
THE ISOPERIMETRIC INEQUALITY: THE ALGEBRAIC
VIEWPOINT

H. WU

This is an expanded version of the handout that accompanied
my lecture to a group of high school teachers on April 25,
1998.

1. The literature

The amount of education that takes place in a two hour lecture is very
small. The hope is rather that this lecture will make you feel suffciently
intrigued afterwards to pursue the subject on your own. With this in mind,
I want to begin with a discussion of the literature. Two books can be rec-
ommended regardless of the subject of this lecture. The first is the following
classic:

[CR] Richard Courant and Herbert Robbins, What is math-
ematics?, 2nd ed., revised by Ian Stewart, Oxford University
Press, 1996

This book has stayed in print for almost sixty years since its publication
date of 1941, and the revised edition is even in paperback! I urge you to
buy a copy right away if you don’t already own one. It is an approachable
and erudite discourse on the nature of mathematics, one that mathematics
researchers and high school students alike would find enligtening. Steiner’s
attempted proof of the isoperimetric inequality is on pp. 373–376.

A second book I recommend is of a far more recent vintage:

[R] Joseph Rotman, Journey into Mathematics, Prentice Hall,
1998.

The arithmetic-geometric-mean inequality is given two proofs on pp. 12–16,
and both are different from the one discussed in the lecture. Heron’s formula
and the fact that among triangles with a fixed perimeter the equilateral one
encloses the largest area are proved on pp. 79-81. In general, this book is
one of the few that give detailed exposition of the kind mathematics that is
both beneficial and relevant to high school teaching.

The next three are elementary monographs on inequalities. The first two
are still in print, but all three should be available in most libraries.
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[BB] E. Beckenbach and R. Bellman, An Introduction to In-
equalities, New Mathematical Library, Volume 3, Mathemat-
ical Association of America, 1961.
[K1] N. D. Kazarinoff, Geometric Inequalities, New Mathe-
matical Library, Volume 4, Mathematical Association of Amer-
ica, 1961.
[K2] N. D. Kazarinoff, Analytic Inequalities, Holt, Rinehart
and Winston, 1964.

All three contain a careful discussion of the arithmetic-geometric-mean in-
equality, and the last two also treat the isoperimetric inequalities for trian-
gles, quadrilaterals and polygons. Each only assumes high school mathemat-
ics and the first one, [BB], is especially suitable for enrichment programs in
high school.

A rigorous proof of the isoperimetric inequality can be found on pp. 31-35
of

[dC] Manfredo do Carmo, Differential Geometry of Curves
and Surfaces, Prentice Hall, 1976.

A good knowledge of calculus of two variables, including Green’s Theorem
is required. This is probably the most elementary known proof of this in-
equality but is by no means the most natural. An outline of a more natural
argument is on pp. 283–284 of

[OP] John Oprea, Differential Geometry and Its Applica-
tions, Prentice Hall, 1997.

What is missing in the argument of [OP] is the fact that the circle actually
furnishes the absolute minimum.

It may be superfluous to say so, but let it be said nonetheless, that far
from being an end in itself, the isoperimetric inequality for curves is only
the first step of an unending journey. The following survey article gives an
entry into the current literature.

[OS] R. Osserman, The isoperimetric inequality, Bulletin of
the American Mathematical Society, 84 (1978), 1182-1238.

2. The Inequality

Let R be a region in the plane, and let ∂R be its boundary. We will
henceforth assume that the area of R and the length of ∂R both make
sense. Denote them by A and C, respectively. By tradition, we shall refer
to C as the perimeter of R. At first glance, it does not look promising that
there would be any relationship between A and C. But in fact there is, and
this surprising fact constitutes
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The isoperimetric inequality. If the area and perimeter of a region in
the plane are A and C respectively, then

(1) A ≤ 1
4π

C2 ,

and equality holds exactly when the region is a round disk.

Note that this theorem asserts three things:
(a) A and C always satisfy inequality (1),
(b) if the region is a round disk, then inequality (1) is actually
an equality, and
(c) if inequality (1) is an equality for a region, then the region
is a round disk.

Of these three, (b) can be immediately verified. Indeed, if R is a round disk
of radius r, then A = πr2 and 1

4πC2 = 1
4π (2πr)2 = πr2 so that equality

prevails in (1). However, (a) and (c) are far from obvious. One can para-
phrase this theorem by saying that among all regions with a fixed perimeter
C, the round disk has the largest area, namely, 1

4πC2. (Note that when we
say “the” round disk, we consider all round disks with equal radii to be the
same.) Or, in self-explanatory language, the round disk is the solution to
the “isoperimetric” problem.

From the point of view of isoperimetry, (1) is an optimal inequality in
a sense that we now explain. Fix the perimeter C. Let β be any positive
constant and let us consider in general an inequality of the type A ≤ βC2.
From (1), we know that such an inequality is valid provided β ≥ 1

4π . Note the
obvious fact: since (1) is true, then so is A ≤ 1

πC2 or A ≤ C2 (corresponding
to β = 1

π and β = 1, respectively). But (1) assures us that it suffices to
take β = 1

4π , and observation (b) above says that it is necessary to require
β to be at least 1

4π , because if β0 < 1
4π , the round disk with perimeter C

would contradict A ≤ β0C
2. With the perimeter C fixed then, (1) gives

the smallest possible constant β to make the inequality A ≤ βC2 valid in
general. This is the meaning of (1) being an optimal inequality.

The intuitive reason why such a theorem should be true is the subject
of another lecture.1 What we hope to accomplish here is, first, to closely
examine why the inequality (1) is true when the region R is triangular
(in which case, ∂R is just an ordinary triangle). Then we shall go on to
investigate whether, when R is restricted to be a triangular region (which
then excludes the possibility of its being a round disk), there is an optimal
analog of (1). It will be seen that indeed there is a stronger isoperimetric
inequality for triangular regions, and along the way, we shall encounter a
classical inequality among positive numbers.

From now on, let R be a region bounded by a triangle ∂R. The first
problem facing us is to express the area A in terms of the perimeter C.

1See the author’s The isoperimetric inequality: the geometric story.
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The usual area formula for the triangle R involves the height of R on a
base and does not seem to be related to C. It turns out that there is a
formula expressing A directly in terms of C. Moreover, such a formula
was most likely already known to Archimedes (287-212 B.C.), the greatest
mathematician of antiquity, although it usually goes under the name of
Heron’s formula because it was first clearly stated and proved by Heron (75
A.D.? Very uncertain). Let

s =
1
2
C.

Heron’s formula states that if a, b and c denote the lengths of the three sides
of a triangle, then:

(2) A =
√

s(s− a)(s− b)(s− c).

A proof can be found on pp. 79–80 of [R] or pp. 35–36 of [K1].
Now we want to show that A ≤ 1

4πC2 = 1
πs2. According to (2), we may

restate (1) in an equivalent form:

(3)
√

s(s− a)(s− b)(s− c) ≤ 1
π

s2

Our next problem is: how to approach (3)? It would help to know that
there is a simple inequality:

Theorem AGM2. For any two positive numbers a and b,

(4) ab ≤
(

a + b

2

)2

,

and equality holds exactly when a = b.

We shall give three different proofs of Theorem AGM2. As in the case
of the isoperimetric inequality, the condition for the inequality (4) to be an
equality will be seen to be as interesting as the inequality itself. This lecture
will pay as much attention to inequalities as the condition for equality in each
case. The meaning of “AGM2” will become clear presently. Our immediate
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concern is to use (4) to prove (3), and it goes as follow:√
s(s− a)(s− b)(s− c) =

√
s(s− a) ·

√
(s− b)(s− c)

≤ 1
2
[s + (s− a)] · 1

2
[(s− b) + (s− c)] (by(4))

=
1
4
[2s− a][2s− (b + c)]

≤ 1
4

(
(2s− a) + (2s− (b + c))

2

)2

(by(4)again)

=
1
16

(4s− (a + b + c))2

=
1
16

(4s− 2s)2

=
1
4
s2,

where we have made use of the fact that 2s = a + b + c. In view of (2), this
implies that for a triangle with area A and perimeter 2s,

(5) A ≤ 1
4
s2 .

Since 4 > π, 1
4 < 1

π . Thus (3) is proved, and therewith, the isoperimetric
inequality for a triangular region.

We pause to make some remarks about the preceding proof of inequality
(3). Recall that for triangular regions, (1) is equivalent to (3), and we have
just seen that (5) implies (3). Thus with (5) in mind, we should ask if we
can similarly assert as we did with (1) that

for a triangular region with area A and perimeter 2s, (5)
holds, and the inequality is an equality exactly when the re-
gion is special in a sense to be determined.

Unfortunately, the proof of inequality (5) shows that even for triangular
regions, equality in A ≤ 1

4s2 can never take place. The reason is simple:
if equality is achieved in (5), then the chain of equalities and inequalities
preceding (5) must all be equalities. In particular, the first inequality in
the proof of (5) comes from the application of (4); let us look at the part
concerning √

s(s− a) ≤ 1
2
(s + (s− a)).

According to (4), equality is possible only when s = s−a, which is equivalent
to a = 0. Since a is the length of a side of the triangle, this is impossible.
Therefore, it is intrinsic to the proof itself that this way of using AGM2

cannot lead to an optimal isoperimetric inequality for triangular regions.
Thus there remains the task of getting the smallest possible constant β0

so that, for all triangular regions, A ≤ β0s
2 and, furthermore, we need to

characterize those triangular regions which satisfy A = β0s
2. We shall do

that, but let us first prove Theorem AGM2.
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As mentioned earlier, we are going to give three proofs of Theorem AGM2

and each sheds a different light on it. For convenience, we shall use the stan-
dard symbol ⇐⇒ to denote “is exactly the same as”.

First Proof. Without asking whether (4) is true or not, we shall re-
interpret it several times as an equivalent inequality and at the end, its
truth will be obvious.

ab ≤
(

a + b

2

)2

⇐⇒ 4ab ≤ (a + b)2 ⇐⇒ 4ab ≤ a2 + 2ab + b2

⇐⇒ 0 ≤ a2 − 2ab + b2.(6)

So (4) is true exactly when 0 ≤ a2 − 2ab + b2. However the latter is true
because (a2 − 2ab + b2) = (a − b)2 ≥ 0. So (4) is proved. Now if a = b,
clearly equality holds in (4). We have to also show, however, that if equality
holds in (4) so that ab = (a+b

2 )2, then in fact a = b. Now ab = (a+b
2 )2 means

that equality holds in (6), so that a2− 2ab + b2 = 0. Thus (a− b)2 = 0, and
this is possible only if a− b = 0, which means a = b as desired. Q.E.D.

Second Proof. If a = b, then ab = (a+b
2 )2 = a2 and (4) certainly holds.

Let then a 6= b, say a < b. Then (a+b
2 ) > a+a

2 = a so that

a =
(

a + b

2

)
− s for some s > 0.

Then

b = (b + a)− a = (b + a)−
[
(
a + b

2
)− s

]
=

(
a + b

2

)
+ s,

so that

ab =
(

a + b

2
− s

) (
a + b

2
+ s

)
=

(
a + b

2

)2

− s2 <

(
a + b

2

)2

.

This proves (4) in the form of a strict inequality. In particular, if a < b,
then only strict inequality in (1) is possible. Therefore, if equality holds in
(4), we must have a = b. Q.E.D.

Third Proof. Write P = a + b; then ab = (P − b)b. In terms of P , the
theorem may be rephrased as:

with P held fixed, the function f(b) given by f(b) = b(P−b) is
at most (P

2 )2, and equals this maximum exactly when b = P
2 .

To see this, notice that f(b) = −b2 + Pb, so that its graph is an inverted
parabola which crosses the x-axis at 0 and b because f(0) = f(P ) = 0.
Pictorially, we’d expect the highest point of the parabola to be over the
midpoint P

2 of the interval [0, P ], and since f(P
2 ) = (P

2 )2, the theorem is
proved. But we don’t need to rely on pictures because we know by com-
pleting the square that f(b) = −(b − P

2 )2 + (P
2 )2. It follows that for all
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b ∈ [0, P ], f(b) ≤ (P
2 )2, and equality holds exactly when −(b− P

2 )2 = 0, i.e.
when b = P

2 . Q.E.D.

It may be of interest to point out that AGM2 itself carries information
about isoperimetry. Indeed, consider a rectangle with sides of length a and
b. Then its area is A0 ≡ ab and its perimeter is C0 ≡ 2(a + b). Inequality
(4) is now equivalent to A0 ≤ 1

16C0, and AGM2 asserts that a rectangle with
a fixed perimeter C0 achieves the maximum area 1

16C0 exactly when it is a
square.

For two positive numbers a and b,
√

ab is called the geometric mean of a

and b, and
a + b

2
is called their arithmetic mean. Theorem AGM2 is therefore

the statement that the geometric mean of two positive numbers is less than
or equal to their arithmetic mean, and equals the latter exactly when the
two numbers are themselves equal. For this reason, Theorem AGM2 is called
the arithmetic-geometric-mean inequality for two numbers, which then also
explains the meaning of AGM2. What about three positive numbers?

There are two reasons why we raise the question about three positive
numbers. The first reason is that it is natural to do so. But there is a second
reason: we have seen that one reason the inequality (5) is not optimal (the
number 1

4 is too big) is that its proof breaks up the product s(s − a)(s −
b)(s− c) into two groups of two factors each, and then (4) is applied to each
group separately. An obvious alternative is to consider (s− a)(s− b)(s− c)
together and hope to apply some version of AGM2 to this product of three
numbers.

In any case, we would guess that the analogue of AGM2 for three numbers
is:

(a1a2a3)1/3 ≤
(

a1 + a2 + a3

3

)
,

and equality holds exactly when a1 = a2 = a3,(7)

and for four positive numbers,

(a1a2a3a4)1/4 ≤
(

a1 + a2 + a3 + a4

4

)
,

and equality holds exactly when a1 = · · · = a4.(8)

Assertions (7) and (8) will be referred to as AGM3 and AGM4, respectively.
In general, we define (a1a2 · · · an)1/n to be the geometric mean of the positive

numbers a1, . . . ,an, and
(

a1 + a2 + · · ·+ an

n

)
to be their arithmetic mean.

The obvious conjecture is that the geometric mean is always less than or
equal to the arithmetic mean. We shall deal with this conjecture after we
have taken a closer look at (7) and (8).

It is true that one can prove AGM3, i.e., (7), by a direct algebraic compu-
tation, but this turns out to be neither enlightening nor productive, in the
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sense that it does not make us understand (7) any better and the method
does not generalize to a proof of (8). A good proof is one that makes us
understand what it proves, so such a computational proof is no good and
will therefore not be pursued here. There is apparently no direct computa-
tional proof of (8). What is surprising, however, is that we can quite easily
prove (8) on the basis of AGM2 and then go backwards to prove (7). This
is the insight of Auguste Cauchy (1789-1857), who used this idea to prove
the arithmetic-geometric-mean inequality in general. Let us first show the
AGM2 implies AGM4. So let a1, a2, a3, a4 be positive numbers and we

shall prove: a1a2a3a4 ≤
(

a1 + a2 + a3 + a4

4

)4

.

a1a2a3a4 = (a1a2)(a3a4)

≤
(

a1 + a2

2

)2 (
a3 + a4

2

)2

(by AGM2)

=
[(

a1 + a2

2

) (
a3 + a4

2

)]2

≤

{(
a1+a2

2

)
+

(
a3+a4

2

)
2

}2
2

(by AGM2 again)

=

[{
a1 + a2 + a3 + a4

4

}2
]2

=
(

a1 + a2 + a3 + a4

4

)4

.

Moreover, suppose equality holds in (8), then the first and last terms in
the preceding chain of equalities-inequalities are equal, and therefore every
inequality in this chain is necessarily an equality. But both inequalities
above are a result of AGM2, and we know from AGM2 that equality holds
on the second line exactly when a1 = a2 and a3 = a4, and equality holds
on the fourth line exactly when (a1+a2

2 ) = (a3+a4
2 ). Together, these imply

that equality holds in (4) exactly when a1 = a2 = a3 = a4. We have thus
completely proved AGM4.

Now we prove AGM3 ((7)), using Cauchy’s idea by adding an extra num-
ber to both sides of (7). Let a1, a2, and a3 be given positive numbers, and

let A =
(

a1 + a2 + a3

3

)
. This A is the arithmetic mean of a1, a2, and a3;

equivalently, a1 + a2 + a3 = 3A. By (8),

(9) a1a2a3A ≤
(

a1 + a2 + a3 + A

4

)4

.

However, a1 + a2 + a3 + A = 3A + A = 4A, so the right side of (9) is just
A4, and we have a1a2a3A ≤ A4. Since A is positive, multiplying both sides



THE ISOPERIMETRIC INEQUALITY: THE ALGEBRAIC VIEWPOINT 9

by 1
A does not change the inequality. So we obtain

a1a2a3 ≤ A3 =
(

a1 + a2 + a3

3

)3

.

Moreover, suppose equality holds, i.e., a1a2a3 = (a1+a2+a3
3 )3. Then a1a2a3 =

A3, so that the left side of (9) becomes A4, which then equals the right side
of (9) which as we observed is also equal to A4. So equality holds in (9).
By AGM4, this happens exactly when a1 = a2 = a3 = A. So (7) is now also
completely proved!

This idea of Cauchy’s immediately lends itself to the general proof of the
arithmetic-geometric-mean inequality, AGMn, namely: if a1, a2, . . . , an are
positive numbers, then

(a1a2 · · · an)
1
n ≤ a1 + a2 + · · ·+ an

n
and equality holds exactly when a1 = · · · = an(10)

The proof can be easily described: In the same way AGM2 was used to
prove AGM4, we can use AGM4 to prove AGM8, as follows.

a1a2 · · · a8 = (a1 · · · a4)(a5 · · · a8)

≤
(

a1 + · · ·+ a4

4

)4 (
a5 + · · ·+ a8

4

)4

(by AGM4)

=
[(

a1 + · · ·+ a4

4

) (
a5 + · · ·+ a8

4

)]4

≤

{
(a1+···+a4

4 ) + (a5+···+a8
4 )

2

}2
4

(by AGM2)

=
(

a1 + · · ·+ a8

8

)8

,

as desired.
This suggest a somewhat spectacular induction argument. For each posi-

tive integer k, let Pk be the statement: if a1, . . . , a2k are 2k postive numbers,
then

(a1a2 · · · a2k)
1

2k ≤ a1 + · · ·+ a2k

2k
,

and equality holds exactly when a1 = · · · = a2k(11)

We claim that Pk is true for all k = 1, 2, 3, · · · . Since P1 is just AGM2, P1

is true. Then we can show Pk implies Pk+1 in exactly the same way that
AGM4 implies AGM8. The assertion about the condition of equality is also
proved in the same way that the equality assertion in AGM4 was proved.
(If you really want to see the details, they are in [BB] and [K2].) Thus we
have proved AGM2k .
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What about AGMn when n is not a power of 2? We shall handle it in
exactly the same way that we did AGM3 above. To illustrate, suppose we
want to prove AGM29. The power of 2 after 29 is 32, and we already know
that AGM32 is true (32 = 25). So in order to prove

(12) (a1a2 · · · a29) ≤
(

a1 + · · ·+ a29

29

)29

we introduce as before A = (
a1 + · · ·+ a29

29
) and use AGM32 to conclude

that

(13) (a1a2 · · · a29AAA) ≤
(

a1 + · · ·+ a29 + A + A + A

29

)32

But a1+ · · ·+a29 = 29A, so (a1+ · · ·+a29+A+A+A)/32 = (32A)/32 = A,
and the right side of (13) is A32. Thus (a1 · · · a29)AAA ≤ A32. Since A is
positive, we may multiply both sides by A−3 and get (a1 · · · a29) ≤ A29,
which is the inequality in (12). The case of equality in (12) can be argued
exactly as in the case of AGM3.

We have therefore proved (10), which is AGMn.

We can now return to our roots: why we got started on the AGM in-
equality in the first place. We want to prove the isoperimetric inequality
for triangular regions. We have seen that by Heron’s formula, the area A is
given by (2). We now apply AGM3 to (2) and make use of 2s = a + b + c:

A =
√

s [(s− a)(s− b)(s− c)]
1
2

≤
√

s

[(
(s− a) + (s− b) + (s− c)

3

)3
] 1

2

=
√

s

[(
3s− (a + b + c)

3

)3
] 1

2

=
√

s

[(s

3

)3
] 1

2

=
s2

3
√

3
Thus,

(14) A ≤ s2

3
√

3
.

Now AGM3 also says that the chain of inequalities would be equalities (and
hence equality holds in (14)) exactly when s − a = s − b = s − c, which
is the same as a = b = c. Thus the area attains its maximum value s2

3
√

3
exactly when the triangle is equilateral. Thus we have completely proved
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the isoperimetric inequality for triangular regions. To bring it to the same
form as the general isoperimetric inequality announced earlier, recall that
the perimeter C equals 2s. Thus we have:

The isoperimetric inequality for triangular regions. If A and C
are the area and perimeter of a triangle, then:

(15) A ≤ 1
12
√

3
C2,

and equality holds exactly when the triangle is equilateral.

By the way, it is instructive to directly check that the area of an equilateral

triangle with each side equal to
2s

3
is indeed

s2

3
√

3
. Also note the obvious fact

that 4π = 12.566 . . ., whereas 12
√

3 = 20.78 . . .. This gives a comparison
between (1) and (15).

It goes without saying that the same conclusion could be obtained by the
method of calculus: just maximize the function

F (a, b, c) = (s− a)(s− b)(s− c),

where s is a constant, within the region 0 < a, b, c < s. However, the use of
AGM3 gives an entirely different perspective on this problem, and serves to
underline the importance of inequalities in mathematics.

We have used the isoperimetric inequality to introduce the arithmetic-
geometric-mean inequality, but it would be wrong to suggest that the isoperi-
metric inequality somehow justifies the latter. The fact is that the arithmetic-
geometric-mean inequality is one of the truly basic inequalities in mathemat-
ics and it comes up frequently in advanced mathematics. In addition, it is
both surprising and beautiful. If you have any doubts of the latter fact,
ask a friend to give you three very big numbers (e.g., 51244585, 60231463,
44428791) and ask her which of the two is bigger: their product or the cube
of their average? Try this a few more times with other big numbers and
watch her struggle before letting her in on the secret. What do you think
would be her reaction?

Exercise. Of all the triangles with the same base and area, prove that
the isosceles triangle has the smallest perimeter.

Exercise. Let r1 and r2 be the two roots of the quadratic polynomial
x2 − bx + c, where b and c are real numbers.

(1) Prove that r1r2 = c and r1 + r2 = b.
(2) Consider the following statement: “Using (1) and AGM2,
we have c ≤ ( b

2)2. Since b and c are arbitrary, this is a con-
tradiction.” Explain what is wrong with the preceding ar-
gument. What is a correct statement about the relationship
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between b and c?
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