mathematics.

My goal has been much more modest: teach them

the mathematics in the school curriculum—but in a

way that is mathematically correct—so that they can

directly put it to use in their classrooms.



It was with this mind-set that I started to teach them

the algebra and geometry of secondary school.

Immediately I came to an impasse because much of

the relevant mathematics in almost all the standard

textbooks is deeply flawed, in multiple ways.

Let me refer to this body of “knowledge” as Textbook

School Mathematics (TSM), for convenience.



One of the most grievous flaws in TSM is the lack of

mathematical coordination between algebra and

geometry. Too often, when a certain geometric fact

or a particular geometric point of view is needed to

facilitate the algebraic development, that fact or point

of view is found to be missing from the curriculum.

There was no way for me to proceed except to devise

a usable alternative. Today I would like to talk about

this alternative.



My lecture will be divided into two parts:

Part I: A description of the broken connections

between algebra and geometry in TSM.

Part II: A brief outline of the proposed solution.



I do not expect the Portuguese curriculum to be the

same as the American one, but I also believe that

certain mathematical issues in the school curriculum

transcend national boundaries. I hope you will find

some of what I have to say to be relevant.

In addition, although these were my own findings, they

have now acquired some legitimacy because the

Common Core State Standards for Mathematics

(CCSSM) in the U.S., published in 2010, have come

to essentially the same conclusion as the proposed

solution described in Part II.



PART I: The broken connections

There are at least three basic topics in algebra,

linear equations

quadratic functions

graphs of inverse functions

in which certain geometric connections—if established

—would bring clarity and understanding to students.



(A) Linear equations. The study of linear equations

of two variables is a mainstay of introductory algebra.

A main conclusion is that the graph of ax + by = c

is a (straight) line. Here are two typical exercises for

students:

What is the equation of the line joining (31
2,5)

and (1,−1
5)?

What is the equation of the line with slope 1
2

and passing through (−3,4)?



It turns out that students have trouble doing these

exercises because they were taught the solution method

entirely by rote.

They also have trouble understanding what slope means.

Research shows that “The most difficult problems

for students were those requiring identification of the

slope of a line from its graph.”

https://www.researchgate.net/publication/297704461_Do_Teachers_Know_What_Their_Students_Know


Let us look into why this is so. First of all, TSM does

not explain why the graph of ax+ by = c is a line.

Instead, TSM asks students to plot a few points on

the graph of this equation and observe that the

plotted points seem to lie on a line. This is considered

to be sufficient evidence for students to believe that

the graph is a line.



Unfortunately, if students are completely ignorant of

the reasoning behind why the graph of ax+by = c is a

line, then they have no choice but to memorize by rote

how to write down the equation of a line satisfying

certain geometric conditions.

The key point of this reasoning is the concept of the

slope of a line. Here is how TSM introduces this

concept:



Let L be a nonvertical line in the coordinate plane and

let P = (p1, p2) and Q = (q1, q2) be distinct points on

L. According to TSM, the definition of the

slope of L is
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p1 − q1

=
|RQ|
|RP |


where |RQ| denotes the

length of the segment

RQ, etc.



Suppose two other points A and B on L are chosen.
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Then would

|CB|
|CA|

be equal to the

slope of L? In other words, is it

true that
|RQ|
|RP |

=
|CB|
|CA|

?

TSM does not address

this issue. This is a main

reason why slope is difficult to understand.



Students do not know that slope is a single number

attached to L that measures its “slant”.

Many believe that slope is a pair of numbers—|RQ|

and |RP | (so-called rise-over-run)—attached to the

line L in some mysterious fashion once the two points

P and Q on L have been “properly” chosen.

It is therefore not surprising that “The most difficult

problems for students were those requiring identifica-

tion of the slope of a line from its graph.”



If students knew about similar triangles, they would

know 4ABC ∼ 4PQR (similar triangles), which then

easily implies that
|RQ|
|RP |

=
|CB|
|CA|

.
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This is why similar triangles

have to be taught

in algebra.



At the moment, students either memorize the defi-

nition of slope using two fixed points, or are simply

told, without explanation, that the slope of a line can

be computed using any two points on the line.

Without a knowledge of similar triangles, they cannot

know the reasoning behind the graph of ax + by = c

being a line and, therefore, they have to write down

the equation of a line satisfying some geometric

conditions by brute force memorization.



In order to understand slope and the algebra of

linear equations, student have to be at ease with the

concept of similar triangles and the applications of this

concept. The abstract theory of similarity can wait.

We can therefore introduce them to similarity in an

intuitive (but mathematically correct) manner.

Schematically, the sequencing of the topics is as

follows:



{rotations, reflections, translations} −→ {congruence}

{congruence, dilation} −→ {similarity}

{similarity} −→ {the AA criterion of triangle similarity}
−→ {correct definition of slope}

We will discuss all these briefly in PART II.



(B) Quadratic functions. We will demonstrate that

if we can better understand the graphs of quadratic

functions, then the conceptual simplicity of the

algebra of quadratic functions will come to light.

This is not at all surprising when we realize that much

of our understanding of the algebra of linear equations

comes from the fact that the graphs of linear

equations are lines.



Let us illustrate why knowing the graph of a linear

equation being a line promotes the understanding of

the equations themselves.

This fact enables us to visualize the solution of

simultaneous linear equations ax + by = e
cx + dy = f

as the point of intersection of the two lines of the

system, i.e., the graphs of ax+by = e and cx+dy = f .



It also helps us see why the determinant ad − bc of

the system determines its solvability, as follows:

Assuming b, d 6= 0, the slope of the line ax+ by = e is

−ab (because y = −ab x+ e
b), and the slope of the line

cx+ dy = f is −cd (because y = −cd x+ f
d).

So the two lines of the linear system are parallel ⇐⇒

−ab = −cd, therefore ⇐⇒ a
b = c

d, and therefore ⇐⇒

ad = bc, i.e., ⇐⇒ ad− bc = 0.



So suppose the determinant of the system ax + by = e
cx + dy = f

is nonzero, i.e., ad− bc 6= 0.

If b, d 6= 0, then the two lines of the system are not

parallel, ⇒ the two lines intersect at a unique point

(A,B), ⇒ the system has a unique solution x = A,

y = B. (The case of b or d = 0 is easy to handle.)



Let us now take up quadratic functions.

Since the fact that the graph of a linear equation is

a line promotes our understanding of the algebra of

linear equations, we will use the graphs of quadratic

functions to achieve a similar clarification of the

quadratic functions themselves.

This is not the way TSM approaches quadratic

functions.



The graphs of quadratic functions may seem to be

complicated, but actually they are not, as we shall see.

Let us concentrate on the graphs Ga of the functions

fa(x) = ax2, where a > 0.
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There are two remarkable properties about these

graphs Ga of fa(x) = ax2 in case a > 0.

(1) Suppose a > 0. Then the graph G of a general

quadratic function f(x) = ax2 + bx + c is congruent

to Ga, and the congruence is realized by a translation

T , so that for some fixed (p, q),

T (x, y) = (x+ p, y + q)

for all (x, y) in the plane

T (Ga) = G



Observe that T (0,0) = (p, q).
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Here is another possible scenario:
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You recognize that this (p, q) is nothing other than

the so-called vertex of G.

With hindsight, we see that the purpose of rewriting

a quadratic function f(x) = ax2 + bx+ c in its vertex

form or normal form, f(x) = a(x−p)2+q, is precisely

to exhibit the congruence of the graph G to the graph

Ga.



From the graph Ga, we easily infer the properties of

the function fa(x) = ax2 :

It has a minimum at O.

It is decreasing on the interval (−∞,0].

It is increasing on the interval [0,∞).

fa(k) = fa(−k) for any k (because the graph

Ga is symmetric with respect to the y-axis).



The fact that the graph G of f(x) = ax2 + bx + c is

the translation of Ga then clearly exhibits the following

properties of the function f(x):

It has a minimum at (p, q).

It is decreasing on the interval (−∞, p].

It is increasing on the interval [p,∞).

f(p− k) = f(p+ k) for all k (because the graph

G is symmetric with respect to the vertical line

x = p).



Obviously, these properties go a long way towards

helping us understand general quadratic functions.

Less obvious, but no less important, is the fact is that

these properties now make perfect sense because we

can now think of them in terms of the graph Ga of

fa(x) = ax2.

For example, we understand why ax2 + bx + c must

attain a minimum somewhere when a > 0.



More is true. The symmetry of G with respect to

the vertical line x = p also explains why the roots (if

they exist) of f(x) = ax2 + bx+ c are symmetric with

respect to the same vertical line:

f(p− k0) = f(p+ k0) = 0 for some k0.
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This also explains why, if we know the roots of

f(x) = ax2 + bx+ c are r1 and r2, then f(x) attains

its minimum at 1
2(r1 + r2) (assuming a > 0).
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The second property about these {Ga} (a > 0) is:

(2) These curves are similar to each other. In fact,

the dilation (x, y) −→ (ax, ay) sends Ga to G1 (the

graph of f1(x) = x2).

From these two facts, we can paraphrase the study of

quadratic functions f(x) = ax2 + bx+ c (when a > 0)

by saying that if we know the function f1(x) = x2,

then we know everything about quadratic functions.



We can quickly dispose of the case a < 0 for quadratic

functions F (x) = ax2 + bx + c by observing that the

reflection Λ across the x-axis clearly reflects the graph

of F (x) = ax2 + bx+ c to the graph of

f(x) = −ax2 − bx− c .

Now since −a > 0, everything we know about the

graph of f(x) can be transferred to the graph of F (x),

and therefore to the function F (x) itself.



I hope you agree that the preceding discussion clarifies

the study of quadratic functions.

This discussion would not be possible without the

concepts of translation, congruence, similarity,

dilation, and reflection. So once again, we see the

critical need for integrating geometry into algebra if

our goal is to facilitate the learning of algebra.



(C) The graphs of inverse functions. It is well-

known that graphs of ex and logx are symmetric with

respect to the line y = x.
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More generally: If a function f(x) has an inverse

function g(x), then the graphs of f(x) and g(x) are

symmetric with respect to the line y = x.

In TSM, “symmetric” is understood only in the

intuitive sense. At this stage of students’ education,

however, they should learn to be precise.

We will make sense of the symmetry by proving the

following two facts.



(1) If Λ is the reflection

across the line y = x,

then for any point (a, b),

Λ(a, b) = (b, a).
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(2) If a function f(x) has an inverse function g(x),

then (a, b) is on the graph of f(x) ⇐⇒ (b, a) is on

the graph of g(x).



Together, we get:

Λ(graph of f(x)) = graph of g(x)

This is the precise meaning of the symmetry of the

graphs of f(x) and g(x) with respect to the line y = x.

Once again, we see the need of the concept of

reflection to help clarify a basic fact about inverse

functions.



In summary: Although we have only touched on truly

basic topics in school algebra, we already witnessed

the critical role played by geometric concepts related

to congruence and similarity in clarifying basic

concepts and skills in algebra.

If we get into more advanced topics in school algebra,

then we will encounter more examples of the same

phenomenon.



For example, the product of complex numbers is best

expressed in terms of rotations around the origin of the

plane. There is also the relationship between solutions

of x2 − bx − b2 = 0 and the construction of regular

pentagons. More profound is the constructibility of

regular n-gons in terms of the solutions of xn−1 = 0.

However, we will limit ourselves to basic topics only.



Major obstacles in changing the geometry curriculum,

and the proposed resolutions.

(a) We have seen that a proper treatment of linear

equations and the slope of a line requires the concept

of similar triangles. However, the concept of similarity

is sophisticated and is not taught until the latter part

of plane geometry, but the teaching of linear equations

cannot wait.



Moreover, “similarity” is not just about triangles. We

already encountered the similarity of the graphs of

fa(x) = ax2 to each other for all a 6= 0. So not only

should we teach similar triangles, but we must also

teach a correct definition of “similarity”.

In college mathematics, a similarity is defined to be

a transformation F of the plane so that for some

positive constant c, |F (P )F (Q)| = c |PQ| for all P

and Q in the plane. This definition is not usable in

school mathematics, however.



Solution: We can define congruence in the plane

by using the elementary concepts of rotations,

reflections, and translations. We can also define a

dilation in the plane in an elementary fashion.

Then a similarity can be defined as the composition

of a dilation followed by a congruence. This definiton

is now appropriate for school mathematics.



(b) Even with a usable (and mathematically correct)

definition of similarity, we cannot wait for a formally

correct treatment of similarity before it can be applied

to linear equations. We need a shortcut.

We can treat rotations, reflections, and translations

in an intuitive but correct manner. Likewise for

dilations. Then we can get quickly to the AA

criterion for similar triangles (two triangles with two

pairs of equal angles are similar). This theorem is

sufficient for the applications to linear equations.



A formal treatment of congruence and similarity comes

later as part of the systematic development of

Euclidean geometry.

It retraces the same steps as above, but it gives, at

the outset, precise definitions of rotations, reflections,

translations, and dilations . Then it gets to similarity

as before.



Pedagogically, taking up congruence and similarity

twice—an intuitive approach first, to be followed by

a precise version—makes sense, because a precise

treatment of all these concepts requires very careful

attention to technical details. The latter can be

overwhelming to beginners.

It is better for students to first acquire the needed

intuitive knowledge.



A comment from the American perspective: The idea

of treating congruence and similarity twice—first

intuitively and then precisely—is not new; it is in fact

the standard practice in the American curriculum.

However, TSM defines congruence intuitively as “same

size and same shape” and then defines it precisely only

for polygons:

Two polygons are said to be congruent if their

sides and angles are pairwise equal.



This is bad education because it misleads students.

They are led to believe that congruence is a precise

mathematical concept only for polygons. For general

geometric figures, all one can say is that “congruence”

means “same size and same shape” (which is of course

unacceptable as mathematics).

Moral: In mathematics education, it is not enough to

have a more or less correct idea. Details matter.



Essentially the same comments apply to the treat-

ment of similarity in the American curriculum. First,

similarity means “same shape but not necessarily the

same size”, and then only similar polygons are defined

precisely.

We will be careful to avoid this pitfall.



PART II: A different approach to school

geometry

We will outline how to teach rotations, reflections,

and translations intuitively, and on this basis, define

congruence.

Then for illustration, we will indicate how to prove the

SAS criterion for triangle congruence in this setting.



We will next define dilation, and then similarity. We

isolate the key fact in any discussion of similarity: The

Fundamental Theorem of Similarity.

We will also make a few comments on how to teach

the same topics precisely the second time around.



Up to this point, students are used to looking at

geometric figures in the plane as static objects, in the

sense that they don’t move. But we are now going

to move every point in the plane in a rigid manner, in

ways to be described.

For starters, we will move the plane in three prescribed

ways, to be called rotations, reflections, and trans-

lations. In the classical literature, these three are

called rigid motions, for good reason!



We will define rotations, reflections, and translations

with the help of overhead projector transparencies, as

follows:

Draw a geometric figure on a piece of paper in

black color, copy the figure exactly on a

transparency in red. Think of the paper as the

plane, and think of moving the transparency as

“moving points of the plane”.



For example:



Two observations:

(i) Notice that we are not just moving the geometric

figure in question, but are also moving each and every

point of the plane.

(ii) The following verbal descriptions of how to move

a transparency will sound exceedingly clumsy. Rest

assured that when a teacher demonstrates with

transparency and paper, face-to-face with students in

a classroom, it will be much easier to understand.



To define rotation, we have to choose a point O (the

center of the rotation) and a number d as the degree

of the rotation.

To describe the counterclockwise rotation around O

of d degrees, all we have to do is describe how it

moves a given point P of the plane to another point

Q. So we have O and P drawn on the paper, and a

transparency on which the points O and P have been

copied exactly in red.



(1) Pin the transparency to the paper at O.

(2) Rotate the transparency d degrees counterclock-

wise around O. Then the red P lands at another point

of the paper; this is the point Q.

Q

O

d

P

P = 



For example, draw the following figure on a piece of

paper (the rectangle is the border of the paper) and

then copy it in red on a transparency:

O



Here is how a counterclockwise rotation of 90 degrees

around O moves the whole figure, point by point:

O



Now we show this rotation without the border of the

paper:

O



There are some illuminating animations on the defi-

nition of rotation by Sunil Koswatta that you should

consult:

http://www.harpercollege.edu/~skoswatt/

RigidMotions/rotateccw.html

http://www.harpercollege.edu/~skoswatt/

RigidMotions/rotatecw.html

http://www.harpercollege.edu/~skoswatt/RigidMotions/rotateccw.html
http://www.harpercollege.edu/~skoswatt/RigidMotions/rotateccw.html
http://www.harpercollege.edu/~skoswatt/RigidMotions/rotatecw.html
http://www.harpercollege.edu/~skoswatt/RigidMotions/rotatecw.html


Clockwise rotations are defined likewise. Let stu-

dents experiment with different choices of the cen-

ter and the degree of a rotation, using any figure

they come up with. For

example, here is a 30-

degree clockwise rotation

around O of a figure

consisting of a vertical

segment and two big dots.

30
o

O



Next, reflection. Fix a line L in the plane, and we

will describe the reflection across L. Given a point P ,

we will specify how to reflect P across L to a point

Q. On the transparency, copy L and P in red. Now

turn over the transparency across L so that

every point of red L falls on itself, and therefore

L also falls on itself, and

the two half-planes of L are interchanged.

Then the point on the paper on which the red P lands

is the Q we are looking for.



For example, the reflection across the horizontal line

L below moves the points P to Q and P ′ to Q′: for

example, Q is where the red P is, and Q′ is where the

red P ′ is.

L

P = 

P

Q

P

P = Q



Here is the reflection across the vertical line L of a

black figure consisting of an arrow, an ellipse, and

two dots. (Every point on L is reflected to itself.)

L



Here is the same picture without the border of the

paper.

L



Be sure to consult the animations by Sunil Koswatta

on the definition of reflection:

http://www.harpercollege.edu/~skoswatt/

RigidMotions/reflection.html

http://www.harpercollege.edu/~skoswatt/RigidMotions/reflection.html
http://www.harpercollege.edu/~skoswatt/RigidMotions/reflection.html


The description of a translation requires the choice

of a vector
−→
AB (a segment with a beginning point A

and an endpoint B).

Given a point P in the plane, then the translation

along
−→
AB moves P to the point Q, to be described as

follows. Copy P and
−→
AB in red on the transparency

as usual. Now slide the transparency so that the red
−→
AB slides along the line LAB (joining A and B) until

the red A slides to where the black B is. Then Q is

where the red P rests.



Q

B

A

A

B

P

P

=



Here is the translation along
−→
AB of a by-now familiar

figure:

B

A



Here is the same picture without the border of the

paper.

A

B



Again, consult the animations of Sunil Koswatta on

the definition of translation:

http://www.harpercollege.edu/~skoswatt/

RigidMotions/translation.html

http://www.harpercollege.edu/~skoswatt/RigidMotions/translation.html
http://www.harpercollege.edu/~skoswatt/RigidMotions/translation.html


We will refer to rotations, reflections, and translations

as basic isometries.

Now that we know the definitions of these basic

isometries, we can see from their definitions that:

(a) They move lines to lines, segments to

segments, and angles to angles.

(b) They preserve lengths of segments and

degrees of angles.



The power of the basic isometries is derived from the

two preceding properties together with the ability to

“combine” basic isometries, as we now explain.

Suppose F and G are two basic isometries, then we

can consider moving each point of the plane first by

F and then by G. More precisely, if F first moves

a point P to Q, then G moves Q to another point

R. Altogether, P is moved to the point R. Let us

denote this combined motion that moves P to R by

G ◦ F .



To illustrate, let
−→
AB be a given vector and let O be a

given point, as shown:

P

O

A B

Let F be the translation along
−→
AB and let

G be the 45◦ counterclockwise rotation around O.

If G ◦ F moves P to R, where is R?



F moves P to Q (see left picture below), and then G

moves Q to the point R (see the right picture below).

Q

O

A

P

B

oO

A

P

B

Q

R

45



Once we see how to “combine” two basic isometries,

we can iterate the procedure and move points in the

plane by “combining” any number of basic isometries.

The technical term for “combining basic isometries”

is a composition of basic isometries.

A congruence of the plane is by definition a compo-

sition of (any number of) basic isometries.



Fortunately, there is a video by Larry Francis that will

help clarify the concept of the composition of basic

isometries:

http://youtu.be/O2XPy3ZLU7Y

http://youtu.be/O2XPy3ZLU7Y


Remark: We now know what it means even for a

curved figure to be congruent to another. For

example, the translation along
−→
AB shows that the

red ellipse is congruent to the black ellipse.

A

B



Similarly, the following two ellipses are congruent by

a reflection.

L

Referring to the earlier discussion of quadratic

functions, we now have a new appreciation of the

statement that the graph of y = ax2 is congruent

to the graph of y = ax2 + bx+ c by a translation.



Next, we will use the basic isometries to prove the SAS

criterion of triangle congruence. The other criteria for

triangle congruence can be proved in the same way.

The significance of such a proof lies in its implication

on the learning of geometry. Students are in general

puzzled by the abstract concept of congruence that

comes from axiomatic geometry.

Now congruence becomes a concrete and tangible

concept that can be realized by hands-on activities.



Proof of SAS: This is a proof meant to be given in

the classroom by moving (plastic or wooden) models

of triangles on the blackboard or document camera.

No writing is required.

Co

Ao

C

B
A

Bo

We want to prove that the two triangles as shown are

congruent.



The first step is to bring the vertices of the equal

angles together by the translation along
−−→
AA0. Call

the translation T .

Co

Ao

C

B
A

Bo

T



Here is 4ABC being translated along
−−→
AA0. The trans-

lation moves every point in the plane (including4A0B0C0),

but we must remember the original positions of the

triangles.

o

Ao

C

B
A

B

Co



Final result of the translation of 4ABC, bringing

A to A0.
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Since it is given that AB and A0B0 are equal, a

rotation R around A0 achieves the matching of one

side of the red triangle with the original side A0B0, as

shown.
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So we have gotten to this stage:

o

A

Bo

A

Co

C

B



Finally, since ∠CAB and ∠C0A0B0 are equal, and also

sides AC and A0C0 are equal, the reflection Λ across

the line LA0B0
brings the red triangle to match the

original 4A0B0C0 exactly.
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Bo

Ao
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Thus the congruence Λ ◦ R ◦ T moves 4ABC to

4A0B0C0.

o

B
A

Bo

A

Co

C

There is an animation by Larry Francis that gives

exactly this proof: http://youtu.be/30dOn3QARVU

http://youtu.be/30dOn3QARVU


Some brief concluding remarks concerning the

teaching of congruence and similarity.

Still on an intuitive level, the next major concept is

a dilation with center O and scalar factor r > 0 that

moves a point P to a point P ′ so that:

(i) if P = O, then P ′ = O, i.e., O stays put.

(ii) if P 6= O, then P ′ lies on the ray ROP so

that |OP ′| = r · |OP |.



Here is an example where the scalar factor of the

dilation is 1.5 and the dilation moves P , Q, R to

P ′, Q′, and R′, respectively.

|
Q

Q

1.5

1.5

O
R

P

R

P

OR| |

OQ1.5
OP| |

|



Students can do experiments to verify that if we take

a point O not lying on a line L, and dilate the points

on L (one at a time) with a fixed scalar factor r, then

the dilated points appear to also lie on a line. (In this

picture, r = 3.)

L

O

The central fact is this (it will be assumed):



Fundamental Theorem of Similarity. If a dilation

with center O and scale factor r moves two points

P , Q in the plane not collinear with O to P ′ and Q′,

then: (1) the dilation moves the lines LPQ to the line

LP ′Q′ and the segment PQ to the segment P ′Q′, (2)

LPQ ‖ LP ′Q′, and (3) |P ′Q′| = r · |PQ|.

P

QP

Q

O

r .PQ



This theorem makes it very easy to draw the dilations

of polygons. For example, here is the dilation of the

black triangle with a scale factor of 2: notice that

the red dilated triangle “has the same shape” as the

original triangle.

O



We can now define a similarity as the composition of

a dilation followed by a congruence. For example, the

black figure below is similar to the solid blue figure:



For completeness, we state the AA criterion for sim-

ilarity without proof: given two triangles 4ABC and

4A′B′C′, if ∠A and ∠A′ are equal, and ∠B and ∠B′

are also equal, then 4ABC ∼ 4A′B′C′.

C

A
A

C

B

B



Recall that we said congruence and similarity would

each be taught twice in this curriculum: first

intuitively, and then as formal mathematics.

We have briefly outlined the instruction on the

intuitive level. It remains to point out that when these

topics are taught on a formal level, the definitions of

rotations, reflections, and translations can no longer

be given by using transparencies. They must be pre-

cisely defined.



Here is a definition of rotation: Given a point O and θ

so that −360 ≤ θ ≤ 360, the rotation of θ degrees

around O is the transformation %θ so that %θ(O) = O,

and if P 6= O, %θ(P ) is defined as follows: Let C be

the circle of radius OP centered at O.

If θ ≥ 0, %θ(P ) is the point Q on

C obtained from P by turning P

θ degrees in the counter-clock-

wise direction along C.

Q

O
P

θ

C



If θ < 0, %θ(P ) is the point Q on

C obtained from P by turning P

|θ| degrees in the clockwise

direction along C.
Q

O
Pθ

C

The two properties (a) and (b) above concerning

basic isometries will now have to be explicitly

assumed for rotations.



On the basis of these assumptions about rotations,

simple theorems such as opposite sides of parallelo-

grams are equal will have to proved first before we

can give the precise definitions of reflections and

translations and show that they are well-defined.

Again properties (a) and (b) above will be assumed

for reflections and translations. Together with other

natural assumptions such as the Parallel Postulate, we

now have the foundation for the usual development of

Euclidean geometry in secondary school.
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