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“To overcome the isolation of education research,

more effective links must be created between

educational faculties and the faculties of universities.

This could allow scholars of education better

acquaintance with new developments in and across

the disciplines and other professional fields of

the university, while also encouraging discipline-based

scholars with interests in education to collaborate

in the study of education.”

Lagemann, 2000, p. 241.

I would like to make a general disclaimer at the outset. I think I should only talk

about things I know firsthand, so I will limit my comments to the K–12 mathematics

education in the U.S. rather than take a more global view. Such a restriction is not

necessarily fatal since a friend of mine observed that what takes place in the U.S.

tends also to take place elsewhere a few years later. For example, in France there is

now a Math War that resembles the American Math Wars of the nineties (Education

Week, 2005). We live in a global village after all.

Let me begin with a fairy tale. Two villages are separated by a hill, and it was

decided that for ease of contact, they would drill a tunnel. Each village was entrusted

with the drilling of its own half of the tunnel, but after both had done their work, it

was discovered that the two halves didn’t meet in the middle of the hill. Even though
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a connecting tunnel between the two lengths already built could be done at relatively

small expense, the two villages, each in defense of its honor, prefer to continue the

quarrel to this day.

This fairy tale is too close to reality for comfort when the two villages are re-

placed by the education and mathematics communities, with the former emphasizing

the overriding importance of pedagogy and the latter, mathematical content.1 Math-

ematics education rests on the twin pillars of mathematics and pedagogy, but the

ongoing saga in mathematics education is mostly a series of episodes pitting one

against the other. There is probably no better proof of the disunity between these

communities than the very title of this article. Indeed, if someone were to write

about “How chemists can contribute to chemical engineering”, that person would be

considered a crank for wasting ink on a non-issue. Chemical engineering is a well-

defined discipline, and chemical engineers are perfectly capable of doing what they

are entrusted to do. They know the chemistry they need for their work, and if there

is any doubt, they would freely consult with their colleagues in chemistry in the spirit

of cooperation and collegiality. Therefore, the fact that we are going to discuss “How

mathematicians can contribute to K–12 mathematics education” in the setting of

the International Congress speaks volumes about both mathematics education and

mathematicians.

The title of this article implicitly gives away the power structure of mathematics

education in the academic world: Educators hold the rein. Since education research

is thriving and research funding is ample, it is not surprising that educators want

to protect their intellectual independence in the university environment. Rumblings

about how mathematically unqualified teachers or deficient curricula are undercutting

mathematics learning do surface from time to time, but we have not witnessed the

expected aggressive action agitating for collaboration with mathematicians. Other

troubling issues related to mathematics content, such as the presence of incorrect

assessment items in standardized tests, likewise fail to arouse genuine concern in the

mathematics education community. To an outsider, the protection of the “education”

1In writing about sociological phenomena, especially education, it is understood that all state-
ments are statistical in nature unless stated to the contrary, and that exceptions are part and parcel
to each statement. In fact, there are striking (though isolated) exceptions in the present context.
The reader is asked to be aware of this caveat for the rest of this article.
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enclave seems to matter more to university educators than collaboration with the

research mathematics community that could strengthen K–12 mathematics education.

By contrast, if the department of chemical engineering consistently produces engineers

with a defective knowledge of chemistry, or if accidents occur in its laboratories with

regular frequency, would the chemical engineering faculty not immediately spring to

action? This question prompts the thought that maybe we no longer know what

mathematics education is about, and it is time for us to take a second look.

One meaning of the word “engineering” is the art or science of customizing sci-

entific theory to meet human needs. Thus chemical engineering is the science of

customizing chemistry to solve human problems, or electrical engineering is the sci-

ence of customizing electromagnetic theory to design all the nice gadgets that we have

come to consider indispensable. I will put forth the contention that mathematics ed-

ucation is mathematical engineering, in the sense that it is the customization of

basic mathematical principles to meet the needs of teachers and students.2 I will

try to convince you that this is a good model for the understanding of mathematics

education before proceeding to a discussion of how mathematicians can contribute

to K–12 mathematics education. The far-from-surprising conclusion is that, unless

mathematicians and educators can work as equal partners, K–12 mathematics edu-

cation cannot improve.

Regarding the nature of mathematics education, Bass (2005) made a similar sug-

gestion that it should be considered a branch of applied mathematics.3 What I would

2After the completion of this article, Skip Fennell brought to my attention the article “Access
and Opportunities to Learn Are Not Accidents: Engineering Mathematical Progress in Your School”
by William F. Tate, which is available at:
http://www.serve.org/ downloads/publications/AccessAndOpportunities.pdf
Tate is concerned with equity and uses “engineering” as a metaphor to emphasize the potential for
designing different educational policies and pedagogical activities to promote learning, but without
addressing the mathematics. On the other hand, the present article explains why mathematics
education is the engineering of mathematics.

3Hy Bass lectured on this idea in December of 1996 at MSRI, but [5] seems to be a convenient
reference. After the completion of this article, Zalman Usiskin informed me that in the Proceedings
of the U.S.-Japan workshop on the mathematics education of teachers in 2000 that followed ICME-
9 in Japan, he had written that “‘Teachers’ mathematics’ is a field of applied mathematics that
deserves its own place in the curriculum.” Along this line, let it be mentioned that the paper of
Ferrini-Mundy and Findell [8] made the same assertion and, like Bass, it does not touch on the
engineering aspect of mathematics education. The need for mathematicians and educators to work
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like to emphasize is the aspect of engineering that customizes scientific principles to

the needs of humanity in contrast with the scientific-application aspect of applied

mathematics. Thus, when H. Hertz demonstrated the possibility of broadcasting

and receiving electromagnetic waves, he made a breakthrough in science by mak-

ing a scientific application of Maxwell’s theory. But when G. Marconi makes use

of Hertz’s discovery to create a radio, Marconi was making a fundamental contribu-

tion in electrical engineering, because he had taken the extra step of harnessing an

abstract phenomenon to fill a human need.4 In this sense what separates mathemat-

ics education as mathematical engineering from mathematics education as applied

mathematics is the crucial step of customizing the mathematics, rather than simply

applying it in a straightforward manner to the specific needs of the classroom. There

is no better illustration of this idea of customization than the teaching of fractions in

upper elementary and middle schools, as I now explain.

Students’ failure to learn fractions is well-known. School texts usually present

a fraction as parts of a whole, i.e., pieces of a pizza, and this is the most basic

conception of a fraction for most elementary students. However, when fractions are

applied to everyday situations, then it is clear that there is more to fractions than

parts-of-a-whole, e.g., if there are 15 boys and 18 girls in a classroom, then the ratio

of boys to girls is the fraction 15
18

, which has nothing to do with cutting up a pizza

into 18 equal parts and taking 15. In the primary grades, it is not a serious problem

if students’ knowledge of fractions is imprecise and informal, so that a fraction can be

simultaneously parts-of-a-whole, a ratio, a division, and an operator5, and a number.

Children at that age are probably not given to doubts about the improbability of an

object having so many wondrous attributes. At some stage of their mathematical

development, however, they will have to make sense of these different “personalities”

of a fraction. It is this transition from intuitive knowledge to a more formal and

abstract kind of mathematical knowledge that causes the most learning problems.

This transition usually takes place in grades 5–7.

on equal footing in mathematics education is likewise not mentioned by these educators.
4The invention was actually due to N. Tesla, but like many things in life, popular preception

displaces the truth. I am indebted to S. Simic for pointing this out to me.
5For example, the fraction 3

4 can be regarded as a function (operator) which associates to each
quantity three-quarters of the same quantity.

4



There is by now copious mathematics education research6 on how to facilitate

children’s learning of the fraction concept at this critical juncture in order to op-

timize their ability to use fractions efficiently. At present, what most children get

from their classroom instruction on fractions is a fragmented picture of a fraction

with all these different “personalities” lurking around and coming forward seemingly

randomly. What a large part of this research does is to address this fragmentation

by emphasizing the cognitive connections between these “personalities”. It does so

by helping children construct their intuitive knowledge of the different “personali-

ties” of a fraction through the use of problems, hands-on activities, and contextual

presentations.

This is a good first step, and yet, if we think through students’ mathematical

needs beyond grade 7, then we may come to the conclusion that establishing cognitive

connections does not go far enough. What students need is an unambiguous definition

of a fraction which tells them what a fraction really is. They also need to be exposed to

direct, mathematical, connections between this definition and the other “personalities”

of a fraction. They have to learn that mathematics is simple and understandable, in

the sense that if they can hold onto one clear meaning of a fraction and can reason

for themselves, then they can learn all about fractions without ever being surprised

by any of these other ”personalities”.

From a mathematician’s perspective, this scenario of having to develop a concept

with multiple interpretations is all too familiar. In college courses, one approaches

rational numbers (both positive and negative fractions) either abstractly as the prime

field of characteristic zero, or as the field of quotients of the integers. The problem

is that neither is suitable for use with fifth graders. This fact is recognized by math-

ematics education researchers, as is the fact that from such a precise and abstract

definition of rational numbers, one can prove all the assorted “personalities” of ra-

tional numbers. If I have read the research literature correctly, these researchers

despair of ever being able to offer proofs once they are forced to operate without an

abstract definition, and that is why they opt for establishing cognitive, rather than

mathematical connections among the “personalities” of rational numbers. The needs

6Here as elsewhere, I will not supply explicit references because I do not wish to appear to be
targeting specific persons or works in my criticism. I will be making generic comments about several
general areas.
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of the classroom would seem to be in conflict with the mathematics. At this point,

engineering enters.

It turns out that, by changing the mathematical landscape entirely and leaving

quotient fields and ordered pairs behind, it is possible to teach fractions as mathe-

matics in elementary school, by finding an alternate mathematical route around these

abstractions that would be suitable for consumption by children in grades 5–7. With-

out going into details, suffice it to say that at least the mathematical difficulties can

be overcome, for example, by identifying fractions with certain points on the number

line (for this systematic development, see, e.g., Jensen 2003, or Wu, 2001c). What is

of interest in this context is that this approach to fractions is specific to the needs

of elementary school and is not likely to be taught, ever, in any other situation. In

addition, the working out of the basic properties of fractions from this viewpoint is

not quite straightforward, and it definitely requires the expertise of a research math-

ematician. As to the further pedagogical implementation to render such an approach

usable in grades 5–7, the input of teachers and educators would be absolutely indis-

pensable.7 We therefore get to witness how mathematicians and educators are both

needed to turn a piece of abstract mathematics into usable lessons in the school class-

room. This is customization of abstract theory for a specific human need, and this is

engineering at work.

Through this one example of fractions, we get a glimpse of how the principles

of mathematical engineering govern the design of a curriculum. Less obvious but of

equal importance is the fact that even mathematics education research cannot be

disconnected from the same principles. If, for example, a strong mathematical pres-

ence had been integral to the research on fractions and rational numbers, it would

be very surprising that the research direction would have developed in the direction

it did. Compare the quote by Lagemann at the beginning of this article as well as

Lagemann, 2000.

An entirely analogous discussion of customization can be given to any aspect of

mathematics education, but we single out the following for further illustrations:

(a) The design of an “Intervention Program” for at-risk students. Up to this

7Some teachers who have worked with me are trying out this approach with their students in San
Francisco.
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point, the methods devised to help these students are largely a matter of

teaching a watered-down version of each topic at reduced pace; this is poor

engineering from both the theoretical and the practical point of view. In

Milgram-Wu, 2005, a radically different mathematical engineering design

is proposed to deal with this problem.

(b) The teaching of beginning algebra in middle school. The way symbols

are usually handled in such courses, which necessitates prolix discussions

in the research literature of the subtlety of the equal sign, and the way

variable is introduced as the central concept in school algebra are clear

indications that the algebra we teach students at present has not yet been

properly customized for the needs of school students. See the Preface and

Sections 1 and 2 of Wu, 2005d, and also Wu, 2006, for a more detailed

account of both the problems and their proposed solutions.

(c) The writing of mathematics standards at the national or state level. This

is an example of what might be called “practical optimization problems”,

which customize the mathematics to meet diverse, and at times conflict-

ing, needs of different clientele. Cf. Klein et al., 2005.

The concept of mathematics education as mathematical engineering also sheds

some light on Lee Shulman’s (1986) concept of pedagogical content knowledge. There

has been a good deal of interest in precisely describing the kind of knowledge a teacher

should possess in order to be effective in teaching. In the field of mathematics, at

least, this goal has proven to be elusive thus far (but cf. Hill-Rowan-Ball, 2004),

but Shulman’s intuitive and appealing formulation of this concept crystallizes the

diverse ideas concerning an essential component of good teaching. From the point

of view of mathematical engineering, one of the primary responsibilities of a teacher

is to customize her mathematical knowledge in accordance with the needs of each

situation for students’ consumption. This particular engineering knowledge is the

essence of pedagogical content knowledge. Although this approach to pedagogical

content knowledge does not add anything new to its conception, it does provide a

framework to understand this knowledge within mathematics, one that is different

from what one normally encounters in educational discussions. It makes explicit at
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least three components to effective teaching: a solid mathematical knowledge, a clear

perception of the setting defined by the students’ knowledge, and the flexibility of

mind to customize this mathematical knowledge for use in this particular setting

without sacrificing mathematical integrity.

The idea of customizing mathematics “without sacrificing mathematical integrity”

is central to mathematical engineering. In engineering, it is obvious that, in trying to

customize scientific principles to meet the needs of humanity, we cannot contradict

nature regardless of how great the human needs may be. In other words, one respects

the integrity of science and does not attempt anything so foolish as the construction

of anti-gravity or perpetual-motion machines. Likewise, as mathematical engineering,

mathematics education accepts the centrality of mathematics as a given. Again using

the example of teaching fractions, a mathematics educator would know that no matter

how one tries to teach fractions, it must be done in a way that respects the abstract

meaning of a fraction even if the latter is never used explicitly. If, for instance,

an educator catches himself saying that children must adopt new rules for fractions

that often conflict with well-established ideas about whole numbers, then he knows he

is teaching fractions the wrong way because, no matter what efforts one puts into

making fractions intuitive to children, one cannot do violence to the immutable fact

that the rational numbers contain the integers as a sub-ring. The need to teach the

arithmetic of fractions as a natural extension of the arithmetic of whole numbers has

gone unnoticed for far too long, with the result that too many of our students begin to

harbor the notion that, after the whole numbers, the arithmetic of fractions is a new

beginning. Such bad mathematical engineering in curricular designs is unfortunately

a common occurrence.

The only way to minimize such engineering errors is to have both mathemati-

cians and educators closely oversee each curricular design. In fact, if we believe in

the concept of mathematics education as mathematical engineering, then the two

communities must work together in all phases of mathematics education: Any educa-

tion project in mathematics must begin with a sound conception of the mathematics

involved, and there has to be a clear understanding of what the educational goal

is before one can talk about customization. In this process, there is little that is

purely mathematical or purely educational; almost every step is a mixture of both.

Mathematics and education are completely intertwined in mathematical engineering.
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Mathematicians cannot contribute to K–12 mathematics education if they are treated

as outsiders.8 They have to work alongside the educators on equal footing in the plan-

ning, implementation, and evaluation of each project. But this is far from the reality

at present.

For at least three decades now, the mathematics and K–12 education communities

in the U.S. have not been on speaking terms in the figurative sense. (Cf. Washington

Post, 1999.) The harm this communication gap has brought to K–12 mathematics

education can be partially itemized, but before doing that, let me point out three

general consequences of a philosophical nature. The first one is that the isolation

of the education community from mathematicians causes educational discussions to

over-focus on the purely education aspect of mathematics education while seemingly

always leaving the mathematics untouched. The result is the emergence of a subtle

mathematics avoidance syndrome in the education community, and this syndrome will

be seen to weave in and out of the following discussion of the specific harmful effects of

this communication gap. Given the central position of mathematics in mathematical

engineering, it would be noncontroversial to say that this syndrome should vanish

from all discussions in mathematics education as soon as possible.

The fact that many mathematicians teach mathematics and design mathematics

courses throughout their careers seems to escape the attention of many educators.

Here is a huge reservoir of knowledge and experience in mathematical engineering on

tap. The chasm between the two communities in effect denies educators access to

this human resource at a time when educators need all the engineering help they can

get.

The final consequence can best be understood in terms of the Darwinian dic-

tum that when a system is isolated and allowed to evolve of its own accord, it will

inevitably mutate and deviate from the norm. Thus when school mathematics ed-

ucation is isolated from mathematicians, so is school mathematics itself, and, sure

enough, the latter evolves into something that in large part no longer bears any re-

semblance to mathematics. Correct definitions are not given, or if given, they are

not put to use (Milgram-Wu, 2005, Wu, 2001a, 2005a and 2005c). The organic co-

8This only tells half the story about mathematicians. See the comments near the end of this
article.
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herence of mathematics is no longer to be found (Wu, 2002), or when “mathematical

connections” are intentionally emphasized, such “connections” tend to be the trivial

and obvious kind. Logical deduction becomes an afterthought; proofs, once relegated

to the secondary school geometry course, were increasingly diluted until by now al-

most no proofs at all are found there, or anywhere else in the schools (Wu, 2004).

And so on. This development naturally brings down the quality of many aspects of

mathematics education.

The absence of dialog between the two communities has led to many engineering

errors in mathematics education, one of them being the unwelcome presence of math-

ematically incorrect test items in state and other standardized tests (Milgram 2002,

2003). The same kind of defective items also mar many teachers’ credentialing tests

(Askey 2006a, 2006b). A more subtle effect of the absence of mathematical input on

assessment is the way test scores are routinely misinterpreted. The low test scores

have been used to highlight students’ dismal mathematical performance, but little

or no thought is given to the possibility that they highlight not necessarily students’

achievement (or lack thereof) but the pervasive damage done by defective curricular

materials, or even the chronic lack of effective teaching. Such a possibility may not

be obvious to anyone outside of mathematics, but to a mathematician, it does not

take any research to confirm the fact that when students are taught incorrect math-

ematics, they learn incorrect mathematics. Garbage in, garbage out. If the incorrect

mathematics subsequently shows up in students’ test scores, how can we separate

the errors due to the incorrect information students were given, from the errors due

to students’ own misconceptions? A more detailed examination of this idea in the

narrow area of school algebra is given in Wu, 2006. The need for mathematicians’

participation in all phases of assessment is all too apparent.

The lack of collaboration between mathematicians and mathematics educators

affects professional development as well. The issue of teacher quality is now openly

acknowledged and serious discussions of the problem are beginning to be accepted

in mathematics education (cf. Ma, 1999, and Conference Board of the Mathematical

Sciences, 20019). As a result of the inadequate mathematics instruction teachers

receive in K–12, their knowledge of mathematics is, by and large, the product of the

9Whatever reservations one may have concerning the details of its content, it is the fact that such
a volume could be published under the auspices of a major scientific organization that is important.
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mathematics courses they take in college.10 In very crude terms, the number of such

required mathematics courses is too low, and in addition, these courses are taught

either by mathematicians who are not in close consultation with teachers, and are

unaware as to what is needed in the school classroom, or by mathematics educators

who are not professional mathematicians. The former kind of course tends to be

irrelevant to the classroom, and the latter kind tends to be mathematically shallow

or incorrect. It is only natural that teachers coming out of such an environment turn

out to be mathematically ill-prepared.

Similar woes persist in in-service professional development, thereby ensuring that

teachers have little access to the mathematical knowledge they need for their pro-

fession. For example, the last decade has witnessed the appearance of case books

consisting of actual records of lessons given by teachers.11 The idea is to invite teach-

ers to analyze these lessons, thereby sharpening their pedagogical sensibilities. In too

many instances, however, blatant mathematical flaws in the cited cases are overlooked

in the editors’ commentaries. This raises the specter of bringing up a generation of

teachers who are proficient in teaching school students incorrect mathematics. In

this instance, it would appear that the need to respect mathematical integrity in

mathematical engineering has been all but forgotten.

The most divisive outcome of the noncommunication between the two communi-

ties in the U.S. is undoubtedly the conflict engendered by the new (reform) curricula

written in the past fifteen years. I take up this discussion last, because it brings

us face to face with some subtle issues about mathematicians’ participation in K–12

mathematics education. The prelude to the writing of these curricula is the unchecked

degeneration in the mathematical integrity of the existing textbooks from major pub-

lishers over the period 1970-1990, a fact already alluded to above. This degeneration

triggered the reform spearheaded by NCTM (National Council of Teachers of Math-

ematics, 1989). Rightly or wrongly, the new curricula were written under the banner

of the NCTM reform, and the manner in which some of the reform texts were imposed

10It may be useful to also take note of what may be called “the second order effect” of university
instruction: teachers’ knowledge of mathematics is also conditioned by their own K–12 experiences,
but these teachers’ teachers were themselves products of the mathematics courses they took in the
university.

11Let it be noted explcitly that I am discussing the case books in K–12 mathematics education
only.
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on public schools led eventually to the well-known Math Wars (Jackson, 1997). The

root of the discontent over these texts is the abundance of outright mathematical

errors,12 as well as what research mathematicians perceived to be evidence of a lack

of understanding of the mathematics. An example of the latter was the promotion of

children’s invented algorithms at the expense of the standard computation algorithms

in the elementary mathematics curriculum. Although the promotion was partly an

overreaction to the way the standard algorithms were often inflicted on school children

with nary a word of explanation, it also reflected a lack of awareness of the central

importance of the mathematical lessons conveyed by the reasoned teaching of these

algorithms.

The “subtle issues” mentioned above stem from the fact that the writing of some

of the new reform curricula actually had the participation of a few mathematicians.

The first thing to note is that the latter are the rare exceptions to the general non-

communication between the mathematics and education communities. The noncom-

munication is real. At the same time, these exceptions seem to point to an apparent

contradiction: How would I reconcile my critical stance toward these reform curricula

with the principal recommendation of this article, namely, that mathematicians be

equal partners with educators in the mathematics education enterprise? The answer

is that there is no contradiction at all. The participation by mathematicians is, in

general terms, a prerequisite to any hope of success in K–12 mathematics education,

but in no way does it guarantee success. It is helpful in this context to recall similar

discussions that routinely took place some eight years ago when some mathemati-

cians first went public with the idea that mathematics teachers must have a solid

content knowledge. The usual rejoinder at the time was that “knowing mathematics

is not enough (to be a good teacher)”. This is a common confusion that mistakes a

necessary condition for a sufficient condition.13 There is no quick fix for something

as complex as mathematics education. Getting mathematicians to fully participate

is only the beginning; the choice of the mathematicians and the hard work to follow

will have a lot to say about the subsequent success or failure.

It is appropriate at this point to recall what was said at the beginning of the

12These errors tend to be different from the earlier ones to be sure, but errors they are.
13And need I point out, there are some who intentionally use this confusion to reject that mathe-

matical content knowledge is important for teachers, or that getting mathematicians to participate
in mathematics education is critical for its success.
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article about the power structure of mathematics education: thus far, educators get

to make the decisions. Granting this fact, I should amplify a bit on the difficulties of

choosing the right mathematicians for education work. Mathematicians have a range

of background and experiences and, consequently, often have a range of opinions on

matters of education as well. It is important that the range of these opinions be

considered in all aspects of education. Many of the less happy incidents of the recent

past in K–12 mathematics education were the result of choosing mathematicians of

a particular persuasion. In addition, educators must make their own judgement on

which among the mathematicians interested in K–12 are knowledgeable about K–12.

Among the latter, some possess good judgment and leadership qualities while others

don’t. Educators must choose at each step. If there are algorithms for making the

right choices, I don’t happen to know them.

Every mathematician potentially has something to offer in K–12 mathematics

education: even an occasional glance at textbooks to check for mathematical cor-

rectness can be very valuable. However, if mathematicians want to participate in

serious educational work in K–12, what must they bring to the table? I believe the

most important thing is the awareness that K–12 mathematics education is not a

subset of mathematics, and that there is quite a bit to learn about the process of

customization that distinguishes K-12 mathematics education from mathematics. In

particular, much (if not most) of the mathematics they teach in the university cannot

be brought straight to the school classroom (Wu, 1997; Kilpatrick et al., 2001, Chap-

ter 10 and especially pp. 375-6), but that it must first go through the engineering

process to make it suitable for use in schools. If I may use the example of fractions

once again, mathematicians interested in making a contribution to K–12 may find it

instructive to get to know the reason that something like “equivalence classes of or-

dered pairs of integers” is totally opaque to students around the age of twelve. They

would also want to know the reason that students of that age nonetheless need a

definition of a fraction which is as close to parts-of-a-whole as possible. They should

also get to know the appropriate kind of mathematical reasoning for students in this

age group, because they will ultimately be called upon to safeguard such reasoning

in the curriculum and assessment for these students.

Mathematicians may regard school mathematics as technically primitive (in the

sense of skills), but they must take note of its conceptual sophistication (Jensen, 2003;
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Wu, 2001b, 2001c, and 2005d; cf. also Aharoni, 2005). Above all, they must know

that school mathematics is anything but pedagogically trivial: There is absolutely

nothing trivial about putting any material, no matter how simple, into a correct

mathematical framework so that it may be profitably consumed by school students.

Mathematicians who want to contribute to K-12 mathematics education have to be

constantly on the alert to ensure that the minimum requirements of their profession

— the orderly and logical progression of ideas, the internal cohesion of the subject,

and the clarity and precision in the presentation of concepts, — are still met in math-

ematics education writings. This is no easy task. If mathematicians want to enter

K–12 mathematics education as equal partners with educators, then it is incumbent

upon them to uphold their end of the bargain by acquiring this kind of knowledge

about mathematical engineering.

The concept of mathematics-education-as-mathematical-engineering does not sug-

gest the creation of any new tools for the solution of the ongoing educational problems.

What it does is to provide a usable intellectual framework for mathematics education

as a discipline, one that clarifies the relationship between the mathematics and the

education components, as well as the role of mathematicians in mathematics educa-

tion. For example, it would likely lead to a better understanding of why the New

Math became the disaster that it did. Most importantly, this concept lays bare the

urgent need of the mathematical presence in every aspect of K–12 mathematics ed-

ucation, thereby providing a strong argument against the self-destructive policy of

keeping mathematicians as outsiders in mathematics education. The chasm between

mathematicians and educators must be bridged if our children are to be better served.

I am cautiously optimistic14 that there are enough people who want to rebuild this

bridge (cf. Ball et al., 2005), all the more so because the indications are that the

NCTM leadership is also moving in the same direction. I look forward to a future

where mathematics education is the joint effort of mathematicians and educators.
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