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The teaching of geometry has been in crisis in America for over

thirty years.

This is a report on that situation, together with some comments

that may be relevant to Portugal.

The American perception of a geometry course in secondary

school is that this is the place where students learn about proofs.

Not just proofs of some theorems, but proofs of every theorem

starting from axioms.



This extreme view has to be understood in the context of the

usual high school curriculum: outside of geometry, almost noth-

ing is ever proved. In other words, mathematics is largely taught

in schools without reasoning.

The course on geometry is the only place where reasoning can

be found.

The absence of proofs elsewhere adds pressure to the course on

geometry to pursue the mythical entity called “proof”.

As a result, “proof” in the American school curriculum becomes

a rigid formalism synonymous with reasoning from axioms.



A proof is a sequence of steps going from point A (hypothesis) to

point B (conclusion). We want students to learn proofs because

they should learn to

(i) recognize clearly the starting point of their logical argument,

i.e., what point A is,

(ii) recognize clearly the goal they want to achieve, i.e., what

point B is, and

(iii) go from point A to point B by the use of correct reasoning.

For the purpose of learning about proofs, it is immaterial whether

point A is at the level of axioms or assumes that the Riemann

Hypothesis holds.



The development of a subject from axioms is an organizational

issue. Prospective mathematicians should acquire a firsthand

experience with such a development in college.

School students should be made aware of it, but there is no

compelling reason that they must learn the details.

The idea that developing Euclidean geometry from axioms can

be a good introduction to mathematics has a very long tradition.

While a few greet it with enthusiasm, such a course has not been

a pedagogical success, for at least three reasons.



(A) Such a development is extremely boring at the beginning. A

whole month or two devoted to nothing but the proofs of trivial

and obvious theorems is not the way to keep the attention of

young students.

E.g. On page 177 of a geometry textbook of 567 pages is this

theorem:

If M is a point between points A and C on a line L, then

M and A are on the same side of any other line that

contains C.
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(B) Such a development cannot get to the interesting theorems

because the starting point is too low.

(C) Proofs of theorems at the level of axioms, far from being

easy, is actually very difficult for beginners. They cannot rely on

their intuition, only formal reasoning.

Finally, there is a mathematical reason why using axioms to

teach school geometry is not good: it promotes the illusion

that everything is proved.

Twenty-four centuries after Euclid, we have learned that this is

not possible without paying a very steep price. It takes something

like Hilbert’s axioms to really prove geometric theorems, but

Hilbert’s axioms are far too subtle for school use.



For about thirty years, a course on school geometry devoted to

proofs-starting-from-axioms has become a farce in America:

teachers don’t know what they are doing, and

student are reduced to passively following directions.

Learning has ceased to take place in the geometry class-

room.

For example, there is a record of a geometry teacher doing con-

struction with ruler and compass, and students were graded not

by the validity of their proof of the correctness of the construc-

tion, but by the accuracy and neatness of the constructed figures.



To every action there is a reaction. In this case, the reaction is

the emergence of geometry courses with no proofs.

A textbook for such a course approaches the theorem about the

angle sum of a triangle being 180 as follows. It asks students to

cut a triangle from a piece of paper, then tear up the triangle

into three pieces where each piece contains one angle.



It asks students to re-assemble the three pieces so that the three

vertices meet at a point to verify that they add up to 180 degrees.

In conclusion, students are asked to “state a conjecture”, in the

following form:

(Triangle sum conjecture) The sum of the measures

.



In an exercise, students are asked to explore this conjecture using

geometry software on a computer. Other exercises ask students

to use the conjecture to determine unknown angles in a figure.

This book is 834 pages long. The first 732 pages contain no

proofs, The last 102 pages are devoted to

another type of reasoning, which is called deductive rea-

soning or proof.

In these 102 pages one finds a very defective set of axioms and

an attempt at explaining what a proof is.

Few teachers make any attempt to get to those 102 pages.



The author’s message to the students is that

This book was designed so that you and your teacher can

have fun with geometry . . . and less anxiety.

The forward to the first edition by a math educator says “this

is a genuinely exciting book”, and the forward to the second

edition by the Mathematics Director of a school district says

“the second edition is even more exciting”.

I imagine that the emphasis on “fun” and “excitement” at the

expense of mathematics resonates with you.

How did we get to where we are?



The root cause of our problem with the teaching of secondary

school geometry is the overall deterioration of the school cur-

riculum itself.

Because the school mathematics curriculum itself has almost no

proofs, those who recognize reasoning as the essence of mathe-

matics see the geometry course as a last chance to teach some

mathematics. Therefore they insist on proving everything, i.e.,

start with axioms.

Those who are mesmerized by the “simplicity” of teaching math-

ematics without proofs naturally insist on teaching geometry

without proofs as well. This is how it came to pass that an

834-page geometry textbook with no proofs in its first 732 pages

could get published.



In general terms, the solution to the problem of teaching geom-

etry lies in our ability to solve the problem of teaching school

mathematics.

If school mathematics is taught in any way resembling mathe-

matics, there would be a reasonable amount of reasoning (proofs)

to make sense of the disjointed collection of facts. Teaching by

rote would be avoided, and many proofs in geometry would be

inevitable.

I will not address this universal problem in mathematics education

today. But I will narrow my vision and address a specific concern

of students in geometry.



Two of the key concepts in geometry are congruence and sim-

ilarity. Students cannot come to grips with them because they

are told:

congruence means same size and same shape and sim-

ilarity means same shape but not necessarily the same

size.

These are metaphors. Mathematics needs more than metaphors.

Such key concepts need precise definitions.



There is only enough time to deal with congruence (similarity is

slightly more subtle).

We will give a direct, hand-on definition of “congruence”, and

more importantly, use this definition to prove theorems. In

the process, we will try to solve another fundamental problem in

the teaching of geometry.

In the plane, we introduce the three basic isometries: transla-

tions, reflections, and rotations.



The precise definitions of the basic isometries require the concept

of a transformation of the plane, which is not easy even for

university students.

Fortunately, the basic isometries can be defined with the help of

hands-on activities. We use overhead projector transparencies in

the following way:

draw a geometric figure on one transparency, copy it

exactly on another transparency in red; by moving one

against the other we make the basic isometries concrete.



For example, draw the following picture on a transparency:



Here is a reflection of the arrow and circle across the line, realized

by flipping the red copy across the line:



Here is a translation of the whole picture along the arrow:



Here is a counterclockwise rotation of 90 degrees around the

dot:



We will assume that all basic isometries

transform lines to lines, and segments to segments,

preserve lengths of segments,

preserve degrees of angles

This is something all students find it easy to believe after they

have gained lots of experience using transparencies.

Two figures S and S ′ are, by definition, congruent, if a finite

number of isometries carry one onto the other.



Congruence between geometric figures is no longer restricted

to triangles. Students can now direct check the congruence

between ellipses and parabolas, for example.

Nor is congruence a matter of some abstract principles such as

SAS, ASA, or SSS. In fact, students can use the basic isometries

to directly check that SAS, ASA and SSS are correct.

Congruence becomes a concrete and learnable concept.



There is more. The above “fundamental problem in the teaching

of geometry” refers to the role played by the basic isometries in

school mathematics education.

They are now taught in schools because they are supposed to

be important. But students only see them used in discussions of

art (Escher prints, tessellations, mosaic art) but nothing about

why they are important in mathematics itself.

We are going to use them in the proofs of geometric theorems.

Their importance in mathematics will no longer be in doubt.

We give two illustrations.



Theorem Isosceles triangles have equal base angles.

Proof Let the side AB be equal to AC, and we have to prove

that ∠B and ∠C are equal.

Let AD be the angle bisector of the top angle ∠A.
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The reflection R across the line AD carries the half-line AB onto

the half-line AC because AD bisects ∠A. Without any assump-

tion about AB = AC, the point B goes to some point R(B) on

the half-line AC.
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But by assumption, AB = AC, so R(B) = C. Then R also

carries ∠B to ∠C, and the angles are equal.



Our next goal is to prove that a parallelogram (a quadrilateral

whose opposite sides are parallel) must have equal opposite sides.

For this we need a lemma.

Lemma Let O be a point not lying on a line L. The 180 degree

rotation ρ around O then carries L to a line parallel to L.
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Proof Let L′ = ρ(L) and suppose the lemma is false. Let L′

intersect L at a point Q′. Consider Q′ as a point on L′, then

there is a point Q on L so that ρ carries Q to Q′.
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Because ρ is a 180 degree rotation around O, the three point Q,

O, and ρ(Q) = Q′ lie on a straight line `. Now ` and L are two

straight lines which intersect at two distinct points, so ` = L.

Then also O ∈ L. Contradiction.



Theorem Opposite sides of a parallelogram are equal.

Proof Let O be the midpoint of the diagonal AC of a paral-

lelogram ABCD, and let ρ be the 180 degree rotation around O

as usual. We claim ρ carries the line BC to the line AD. This

follows from the Parallel Postulate and the Lemma.
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Similarly, ρ carries line AB to line CD. So ρ carries the intersec-

tion of line BC and line AB to the intersection of line AD and

line CD. Thus ρ carries B to D.



Likewise, ρ also carries C to A. So ρ carries BC to DA. Since ρ

preserves length, we have BC = AD. The equality AB = CD is

proved the same way. The proof is complete.

We repeat: the equality of the segments was not achieved by

using some abstract principle such as ASA, SAS, or SSS, but by

exhibiting a basic isometry that explicitly carries one segment to

the other.

The concept of congruence becomes concrete and tactile, and

the basic isometries are seen to be useful in mathematics itself.



What is outlined above is the beginning of a complete develop-

ment of classical Euclidean geometry.

It is built on the basic isometries, and it gets to interesting the-

orems almost immediately.

It clarifies the fundamental concepts of congruence and similarity

for students.

A complete development of plane geometry from the point of

view described here will appear in volume II of a three volume set

by the author, Mathematics of the Secondary School Curriculum,

I, II, III, to appear.


