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On the Teaching of Fractions

The following is a new approach to the teaching of fractions.
It is not new in the sense of introducing new concepts; the subject
is too old for that. Rather, it is new in the way the various skills
and concepts are introduced and woven together. Whereas it is
traditional to ask you to believe that the concept of a fraction
is so profound that you have to be willing to accept multiple
meanings for it at the outset, we merely ask you to accept one
clear-cut definition of a fraction (as a point on the number line),
and use reasoning to deduce as logical consequences all other
meanings of this concept. In this way, everything that is present
in the traditional presentation will make its appearance in this
logical and coherent development of the subject. Everything is
explained, and nothing is taken for granted.

The logical coherence in a presentation of fractions is critically
important. The reason why this subject is the bane of elemen-
tary school students has been extensively investigated, and much
educational research into the so-called “learning of fractions” has
been done. But to our knowledge, no dramatic progress has yet
surfaced. If we are to look at this situation without prejudice, we
cannot fail to see that a major reason for students’ failure to learn
fractions is the mystical and mathematically incoherent manner
the subject has been presented to them. One consequence is that
few students can give a definition of a “fraction” that is at all re-
lated to all the manipulations they are made to learn. This being
the case, the disjunction between understanding and skills is right
there from the beginning. Why then should there be any sur-
prise that students fail to add and divide these mysterious objects
with ease or conviction? In the face of such mathematical
defects in the presentations of fractions in school
texts and professional development materials, edu-
cational research into the learning of fractions be-
comes more about students’ ability to overcome the
handicap of a bad education than about their ability
to learn. If students are not taught correct mathematics, they
will not learn correct mathematics. A strong case therefore can
be made that one should shore up the mathematical presentation
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of fractions before proceeding with the research.
In addition to logical coherence, a noteworthy feature of this

presentation of fractions is that fractions are treated on the same
footing as whole numbers. You will discover that everything you
learn from Chapter 1 about whole numbers naturally extends to
fractions. There is none of the conceptual discontinuity — so
disturbing to a beginning learner — in going from whole num-
bers to fractions that mars almost all expositions on fractions in
school mathematics. Both whole numbers and fractions are just
numbers, and they are here treated as such accordingly.

We hope you would find that the present presentation makes
sense for a change.1

We are going to develop the whole subject of fractions from
the beginning, assuming nothing from your previous knowledge
of the subject. We will spend times explaining facts (such as
equivalent fractions) which you may be already familiar with. It
is likely, however, that the explanation itself will be new to you so
that it takes time for you to get used to it. For example, we will
ask you to remember, again and again, that a fraction is a point
on the number line (see §5 of Chapter 1). This will take a little
time before it sinks in. Of course, seeing something you think
you know but having to rethink it in order to achieve a greater
understanding can be a frustrating experience at first, but we
think you would find it worthwhile in the long run.

1 I will not make the usual sales pitch about how it is going to be easy and fun to learn
fractions this time around. Let me just say that this presentation will make sense, and
it will yield to the normal amount of hard work that must accompany any worthwhile
endeavor.
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The understanding of this chapter would require a
knowledge of at least §§4–5 of Chapter 1 on Whole
Numbers. Moreover, it would be to your advantage
to first read the Appendix in §13 to get a general
idea of where this chapter is headed.

1 Definition of a Fraction

Recall that a number is a point on the number line (§5 of Chapter 1). This
chapter deals with a special collection of numbers called fractions, which are
usually denoted by m

n
, where m and n are whole numbers and n 6= 0. We

begin by defining what fractions are, i.e., specifying which of the points on the
number line are fractions. The definition will be both clear and simple. If you
find it strange that we are making a point of giving a definition of fractions,
it is because this is something thousands (if not hundreds of thousands) of
teachers have been trying to get at for a long time. Most school textbooks
and professional development materials do not bother to give a definition at
all. A few better ones at least try, and typically what you would find is the
following:

Three distinct meanings of fractions — part-whole, quotient,
and ratio — are found in most elementary mathematics pro-
grams.

Part-whole The part-whole interpretation of a fraction such
as 2

3
indicates that a whole has been partitioned into three

equal parts and two of those parts are being considered.
Quotient The fraction 2

3
may also be considered as a quo-

tient, 2 ÷ 3. This interpretation also arises from a partitioning
situation. Suppose you have some big cookies to give to three
people. You could give each person one cookie, then another,
and so on until you had distributed the same amount to each.
If you have six cookies, then you could represent this process
mathematically by 6÷ 3, and each person would get two cook-
ies. But if you only have two cookies, one way to solve the
problem is to divide each cookie into three equal parts and give
each person 1

3
of each cookie so that at the end, each person

gets 1
3

+ 1
3

or 2
3

cookies. So 2÷ 3 = 2
3
.
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Ratio The fraction 2
3

may also represent a ratio situation,
such as there are two boys for every three girls.

Such an explanation is unsatisfactory for several reasons. To say that
something you try to get to know is three things simultaneously strains one’s
credulity. For instance, if I tell you I have discovered a substance that is as
hard as steel, as light as air, and as transparent as glass, would you believe
it? Another reason for objection is that a fraction is being explained in terms
of a “ratio”, but most people don’t know what a ratio is.2 In addition, while
we are used to the idea of a division a÷ b where a is a multiple of b (see §3.4
of Chapter 1), we are not sure yet of what 2 ÷ 3 means. So to use this to
explain the meaning of 2

3
does not seem to make sense. Finally, we anticipate

that fractions would be added, subtracted, multiplied and divided, and it is
not clear how one goes about adding, subtracting, multiplying and dividing
a part-whole, or a quotient, or a ratio.

This is why we opt for a definition that is both simple and clear.

Before giving the general definition of a fraction, let us first consider the
special case of all fractions of the form 0

3
, 1

3
, 2

3
, 3

3
, 4

3
, . . . , and try to see what

they mean. We have to begin with the concept of two line segments on the
number line being of equal length: it means that if we slide one of them along
the number line until the left endpoints of the segments coincide, then their
right endpoints also coincide. Now divide each of the line segments [0, 1],
[1, 2], [2, 3], [3, 4], [4, 5], . . . into three segments of equal length so that each
of these segments now acquires two additional division points in addition to
its left and right endpoints. The number line now has a new sequence of
equally spaced markers superimposed on the original markers corresponding
to whole numbers.

0 1 2 3

By definition, 1
3

is the first division point to the right of 0, 2
3

is the second
division point to the right, 3

3
is the third division point, 4

3
is the fourth

2 We will precisely define ratio in §11.
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division point, etc., and m
3

is the m-th division point for any whole number
m > 0. By convention, we also write 0 for 0

3
. Note that 3

3
coincides with 1,

6
3

coincides with 2, 9
3

coincides with 3, and in general, 3m
3

coincides with m
for any whole number m. Here is the picture:

0 1 2 3 etc.

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
3

10
3

Each n
3

is called a multiple of 1
3
. Note that the way we have just intro-

duced the multiples of 1
3

on the number line is exactly the same way that
the multiples of 1 (i.e., the whole numbers) were introduced on the number
line in §5 of Chapter 1. In both cases, we start with a fixed unit (in §5 of
Chapter 1 it was “1”, and here it is “1

3
”), and then propagate its multiples

to the right of 0. One could paraphrase this situation by saying that the
multiples of 1

3
are the analogues of the whole numbers if 1

3
is used in place of

1 as the unit. From this perspective, we can start with 1
n

for any nonzero
whole number n in place of 1

3
, and then propagate the multiples of 1

n
(i.e., m

n

for all whole numbers m) to the right of 0 in exactly the same manner. This
then leads to the following general definition:

Definition. Let k, l be whole numbers with l > 0. Divide each of the
line segments [0, 1], [1, 2], [2, 3], [3, 4], . . . into l segments of equal length.
These division points together with the whole numbers now form an infinite
sequence of equally spaced markers on the number line (in the sense that
the lengths of the segments between consecutive markers are equal to each
other). The first marker to the right of 0 is by definition 1

l
. The second

marker to the right of 0 is by definition 2
l
, the third 3

l
, etc., and the k-th is

k
l
. The collection of these k

l
’s for all whole numbers k and l, with l > 0, is

called the fractions. The number k is called the numerator of the fraction
k
l
, and the number l its denominator.

For typographical reasons, a fraction k
l

is sometimes written as k/l. We
adopt for convenience the convention that the fraction notation k

l
or k/l

automatically assumes that l > 0. It is common to call k
l

a proper fraction
if k < l, and improper if k ≥ l. Note that by the way we define a fraction,

we make no distinction between proper fractions and improper
fractions.
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To us, both are just fractions. Note in addition that

a whole number is also a fraction.

This means that a whole number (which is a point on the number line) is
among the markers k

l
for appropriate choices of k and l. This is true by the

very definition of fractions because the markers of the whole numbers are
among the markers of the fractions. Of course, we have already pointed out
in the discussion of fractions with denominator 3 that m is the same point
as 3m

3
for every whole number m.

We also agree to write 0 for 0
n

(any n > 0).

We can now define the lengths of more line segments than in §3.1. Let k
l

be a fraction. We say a line segment from x to y on the number line, denoted
by [x, y], has length k

l
if, after sliding [x, y] to the left until x rests on 0,

the right endpoint y rests on k
l
. It is important to observe that if l = 1,

then k
l

= k and this definition of length coincides with the one given in §3.1.
Moreover, it follows from the definition of k

l
that:

k
l

is the length of the concatenation of k segments each of which
has length 1

l
.

For brevity, we shall agree to express the preceding sentence as:

k
l

is k copies of 1
l
.

Note that the requirement of l > 0 in a fraction k
l

is easy to explain
from our present standpoint: it is not possible to divide [0, 1] into 0 segments
of equal length. Of course, we will eventually show that k

l
is the same as k

divided by l, so that l > 0 guarantees that we are not dividing by 0. (See
the discussion after (48) in §4 of Chapter 1.)

It is to be remarked that there is at present some confusion in the meaning
of “fraction” in the education literature.

In this monograph, a fraction a
b

refers only to whole
numbers a and b.
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Some writers however define a fraction to be x
y
, where x and y can be any real

numbers. Thus
√

2
5

would be a fraction according to the latter, but certainly
not according to this monograph. One has to be careful with this conflicting
use of the term.

The number line now has many more markers: in addition to the whole
numbers, we also have all the fractions k

l
, where k and l are whole numbers

and l 6= 0.3 For example, with l = 5, we display the first few markers of the
form k

5
:

0 1 2

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

10
5

11
5

The fraction 7
5

is clearly shown as the 7th marker to the right of 0.
Similarly, the number 11

8
can be precisely located on the number line by

dividing each of [0, 1], [1, 2], etc., into 8 segments of equal length and going
to the 11th marker to the right of 0. Here is the picture:

0 1

0
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
8

10
8

11
8

You need to be completely at ease with this definition of a fraction. Here
is an activity that could help you achieve this goal.

Activity: Using the preceding examples as model, describe in
words where each of the fraction is on the number line and also
draw a picture to show its location. (a) 7

9
. (b) 6

11
. (c) 9

4
. (d)

13
5

. (e) 10
3

. (f) k
5

, where k is a whole number between 11 and
14. (g) k

6
, where k is a whole number between 25 and 29.

3 It should not be assumed that every number is a fraction. For example, if [0, c] is the
line segment with the same length as the diagonal of the unit square, then it will be shown
in §5 of Chapter 3 that c is not a fraction. In fact, “most” numbers are not fractions.
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In case k is a multiple of l, say k = nl, then the fraction k
l

is special: it
is quite evident (by looking at the numbers 5

5
, 10

5
, and 8

8
in the two preceding

pictures, for instance) that l
l
= 1, 2l

l
= 2, 3l

l
= 3, 4l

l
= 4, and in general,

nl

l
= n, for all whole numbers n, l, where l > 0 (1)

In particular,
n

1
= n and

n

n
= 1

for any whole number n.
Incidentally, (1) is consistent with the our convention that we write 0 for

0
n

for any n > 0.
In common language, we say k

`
is “k-` ths of 1”, e.g., 2

7
is two-sevenths of

1 and 4
5

is four-fifths of 1.

Certain issues that arise in the preceding discussion are quite subtle and
deserve to be examined at some length. First and foremost: it is impera-
tive for our purpose that we have an explicit definition of a fraction. In this
monograph, every mathematical statement is supported by a logical explana-
tion. In the case of fractions, this definition furnishes the starting point of all
logical explanations we have to offer about fractions. The way mathematics
works is to start with one clearly stated meaning (i.e., a precise definition)
of a given concept, and on the basis of this meaning we explain everything
that is supposed to be true of this concept (including all other meanings and
interpretations) using logical reasoning. Such an approach puts a premium
on your reasoning skill as well as your knowledge of precise definitions. So
please go back to study the definition of a fraction and get used to it (cf. §5
of Chapter 1). Some of the comments below may help you achieve this goal.

A second point is the important role of a unit disguised as the number 1
in the definition of a fraction. Compare the discussion in §4 of Chapter 1,
especially the discussion surrounding (45). We have so far limited ourselves
to looking at the unit 1 abstractly as a point on the number line, but suppose
we use as unit the weight of a piece of ham which weighs three pounds. So
the number 1 stands for the weight of this piece of ham. The number 4 is
then the weight of four pieces of ham of the same weight (therefore twelve
pounds). Now what would 1

3
be? According to our definition, we divide our

unit (three pounds of ham) into 3 parts of equal weight (each part therefore
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weighs one pound), and one of these parts is 1
3
.4 In this context, 1

3
is one

pound of ham. In ordinary language, 1
3

in the present setting is exactly what
we mean by “a third of the piece of ham by weight”. More generally, the same
reasoning tells us that, if we decide on using the weight of an object X as our
unit, then 5

7
(say) would mean 5 parts of X after it has been partitioned into

7 parts of equal weight. Therefore in this setting, 5
7

is what we usually refer
to as “five-sevenths of X by weight”. (compare §10 below.) Thus depending
on what the unit 1 is, a fraction can have many interpretations. A fraction
5
7

could be the volume of five-sevenths of a bucket of water, the volume of
five-sevenths of a pie,5 five-sevenths in dollars of you life-savings, etc.

In terms of a fixed unit, we can paraphrase the definition of a fraction as
follows:

Let k, l be whole numbers with l > 0. Then 1
l

is by definition
one part when the unit is divided into l equal parts, and k

l
is by

definition k of these parts.

It is well to keep in mind that this does not give the precise meaning of a
fraction because “one part” and “divided into l equal parts” are vague state-
ments.6 If the unit is the length of a certain segment, then “one part” would
be a segment of a fixed length and “equal parts” would mean “segments of
the same length”. If a unit is the volume of a fixed set, then “one part”
would be a subset of a fixed volume and “equal parts” would mean “subsets
of equal volume”, and so on. In the case the unit in question is the length
of a segment, then the perceding paraphrase gives essentially the original

4 Notice that we did not say “divide our unit into 3 equal parts”, but said instead 3
parts of equal weight. The reason is that the former statement does not make clear “equal”
in what respect. Same shape? Same volume?

5 In textbooks, this is often left vague, thereby leading to unfortunate misconceptions,
see Exercise 1.7. The usual statement is to just say “cut the pie into 7 equal parts”.
Because the pie is represented by a circle, textbooks then show 7 circular sectors with
the same central angle. Students should know that “equality” here means equality of the
volumes of the parts of the pie. Because the circular pie is represented by a cross-section
(which is a circle) and we may always assume that cutting equal areas of the circular
cross-section leads to cutting equal volumes of the pie, it is legitimate to settle for cutting
“regions of equal area in the circle”. If however these considerations are never made
explicit to students once and for all, there will be misconceptions about “equal division”
and therefore about fractions.

6 See preceding footnote.
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definition of a fraction.7 In the classroom, this way of introducing a fraction
in terms of a fixed unit may be more acceptable to some students, but if it
is used, do not forget to constantly remind the students about the presence
of the unit.

Other than the length of a unit interval, the most interesting and the
most common unit is the area of a unit square. Recall from §4 of Chapter
1 that “unit square” refers to a square with each side of length 1 (a certain
unit being assumed to have been chosen on the number line).

Because we will have to use the concept of area in a more elaborate
fashion, let us first give a more detailed discussion of the basic properties of
area. The basic facts we need are summarized in the following:

(a) The area of the unit square is by definition 1.

(b) If two regions are congruent, then their areas are equal.

(c) If two regions have at most (part of) their boundaries in com-
mon, then the area of their union is the sum of their individual
areas.

We shall not define “congruent regions” precisely except to use the intu-
itive meaning that congruent regions have the same shape and same size, or
that one can check congruence by sliding, rotating, and reflecting one region
to see if it can be made to coincide completely with the other. Thus the
following two regions A and B are congruent:

7 What is missing from this paraphrase is the clarity of a fraction as a definite point on
the number line. Here, a “part” must be left to the imagination.
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The meaning of (C) is illustrated by the following: the area of the union
of A and B below is the sum of the areas of A and B.
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Let us show, for example, that each of the following four triangular regions
in the unit square has area 1

4
:

�
�

�
�

�
�

@
@

@
@

@
@

By (a) above, the area of the unit square is 1, which we now regard as
the unit of the number line. Each of these triangular regions is congruent
to the others, and by (b), these four regions have equal area. Because the
union of the four triangular regions is the unit square, the sum of these four
areas is therefore equal to 1, by (c). Therefore, area-wise, these four regions
give a division of the unit 1 into four equal parts. By the definition of 1

4
in

the above definition of fractions, the area of any of these triangular regions
is thus 1

4
.

This kind of argument can be carried out in like manner in similar situ-
ations, and 1

4
can be seen to have many pictorial representations. It can be
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a part of any division of the unit square into four parts of equal area. Each
of the following shaded area is an example:

�
�

�
�

�
�

@
@

@
@

@
@

If it helps you to think of a fraction as some kind of a pictorial object,
— part of a pie, part of a square (such as above), or a collection of dots, —
by all means do so. In mathematics, do whatever it takes to help you learn
something, provided you do not lose sight of what you are supposed to learn.
In the case of fractions, it means you may use any pictorial image you want
to process your thoughts on fractions, but at the end, you should be able to
formulate logical arguments in terms of the original definition of a fraction
as a point on the number line. This precise definition of a fraction is our
starting point, and is therefore the only reference point at our disposal for
logical arguments. For this reason, we will try to present such a number-line
argument for every assertion we make about fractions in addition to all other
forms of picture-based reasoning.

One word of caution about the use of pictures: even in informal rea-
soning, we should try not to damage students’ intuitive grasp of the basic
mathematics. Therefore if the area of a square or a circle is used as a unit,
what we should be careful about is to keep the size of the unit the same (or
as much as hand-drawing allows!) under all circumstances. Here are some
examples of how not to do it.

Example 1. Tell students that the following shaded area represents 3
2
:
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What is wrong is that, if the area of the left square is implicitly taken as
the unit, then the area of the right square (which is visibly bigger) would be
bigger than 1 and consequently the total shaded area would represent more
than 3

2
. Or, if the area of the right square is taken as the unit 1, then the

total shaded area would be smaller than 3
2

.

Example 2. Tell students that the following shaded area represents 3
2
:

��
��

��@@
��@@
LL

LL

��

��

!!!!
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@@

��

L
L

�
�

aa
!!

This is exactly the same visual misrepresentation of a fraction as the pre-
ceding example, with only a square replaced by a pie. If the area of the left
pie is taken as a unit, then the right pie represents a number bigger than
1, so that the total shaded area would be more than 3

2
. Because the pie

representation of a fraction is so popular, it is hoped that by bringing this
problematic issue to the forefront, such misleading representations of frac-
tions will disappear from the classroom. An additional remark is that many
teachers manage to avoid this misrepresentation because they only work with
proper fractions, in which case only one pie would be needed at all times. We
would like to suggest that such a practice is not pedagogically sound because
students must get used to seeing all kinds of fractions, proper or improper.

Example 3. Ask students what fraction is represented by the following
shaded area:
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The problem here is that the unit is not clearly specified, so that it would
be perfectly legitimate to assume that the area of the whole rectangle is the
unit 1, in which case the shaded area would be 3

4
instead of 3

2
. It would

be a good idea to avoid this kind of ambiguity right from the beginning by
emphasizing the important role of a unit.

A third point is that there is supposed to be some unease among students
concerning the strange notation k

l
for a fraction; they wonder why it takes

two whole numbers k and l and a bar between to denote a single object. We
believe this notation is strange only when the concept of a fraction is not
clearly defined and therefore remains a mystery, so that any notation used
to denote a myterious object would seem strange. But we know better now:
fractions are a definite collection of points on the number line, most of which
lie between whole numbers. To denote 5

3
, for example, ask your students if

they believe there is any way to specify the location of 5
3

between 1 and 2 by
using only one whole number. Obviously not. Furthermore, explain to them
that the bar between 5 and 3 is strictly for clarity and nothing else. When
such explanations are supplied, the notation 5

3
would look much less strange.

A fourth point is that you may have some concern about the idea of di-
viding anything into 7 or 11 or 9 equal parts. To be specific, our definition
of a fraction freely assumes the possibility of dividing the unit segment into
11 equal parts, for example, in order to place the fractions with denominator
equal to 11 on the number line. In practical terms, this may seem far-fetched
as most of us have trouble dividing anything into equal parts other than
halves or fourths. However, we are talking here not about practical means
of doing this but the theoretical possibility. Should you have a real psy-
chological block against such considerations, §2 following describes how such
theoretical equi-division of segments can be easily achieved.

A final point that merits discussion is this: what does the equality of
two fractions mean? This is a continuation of the discussion of the equality
of two whole numbers begun in §2 of Chapter 1. For example, we claimed
in (1) that nl

l
= n. For whole numbers, it was a matter of counting both

sides to see if the two whole numbers come out to the the same number. For
fractions, counting is out of the question. But we now see a great advantage
in defining a fraction as a point on the number line, because it allows us to
define:
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the equality a
b

= k
l

means that the two points a
b

and k
l

are
precisely the same point on the number line.

In other words, the two points represented by a
b

and k
l

coincide. It follows
immediately from this definition that

if k 6= 0, then k
l
6= 0.

The meaning of the equality of two fractions will assume increasing impor-
tance in subsequent sections as we will often be called upon to verify that
two fractions are equal. This definition tells us that the only way to do so is
to show that the two fractions represent the same point on the number line.
Incidentally, it is time to formally point out the general phenomenon that
the same point on the number line can be denoted by different symbols. In
§3 below, we will enter into a fuller discussion of this phenomenon.

We now give some examples on how to locate fractions, approximately,
on the number line. For example, on the following line, where should the
fraction 16

3
be placed?

0 1 2 3 4 5 6 7 8

For this simple case, we can do it by a simple mental calculation. We
know 15 = 5× 3 and 18 = 6× 3. Therefore 15

3
= 5 and 18

3
= 6, by virtue of

(1), so that inasmuch as 15 < 16 < 18, 16
3

must be somewhere between 5
and 6, and closer to 5 than to 6, as shown:

0 1 2 3 4 5

6
16
3

6 7 8

In general, when simple mental calculation does not come as easily, it
would be necessary to use the division-with-remainder in §3.4. To illustrate,
consider the problem of where to put 84

17
on the same number line. By the

division-with-remainder, 84 = 4× 17 + 16 . So

84

17
=

(4× 17) + 16

17
.
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and it should be the point on the number line which is the (4× 17 + 16)-th
multiple of 1

17
. Of course, the (4 × 17)-th multiple of 1

17
is exactly 4, by

the observation in (1). So after that we need to go further to the right of
4 another 16 steps, each step having length 1

17
. If we go 17 more steps, we

would get to 5. Therefore 84
17

should be quite near 5, as shown:

6
84
17

0 1 2 3 4 5 6 7 8

In general, if m
n

is a fraction and

m

n
=

qn + k

n
, where 0 ≤ k < n,

then the position of m
n

on the number line would be between q (= qn
n

) and
q + 1 (= qn+n

n
). In this case, while it is not necessary to do so, the common

practice is to write

qn + k

n
as q

k

n
(0 ≤ k < n)

as a clearer indication of the position of qn+k
n

on the number line, namely,
that it comes after q but before q + 1 . The new notation q k

n
is called a

mixed fraction, or sometimes a mixed number. We emphasize that this is no
more than a notational convention.

In other words, q k
n

is an alternative notation for qn+k
n

, no more
and no less.

For example, the fractions 16
3

and 84
17

above could be written as 51
3

and
416

17
, respectively. We will come to a better understanding of this notation

after we introduce the concept of the addition of fractions. See (11) in §6
and the ensuing discussion.

A final remark on the definition of a fraction is that, from a mathemat-
ical standpoint as well as in our present approach to fractions, there is no
difference between “big” fractions and “small” fractions (in the sense of the
numerators or denominators being big numbers), because on the number
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line, all numbers look alike. The preceding examples as well as some of the
following exercises should make this fact very clear. You will never need to
favor fractions with special denominators and numerators, which was exactly
what a document from Minnesota once did. It advocated that in teaching
fractions, one should avoid the use of fractions whose denominators are not
2, 3, 4, 5, 8, 10, 16. If you want to say you understand fractions, let us make
sure you don’t mean you “only understand fractions with certain denomina-
tors and numerators”, because if you do so, it would be the same as saying
you don’t understand fractions at all.

Exercise 1.1 With the area of a unit square as the unit 1, draw two
distinct pictorial representations of each of: (a) 5

6
. (b) 7

4
. (c) 9

4
.

Exercise 1.2 Suppose the unit 1 on the number line is the area of the
following shaded region in a division of the given square into four equal parts:
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Write down the fraction representing the shaded area of each of the fol-
lowing, and give a brief explanation of your answer:
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Exercise 1.3 Repeat the preceding exercise if the unit 1 is now the area
of the following shaded region:
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Exercise 1.4 Indicate the approximate position of each of the following
on the number line, and also write it as a mixed number. (a) 67

4
. (b) 205

11
.

(c) 459
23

. (d) 1502
24

.
Exercise 1.5 (a) After driving 352 miles, we have done only two-thirds

of the driving for the day. How many miles did we plan to drive for the day?
(b) After reading 168 pages, I am exactly four-fifths of the way through. How
many pages are in the book? (c) Helena was three quarters of the way to
school after having walked 22

5
miles from home. How far is her home from

school?
Exercise 1.6 (a) I have a friend who earns two dollars for every three

times she walks her parents’ dog. She knows that this week she she will walk
the dog twelve times. How much will she earn? (b) Suppose your friend tells
you that he taught his fifth grade class to do the problem in part (a) by using
fractions and setting up proportions,

2

3
=

?

12

and he wonders why his class didn’t “get it”. How would you straighten him
out to help him?

Exercise 1.7 A text on professional development claims that students’
conception of “equal parts” is fragile and is prone to errors. As an example,
it says that when a circle is presented this way to students

&%
'$

�� QQ

they have no trouble shading 2
3
, but when these same students

are asked to construct their own picture of 2
3
, we often see them

create pictures with unequal pieces:
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&%
'$

(a) What kind of faulty mathematical instruction might have promoted this
kind of misunderstanding on the part of students? (Hint: Note the phrase
“unequal pieces” above, and see footnotes 4 and 5.) (b) What would you do
to correct this kind of mistakes by students?

2 Equal Division of a Segment by Ruler and Compass

[This section may be skipped on first reading.]

From the preceding section, you see that the fundamental idea underly-
ing the concept of a fraction is the division of a segment of length 1 into
segments of equal length. Without fear of confusion, we will henceforth —
in the context of line segments — refer to “segments of equal length” as
“equal parts”. While people are comfortable with dividing anything into two
equal halves, and therefore four equal parts, eight equal parts, etc.,8 there is
a psychological barrier to dividing into, say, 7 equal parts or 11 equal parts.
In fact, this may be one of the reasons why the state of Minnesota at one
point advised teachers to use only fractions with denominators 2, 3, 4, 5, 8,
9, 10, and 16, as mentioned at the end of the last section. It could be that
the people who wrote that document thought students would feel uneasy
with equal divisions into 7 or 19 parts. With this in mind, we introduce a
standard geometric hands-on method of dividing a given segment into any
number of equal parts using only compass and straightedge (a ruler without
markings). This is a fun activity that most people enjoy and it helps to put

8 There is a good reason why people are comfortable with such divisions: there is a
practical method to divide say a segment into two equal halves, and threrefore into four,
eight, sixteen, etc. equal parts. Indeed if the end points of a segment are A and B, one
simply folds the paper so that the point A falls on the point B. Where the crease of the
fold intersects the segment then gives the correct point of equal division of the segment
AB.
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you psychologically at ease with the idea of arbitrary equi-divisions of a given
segment. The validity of the method can be easily made believable through
empirical verification, but we note that one could prove the validity by using
standard arguments in Euclidean geometry.

Suppose we have to divide a given segment AB into 3 equal parts. We
draw an arbitrary ray ρ issuing from A and, using a compass, mark off three
points C, D, and E in succession on ρ so that AC = CD = DE — the
precise length of AC being irrelevant. Since you are most likely using a ruler
to do this construction, the markings on the ruler would even make the use
of a compass superfluous in getting the points C, D and E. For example, you
can make each of AC, CD and DE an inch long, or 2 cm long, or whatever.
Join BE, and through C and D draw lines parallel to BE which intersect
AB at C ′ and D′. The points C ′ and D′ are then the desired divisions points
of AB, i.e., AC ′ = C ′D′ = D′B.

A C ′ D′ B
�
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C

�
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D

�
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�
�
�
�
�
�
�
�
�
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E
ρ

It should be added that while there is a standard Euclidean construction
with ruler and compass to draw a line through a given point parallel to a
given line, the practical (and quick) way to draw such lines in the event
that you have a plastic triangle is the following. Position such a triangle
so that one side is exactly over the points B and E. Keeping the triangle
fixed in this position, place a ruler snugly along another side of the triangle.
(There are two other sides of the triangle in this situation, but practice and
common sense will tell you which of these two sides to use as well as how to
strategically position the ruler and the triangle.) Next, hold the ruler but
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glide the triangle along the ruler so that the side of the triangle that was
originally on top of B and E now passes over the points D as the triangle
slides along the ruler in the direction of the point A. With this side of the
triangle over the point D, press down tightly on the triangle and draw a line
along this side through D; this line is then parallel to BE. Do the same
same for the point C.

There is nothing special about the number 3 in the preceding construc-
tion. We could have asked for a division of AB into 7 equal parts, in which
case we would mark off 7 points A1, A2, . . . , A7 in succession on the ray ρ so
that AA1 = A1A2 = · · · = A6A7. Join A7B, and then draw lines through
A1, . . . , A6 parallel to A7B as before. The intersections of these parallel lines
with AB then furnish the desired division points of AB.

In teaching fractions in the school classroom, allow for ample class time
to do this construction, say for divisions into 3, 5, 6 or 7 equal parts. Again,
remember that the purpose of this activity is to make students feel comfort-
able with the idea of arbitrary division of a line segment into equal parts.

3 Equivalent Fractions (Cancellation Law)

The main purpose of this section is to show that if k, l, m are whole numbers
with m 6= 0,

km

lm
=

k

l
(2)

First recall from the end of §1 that this equality between two fractions
means: we have to show the two markers km

lm
and k

l
on the number line

coincide. By tradition, the two fractions km
lm

and k
l

in (2) are said to be
equivalent fractions, although to us, they are equal, period. But there is no
point fighting against tradition unless it is absolutely necessary. In this case,
“equivalent” is harmless enough, so we just take note of the terminology and
go on. The equality (2) is also called the cancellation law of fractions (you
“cancel” the m from both the top and bottom of km

lm
). In particular, by

changing the number m, we see that there are an infinite number of names
for the same point k

l
no matter what k

l
may be.
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If l = 1 in (2), then the resulting equality km
m

= k is just (1) in §1. Now
if we write (2) as

km

m

(
1

l

)
= k

(
1

l

)
,

we may think of (2) intuitively as equation (1) when the unit is changed from
1 to 1

l
. This is a good way to think of the cancellation law (2), although we

shall prove it by a more formal argument.
The cancellation law is of great importance in any discussion of fractions.

Before giving the explanation of why (2) is true, let us first describe one of
the ways it is used in practice. Given 10

15
, say, suppose we notice that 5|10

and 5|15 (recall from §3.4 of Chapter 1, for whole numbers a and b, b|a means
b divides a, or a is a multiple of b). In fact, 15 = 3 × 5 and 10 = 2 × 5. So
we apply (2) and get

10

15
=

2× 5

3× 5
=

2

3
.

The same idea gives also

38

57
=

2× 19

3× 19
=

2

3
.

These and similar facts show why (2) is important on a practical level. After
all, wouldn’t you rather deal with 2

3
than 10

15
or 38

57
?

The cancellation law is sometimes given in a different form which may
be more convenient for the purpose of performing a cancellation: if a whole
number p divides both k and l, then

k

l
=

k ÷ p

l ÷ p
.

In other words, if (2) is true, then so is this claim. We can verify this claim
for k = 38 and l = 57 easily enough (assuming (2)). Indeed, we see that
19|38 and 19|57 so that

38

57
=

38÷ 19

57÷ 19
=

2

3
.

The general proof of the claim on the basis of (2) is no different. If p divides
k, let k = mp and if p divides l, let l = np for some whole numbers m and
n. So assuming (2) is true, then

k

l
=

mp

np
=

m

n
.
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But by definition, m = k ÷ p and n = l ÷ p. So

k

l
=

m

n
=

k ÷ p

l ÷ p
,

as desired.
The passage from k

l
to k÷p

l÷p
is called reducing the fraction k

l
to k÷p

l÷p
. Here

is another example of reducing a fraction:

105

49
=

105÷ 7

49÷ 7
=

15

7
.

You will note that when the cancellation law is used for the purpose of
reducing a fraction, its effectiveness is entirely dependent on one’s ability
to find a whole number (different from 1) that divides both numerator and
denominator. Sometimes this is not so easy. It is not obvious that 171/285 is
equal to 3

5
, for instance, because 57 does not present itself as a number that

divides both 171 and 285. Of course one can produce other striking examples
at will, such as the following: 1651/762 = 13

6

Activity: Prove the last assertion.

A fraction a
b

is said to be reduced, or in lowest terms, if there is no whole
number c > 1 so that c divides both a and b. It is a fact that every fraction
is equal to one and only one fraction in reduced form. For example, 2

3
is

the reduced form of 18
27

and 13
6

is the reduced form of 1651/762. This fact
is plausible, but its proof (to be given in §5 of Chapter 3) is not so trivial
as it requires something like the Fundamental Theorem of Arithmetic or the
Euclidean algorithm. However, it is good to keep this fact in mind because
it justifies our occasional reference to the reduced form of a given fraction.

Pedagogical Comments: It seems to be a tradition in school math-
ematics to regard non-reduced fractions as something “illegitimate”, and
students usually get points deducted if they give an answer in terms of non-
reduced fractions. This is perhaps the right place to give this issue some
perspective. You know that a fraction is a fraction is a fraction. See the
definition in §1. Nowhere does it say that some fractions are “better’ than
others. So from a mathematical standpoint, all fraction are on the same
footing. For example, there is nothing wrong with 5

10
. You may like to see
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1
2

instead, but we must remember that whether something is mathematically
correct or not has nothing to do our likings. Moreover, it is sometimes diffi-
cult to justify what we like even under the most generous conditions. If we
insist that every fraction should be in lowest terms, should we accept 38

57
from

a fifth grader? After all, few adults would recognize that it is not in lowest
terms. And what about an extreme case like 1333/2279 ? (It is actually
equal to 31

53
.) So a pedantic insistence on having everything in lowest terms

can be difficult to defend.
On the other side of the ledger, it does get annoying if students get into

the habit of never simplifying fractions such as 4
2

or 9
3

. Some common
sense is thus called for in this situation. One suggestion is to lead by example:
at the board, the teacher should always simplify the obviously simplifiable
fractions and also tell students that reducing fractions to lowest terms is a
skill they need to acquire for certain needs. On exams, explicitly call for
certain answers to be reduced, but otherwise make allowance for nonreduced
fractions. End of Pedagogical Comments.

We now turn to the proof of (2). First, let us see how it is usually handled
in school textbooks. A typical explanation is the following:

Different fractions which name the same amount are called
equivalent fractions.

We will practice a method for making equivalent fractions. If
we multiply a number by a fraction that is equivalent to 1, the
answer will be a different name for the same number. Thus

1

2
× 1 =

1

2
× 2

2
=

2

4
,

1

2
× 1 =

1

2
× 3

3
=

3

6

The fractions 1
2
, 2

4
and 3

6
are equivalent fractions.

Let us assume that students understand what is meant by “name the
same amount”. The most worrisome feature of an explanation of this kind
is that the concept of equivalent fractions is made to depend on the concept
of fraction multiplication. As we shall see in §7 below, the latter needs the
kind of careful definition that is usually missing in school texts. Moreover,
such an explanation of equivalent fractions obscures the simple intuitive idea
behind (2), which we now proceed to describe.
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We will first prove (2) for the special case of

3

6

(
=

1× 3

2× 3

)
=

1

2
.

This example is actually too simple to help with the proof in the general case.
However, it does give a good introduction to the basic ideas involved. The
reasoning is a good illustration of the importance of having precise definitions.
According to the definition of a fraction, 3

6
is 3 copies of 1

6
’s,9 and we want to

know why this is equal to 1
2
. Let us first look at this from the intuitive point

of view of cutting pies. Of course the pies are represented two-dimensionally
by circles and we try to cut the circles into congruent circular sectors. So 1

2

is represented by half of a circle that represents 1:

&%
'$

Now we cut each half into three congruent pieces, thereby obtaining a division
of the pie into 6 congruent smaller pieces. Each of these smaller pieces is
therfore 1

6
.

&%
'$

��
��
QQ

QQ

Look at say the left half of the circle, which is 1
2
. It is now divided into 3

congruent pieces, each being 1
6
. This is then the statement that 1

2
is 3 copies

of 1
6
, i.e., 1

2
is 3

6
.

The intuitive idea of the prceding argument can be easily translated into
a formal argument using the number line. In the interest of brevity of ex-
pression,

we shall henceforth write equal parts for segments of equal
length in the context of the number line.

9 Recall from §1: this means 3/6 is the length of the concatenation of 3 segments each
of length 1/6.



3 Equivalent Fractions (Cancellation Law) 27

Now divide [0, 1] into two equal parts, the point of division (i.e., 1
2
) being

indicated by the vertical arrow below the line segment:

0 1

6

Now divide each of the segments of length 1
2

into three equal parts, then
[0, 1] is now divided into 6 equal parts, and each of these parts therefore has
length 1

6
. The picture makes it clear that 1

2
is 3 copies of 1

6
. Knowing that 3

copies of 1
6

is equal to 3
6
, we see that 1

2
is 3

6
.

Let us look at another example:

25

15
=

5

3
.

The argument in this example fully illustrates the complexities of the general
situation, but observe how this argument elaborates on — rather than breaks
away from — the simple ideas of the preceding number line argument for
1
2

= 3
6
. We begin with the right side: 5

3
is 5 copies of 1

3
, and we want to know

why it is also 25 copies of 1
15

. On the number line, consider all multiples of
1
3
. The segments between consecutive multiples are all of length 1

3
. These

are the segments between the vertical arrows below the number line:

0 1

6 6 6 6 66 6

5
3

Now divide each of these segments of length 1
3

into 5 equal parts; call these
parts small segments. Here is a picture of these small segments:

0 1

6 6 6 6 66 6

5
3
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What is the length of each small segments? The unit interval [0, 1] is the
concatenation of 3 copies of 1

3
’s, and each of the latter is the concatenation

of 5 small segments. Thus [0, 1] is the concatenation of 3 × 5 = 15 small
segments. Thus each small segment has length 1

15
, and since each segment of

length 1
3

is the concatenation of 5 small segments, we see that 1
3

is 5 copies
of 1

15
. We therefore have:

Since 5
3

is 5 copies of 1
3

and 1
3

is 5 copies of 1
15

, it follows that 5
3

is
5× 5 = 25 copies of 1

15
.

In other words, 5
3

is 25
15

.

The general argument for (2) should be clear now. We want to prove

km

lm
=

k

l
.

We know that k
l

is k copies of 1
l
, and we want to prove that it is also km

copies of 1
lm

. On the number line, consider all multiples of 1
l
. The segments

between consecutive multiples are all of length 1
l
. Now divide each of these

segments of length 1
l

into m equal parts; call these parts small segments. We
first compute the length of each small segments. The unit interval [0, 1] is the
concatenation of l copies of 1

l
’s, and each of the latter is the concatenation

of m small segments. Thus [0, 1] is the concatenation of lm small segments.
Thus each small segment has length 1

lm
, and since each segment of length 1

l

is the concatenation of m small segments, we see that 1
l

is m copies of 1
lm

.
So:

Since k
l

is k copies of 1
l

and 1
l

is m copies of 1
lm

, it follows that k
l

is km copies of 1
lm

.

But km
lm

is also km copies of 1
lm

, we have proved that k
l

is equal to km
lm

.

There is a different way to present the proof of equality (2) which may be
more intuitive to some people. The idea is to use the area of a unit square
as the unit 1. We can illustrate this idea with a concrete example. Let us
see why

15

6
=

5

2

If 1 is the area of a unit square, and 5
2

= 21
2
, 5

2
is the area of two and a half

unit squares. The following is the concatenation of three unit squares, and
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5
2

is represented by the area of 5 of the vertical half squares, as indicated by
the following shaded area.
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Prompted by the fact that 15 = 5 × 3 and 6 = 2 × 3, we divide each unit
square horizontally into equal thirds to get:
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Now we see that this new shaded area consists of 3× 5 = 15 small rect-
angles, all congruent to each other. But 6 of these rectangles pave a unit
square, so the usual argument using the basic properties of area (see (a)–(c)
in §1 and subsequent discussion) shows that the area of a small rectangle is
1
6
, so that the area of the shaded region is 15

6
. Therfore 15

6
= 5

2
.

Exercise 3.1 Reduce the following fractions to lowest terms. (You may
use a four-function calculator to test the divisibility of the given numbers by
various whole numbers.)

27

126
,

72

48
,

42

91
,

52

195
,

204

85
,

414

529
,

1197

1273
.

Exercise 3.2 Explain each of the following directly, without using (2):

6

14
=

3

7
,

28

24
=

7

6
,

30

12
=

5

2
, and

12

27
=

4

9
.

Exercise 3.3 Use the representation of 1 as the area of a unit square to
give a proof of why 6

14
= 3

7
and 30

12
= 5

2
.

Exercise 3.4 Discuss in depth the similarities between (1) of §1 and (2)
of this section, both in terms of the formal similarity and the similarity in
the reasoning that underlies both.
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4 Fraction as Division

Suppose we have four pizzas to be shared equally among five people, how shall
we do it? First of all, we will represent pizzas by circles of equal radius and
will also interpret “equal sharing” to mean dividing the circles into regions of
equal areas.10 Thus we have four circles of a fixed radius and the problem is
how to divide them into five regions of the same area. One idea that comes to
mind immediately is to divide each circle into five congruent circular sectors
(so that they have the same area) and then let each person take one sector
from each circle. For example, one person could take the dotted sectors:
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How much pizza did each person get? If we put the four dotted sectors
together into the same circle, then they take up four of the five circular
sectors and therefore comprise four-fifths of the pizza. Thus in this sharing
scheme, each person gets 4

5
of a pizza:
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· ·· ·····
·· ··· ·· ·

This is a very surprising result! Maybe not to you if you think of this
as something you do almost everyday, but look at it this way. The sharing
was done by looking at all four pizza together in order to device a method of
equal sharing, yet the net result that each person gets 4

5
of a pizza could have

been obtained by looking at a single pizza alone. By the latter, we mean: let
the unit on the number line be the area of the pizza (circle), then the area
of four parts in a division of the circle into five parts of equal area would be
exactly 4

5
. Thus we have, area-wise:

4

5
of a pizza = one part in a division of 4 pizzas into

5 equal parts.
10 Compare the discussion in footnote 5 of §1.
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As you know, this is a special case of a general phenomenon which shows
that a fraction as defined in §1 can be interpreted as a kind of “equal divi-
sion”. Precisely, we shall give several proofs of the following:

k

l
= the length of one part when a segment of

of length k is divided into l equal parts,
(3)

(Recall from §3: equal parts in the context of the number line means segments
of equal length.) This gives a completely different way of computing the
number k

l
, i.e., a completely different way of locating the point k

l
on the

number line. Let us make sure that you understand what this means. In the
original definition, you can get hold of k

l
by looking exclusively at [0, 1] :

divide this segment into l equal parts, then the length of the concatenation
of k of these parts is k

l
. On the other hand, the prescription in (3) for

computing k
l

involves looking at the whole segment [0, k] from 0 to k from
the very beginning and dividing this (presumably long) segment into l equal
parts. There is no a priori reason why these two operations are related, much
less the fact that they produce the same point on the number line.

Incidentally, there is no difference between (3) and the definition of a
fraction k

l
in case k = 1.

To more firmly anchor these ideas, we apply them to something other
than pizzas. Let us choose our unit 1 to be a collection of 15 pencils. At the
risk of stating the obvious, the number 2 now represents two collections, and
therefore 30 pencils; the number 3 represents three collections, and therfore
45 pencils; and so on. What is 4

5
? By the definition in §1, we first di-

vide the unit (corresponding to [0, 1] on the number line) into 5 equal parts
(i.e., equal number of pencils), so each part consists of 3 pencils. Now we
aggregate 4 of these parts (corresponding to concatenating 4 segments each
of length 1

5
), thereby obtaining 12 pencils. So far we have only made use

of the definition of the fraction 4
5
. Now we look at what (3) says about

another way to compute 4
5

. We put together 4 collections of these pencils
(corresponding to [0, 4]) and divide the totality (of 4 × 15 = 60 pencils)
into 5 equal parts. Then the size of a part in terms of the number of pencils,
which is 60÷ 5 = 12 pencils, is what is represented by the fraction 4

5
. You

see that the two numbers at the end of these two processes are the same, but
the intermediate steps of the processes look completely different.



4 Fraction as Division 32

There is of course nothing special about the unit of “15 pencils” in the
preceding reasoning. It could have been any other kind of unit. In general
then, (3) may be paraphrased as follows. Starting with a fixed unit, define
k
l

to be the magnitude of k of the parts when this unit is divided into l equal
parts. Then:

k

l
= the magnitude of a part when the whole consisting

of k units is divided into l equal parts, l > 0

The drawback of this paraphrase is of course the fact that the meanings of
“magnitude” and “part” are left vague.

The interpretation (3) of a fraction as an equal division is
a key result in the subject of fractions. Unfortunately, the reason
why this interpretation is valid is, at best, slurred over in textbooks. The
difference in the treatment of (3) between what is done in this monograph
and what is done elsewhere deserves a closer look. The most obvious one is
that every word in (3) has been carefully defined and (3) makes sense. On the
other hand, when it is generally claimed that (for example) “the fraction 2

3
is

also a division 2÷ 3”, this sentence has no meaning because the meaning of
2÷3 is generally not given. A division of a number by another is supposed to
yield a number, but, apart from the ambiguity of the meaning of a “number”
in school mathematics, there is no explanation of what number would result
from 2 divided by 3, much less why this number should be equal to a “part
of a whole” which is 2

3
.

We will eventually give more than one explanation of (3) in recognition
of its importance. Let us first look at a proof of the special case of 4

5
. Thus

we have to prove:

4

5
= the length of a part when the segment [0, 4]

is divided into 5 equal parts

The reasoning will be particularly instructive because it follows closely
the reasoning in the pizza example. Imagine each pizza to be a segment of
length 1, so that [0, 1], [1, 2], [2, 3], [3, 4] represent four pizzas. The segment
[0, 4] then represent the whole collection of four pizzas. Divide each of [0, 1],
[1, 2], [2, 3], and [3, 4] into 5 equal parts; we call each of these parts a “short”
segment.
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0 1 2 3 4

There are 4 × 5 = 20 short segments in [0, 4]. Now pick the first11 short
segment from each of [0, 1], [1, 2], [2, 3], and [3, 4] — this corresponds to
picking the dotted sector from each pizza — and let A1 be the segment
obtained by concatenating these 4 short segments. We claim that the length
of A1 is 4

5
. This is intutuively obvious, but it would be nicer if we can

prove it decisively because we want to be sure that it is ok to make a similar
claim even when 4

5
is replaced by an arbitrary fraction. The way to do this

is to similarly pick the second short segment from each of [0, 1], [1, 2], [2, 3],
and [3, 4] and let A2 be the segment obtained by concatenating these 4 short
segments. Segments A3, A4, and A5 are likewise defined. For example, in
the figure below, A2 is the concatenation of the thickened segments:

0 1 2 3 4

Clearly all of A1, A2, A3, A4, A5 have the same length, and together they
form a division of [0, 4] into 5 equal parts. Therefore the length of A1 (say)
is the length of a part when [0, 4] is divided into 5 equal parts. On the other
hand, the length of A1 must be 4

5
because the length of each short segment

is clearly 1
5

and there are 4 such short segments in A1, i.e., A1 is four copies
of 1

5
(in the language introduced in §1). Therefore 4

5
is the length of a part

when [0, 4] is divided into 5 equal parts.

The proof of (3) in general is not at different from the preceding special
case. So we want to show that k

l
is the length of a part when [0, k] is divided

into l equal parts. We denote by S the collection of k segments

{[0, 1], [1, 2], [2, 3], . . . [k − 1, k]}.

Divide each of these k segments in S into ` equal parts, and call each of these
parts a “short” segment. (Note that each short segment then has length 1

`
.)

Let us order these short segments by counting from left to right. For each

11 We may always count from the left so that the first short segment is the same as the
leftmost short segment.



4 Fraction as Division 34

i = 1, 2, . . . `, denote by Ai the segment obtained by concatenating the i-th
short segment in each of the k segments in S. These A1, A2, . . .A` then
partition [0, k] into ` equal parts. The length of A1, in particular, is then
the length of a part when [0, k] is divided into ` equal parts. But A1 is itself
partitioned into k short segments, and each short segment (as noted) has
length 1

`
. By the definition of k

`
in §1, the length of A1 is therefore also equal

to k
`
. Thus k

`
is equal to the length of a part when [0, k] is divided into `

equal parts. This proves (3).

The proof we have just given of (3) (which corresponds to the way we
divided four pizzas into five equal portions) is not the only way to think
about equal division. For example, suppose five people run a relay race of
four miles and each is supposed to run the same distance. You understand
how relay races are run: one doesn’t run a short distance, hands the baton to
the next person, and then comes back in to run some more. One runs a fixed
distance and quits. Therefore, we have to divide up the four-mile course into
five unbroken segments of equal length (distance). We do so by first dividing
four miles into 4×5 = 20 segments of the same distance. One way to do this
is of course to divide each mile into 4 parts of equal distance. But now we
give the first 4 of the 20 equal parts to the first runner, the second 4 of the
20 parts to the second runner, the third 4 of the 20 parts to the third runner,
and so on. Then we also conclude that the distance run by each runner is 4

5

of a mile, because each of these 20 parts is one part of the division of a mile
into 5 equal parts, so that each part if 1

5
of a mile long. Four of these parts

them make up 4
5

of a mile.
We can formalize this arguemnt in terms of the number line. Again we

shall prove that

4

5
= the length of a part when the segment [0, 4]

is divided into 5 equal parts

Referring to the segment [0, 4], we divide [0, 4] into 20 equal parts, 20 being
the product of (numerator of 4

5
)× (denominator of 4

5
). Thus there are 20

equally spaced markers to the right of 0, and the 20th marker is at 4. The
4th, 8th, 12th, 16th and 20th markers then furnish a division of [0, 4] into 5
equal parts. Our job is to show that the 4th marker is in fact at 4

5
.
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0 1 2 3 4

6 6 6 6 6

We begin by finding out where the first marker is located. Now the 5th, 10th,
15th and 20th markers divide [0, 4] into four equal parts. But 1, 2, 3 and 4
already divide [0, 4] into four equal parts, so we conclude that, in fact, the
5th, 10th, 15th and 20th markers are exactly at 1, 2, 3 and 4. In particular,
the 5th marker is at 1, so that the first five markers give a division of the
unit segement [0, 1] into five equal parts. Thus the first marker is at 1

5
, and

therefore the 4th marker is at 4
5

by the definition of a fraction.
This idea can be used to give another proof of (3). We leave further ex-

plorations to the exercises.

The first proof of (3) can be rephrased using the area of a unit square as
the unit 1. Again, we illustrate with the concrete example of

4

5
= the length of a part when the segment [0, 4]

is divided into 5 equal parts

Let the number 1 be the area of the unit square:

We have to show that 4
5

is the area of a part when the whole consisting of
4 unit squares is divided into 5 equal parts. To this end, we divide 4 unit
squares into 5 equal parts in the following manner:

�� �� �� �� �� �� ���� �� �� �� ��

6

?

1
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The shaded area is one of the parts, and we have to show that its area is
4
5
. Now it consists of 4 horizontal strips each of which is contained in a unit

square.

�� �� �� �� �� �� ���� �� �� �� ��

By the way we divided the 4 unit squares, each horizontal strip is 1
5

of the
unit square. Since there are 4 such horizontal strips in the shaded area, the
latter is 4

5
, by the definition of 4

5
.

The proof of (3) in general can also be given using this choice of the unit
1 on the number line. You will get some practice with this approach in the
exercizes.

The intepretation (3) of a fraction as equal division allows us to make an
important observation. Let k and l be whole numbers. Suppose we are given
k objects, and k is a multiple of l, with l always assumed to be nonzero in
this discussion. Then according to the partitive interpretation of k ÷ l (see
§3.4 of Chapter 1):

k ÷ l is the number of objects in each group when the collection
of k objects is partitioned into l equal groups.

Assuming k is a multiple of l, then we have according to (3):

k

l
= k ÷ l.

Now we take note of the fact that if k and l are arbitrary whole numbers
(in particular, k may no longer be a multiple of l), the notation “k÷l” has no
meaning up to this point. This is because division has so far been considered
only in the context of whole numbers, and (for example) 4÷5 is meaningless
according to the partitive interpretation of division. One cannot divide 4
objects into 5 equal groups of objects. But if we put ourselves in the context
of fractions, so that instead of 4 dots or 4 books, we consider a segment of
length 4, then a partition of this segment into 5 equal parts makes perfect
sense. This prompts us to extend the meaning of division among ALL whole
numbers in the following way:
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Definition. For whole numbers k and l with l > 0, k÷ l is by definition
the length of a part when a segment of length k is divided into l equal parts.

With this definition in place, the full significance of (3) can now be dis-
played in one symbolic statement: for any whole numbers k and l with l > 0,

k

l
= k ÷ l.

For this reason, we write from now on k
l

in place of k ÷ l for all whole
number k and l, l > 0. We shall henceforth retire the symbol ÷ from
all symbolic computations and instead use fractions to denote di-
vision.

The preceding idea of extending the meaning of a concept to make it
more inclusive (e.g., in this case, giving meaning to k divided by l regardless of
whether k is a multiple of l or not) will be a recurrent one in this monograph.

Incidentally, this discussion puts in clear evidence the advantage of us-
ing the number line to define fractions. Imagine, for example, interpreting
whole numbers only in terms of discrete objects. It would be awkward in-
deed to interpret 5

7
in terms of (3) if we start with 5 chairs (say) and try

to divide them into 7 parts of equal weight or equal volume or whatever, or
for that matter, divide 5 dots into 7 equal parts. (This is the reason why
in §4 of Chapter 1, we stated that we preferred the area model for multi-
plication rather than the dot model.) On the other hand, the concept of
partitioning any segment [0, k] into any number of equal parts is so natural
that the extension of whole number arithmetic to fractions becomes seamless.

To summarize what we have done thus far: we gave a clear definition of
a fraction as a point on the number line in terms of parts-whole (cf. §1), and
demonstrated why on the basis of this definition alone, k

l
is equal to k ÷ l

when k is a multiple of l. When k is not a multiple of l, we also proved in
(3) that k

l
has the formal property of a division in the partitive sense. Then

modifying the partitive interpretation of division, we defined “k divided by
l” in general. We concluded that, on account of (3), a fraction k

l
as defined

in §1 furnishes the correct notion of “k divided by l” for arbitrary whole
numbers k and l.
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Exercise 4.1 (a) Suppose we try to put 2710 pieces of candy into 21 bags
with an equal number in each bag. What is the maximum number of candy
we can put in each bag, and how many are left over? (b) Suppose we try to
divide a (straight) path of 2710 feet into 21 parts of equal length, how many
feet are in each part?

Exercise 4.2 Assume that you can cut a pie into any number of equal
portions (in the sense of cutting circle into congruent circular sectors). (a)
How would you cut 7 pies in order to give equal portions to 11 kids? (b)
Find two different ways to cut 11 pies to give equal portions to 7 kids.

Exercise 4.3 Without appealing to (3), show directly that 4
7

is the length
of a part when a segment of length 4 is divided into 7 equal parts. Do the
same for 7

3
and 5

4
. In each case, do it in at least two different ways.

Exercise 4.4 [The following problem is a fifth grade problem. You are
asked to do it without the use of proportions. You are also asked to explain
the solution clearly to the class.] Ballpoint pens are sold in bundles of 4. Lee
bought 20 pens for 12 dollars. How much would 28 pens cost?

Exercise 4.5 Explain to a fifth grader in what sense 15
4

= 15÷ 4.
Exercise 4.6 (a) After driving 113 miles, we are only four-fifth of the

way to our destination. How much further do we have to drive? (b) Helena
walked to school from home but quit after having walked 21

2
of a mile. She

was 5
8

of the way to school. If x is the number of miles from her home to
school, and x is known to be a whole number, what is x?

Exercise 4.7 James gave a riddle to his friends: “I was on a hiking trail,
and after walking 7

12
of a mile, I was 5

9
of the way to the end. How long is the

trail?” Help his friends solve the riddle. [You do not need to know anything
more about fractions before you do this problem, but we shall revisit this
problem after we know something about fraction multiplications.]

Exercise 4.8 Use the “relay race” method (the second method described
in this section) of equal division to give another proof of (3).

5 Ordering Fractions (the Cross-Multiplication
Algorithm)

Before we approach the addition of fractions, we first consider the more
elementary concept of order, i.e., comparing two fractions to see if one is
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bigger than or equal to the other (recall that equality in this case means
they are the same point on the number line). Given two fractions A and B,
we say A < B if A is to the left of B as points on the number line. This is
the same as saying that the segment [0, B] is longer than the segment [0, A].
According to the discussion of order among whole numbers in §2 in Chapter
1, this definition of order is consistent with the same concept among whole
numbers.

We emphasize once again the need to put fractions and whole numbers
on the same footing. It would have been preposterous to define order among
fractions in a way that is different from the definition of order among whole
numbers. Observe also the ease with which we define order among fractions
when the number line is at our disposal.

The main objective of this section is to show that a comparison of two
fractions a

b
and c

d
can be made by inspecting their “cross products” ad and

bc. This so-called cross-multiplication algorithm has gotten a bad name
in recent years because it is supposed to be part of learning-by-rote, and
the reason for that is because many textbooks just write it down and use it
without any explanation. As a reaction, the curricula of recent years have a
tendency of not even mentioning this algorithm. Using the algorithm with-
out explanation and not mentioning the algorithm at all represent the two
extremes of mathematics education. Neither is good education, because this
algorithm is a useful tool which can be simply explained.

Consider the following example. Which is the bigger of the two: 4
7

or 3
5
?

In terms of segments, this should be rephrased as: which of [0, 4
7
] and [0, 3

5
]

is longer? Now by definition:

4
7

is 4 copies of 1
7

3
5

is 3 copies of 1
5

This comparison is difficult because the two fractions are expressed in terms
of different “units”: 1

7
and 1

5
. However, imagine for a moment that the

following statements were actually true for some whole number c :

4
7

is 20 copies of
1

c

3
5

is 21 copies of
1

c
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Then we would be able to immediately conclude that 3
5

is the bigger of the
two because it includes one more segment (of the same length) than 4

7
. This

suggests that the way to achieve the desired comparison is to express both
1
7

and 1
5

in terms of a common “unit”. Before embarking on the search of
this hypothetical unit, we may be able to better explain the underlying idea
by considering a more mundane problem: which is longer, 3500 yards or 3.2
km? In this case, everybody knows that we need to reduce both yard and
km to a common unit, say, meter. One finds that 1 yard = 0.9144 meter and
1 km = 1000 m., so that

3500 yards = 3200.4 m
3.2 km = 3200 m

Conclusion: 3500 yards > 3.2 km.

In order to imitate this procedure, we have to decide on a common unit
for 1

7
and 1

5
. The cancellation law (2) suggests the use of 1

35
because

1
7

=
5× 1
5× 7

=
5
35

= 5 copies of
1
35

1
5

=
7× 1
7× 5

=
7
35

= 7 copies of
1
35

More generally then,

4
7

=
5× 4
5× 7

=
20
35

= 20 copies of
1
35

3
5

=
7× 3
7× 5

=
21
35

= 21 copies of
1
35

Conclusion:
4

7
<

3

5
. A closer look of the preceding also reveals that this

conclusion is based on the inequality 5× 4 < 7× 3 between the numerators
and denominators of the two fractions. We are thus witnessing the cross-
multiplication algorithm in a special case. In picture:

0 1

0
7

?

1
7

?

2
7

?

3
7

?

4
7

?

5
7

?

6
7

7
7

0
5

6
1
5

6
2
5

6
3
5

6
4
5

5
5
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Before proceeding further, doing an activity on the above strategy may
help you understand the situation better:

Activity: Compare the following pairs of fractions using the
preceding idea: 5

6
and 4

5
; 5

6
and 3

4
.

In general, suppose we are to compare k
l

and m
n
. The reasoning of the

preceding example tells us that we should use the cancellation law (2) to
rewrite them as:

k

l
=

kn

ln
m

n
=

lm

ln

We now show that these equalities lead immediately to a pair of statements:

k

l
<

m

n
exactly when kn < lm

k

l
=

m

n
exactly when kn = lm

(4)

Either of the two is referred to as the cross-multiplication algorithm. The
reason for this terminology is obvious by looking at the positions of k, n, l
and m in k

l
= m

n
.

Before proving (4), we pause to give an explanation of the phrase exactly
when: it means the same thing as is the same as which we explained in §2
of Chapter 1. Recall that this means: the mathematical statements on both
sides of this phrase (e.g., “ k

l
< m

n
” and “kn < lm” in the first assertion of

(4)) imply each other. In greater detail, the first assertion of (4) is actually
the composite of the following two statements:

(4a) if k
l

< m
n
, then kn < lm,

and also

(4b) if kn < lm, then k
l

< m
n
.
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Let us prove (4a) and (4b). For (4a), suppose k
l

< m
n
, then we know

this may be rewritten as kn
ln

< lm
ln

. By the definition of a fraction in §1, this
inequality means that in terms of the markers on the number line which are
1
ln

apart, the kn-th marker is to the left of the lm-th marker. This shows
that kn < lm. Next we take up (4b). Suppose kn < lm. Then kn

ln
< lm

ln
.

By (2), this says k
l

< m
n
. Thus (4b) is proved.

The same reasoning also proves the second assertion in (4) (simply re-
place the inequality symbol “<” everywhere by the equality symbol “=” in
the preceding argument).

The cross-multiplication algorithm is a powerful tool for deciding whether
or not two fractions are equal in situations where visual inspection may
reveal nothing, as the following examples amply demonstrate. The following
situation is also common in applications: we are given

a

b
=

c

d
,

where a, b, c and d are whole numbers, and we would like to conclude that

a

c
=

b

d
.

We may do so because, by (4), both equalities are the same as the equality
ad = bc. So you can easily convince yourself that the cross-multiplication
algorithm is worth knowing, and knowing well. Note also that in applica-
tions, one must be careful not to conclude from kn < lm that m

n
< k

l
. (The

correct conclusion is rather k
l

< m
n
. One way may be to always start at the

“upper left corner”, which is k.)

Example 1. Let us first reprise the example of 4
7

and 3
5

at the beginning
of this section, making direct use of the cross-multiplication algorithm. Be-
cause 4× 5 < 3× 7, (4b) implies 4

7
< 3

5
.

Example 2. Which is bigger: 14
21

or 38
57

? Because 14 × 57 = 21 × 38(=
798), the fractions are actually equal by virtue of the second assertion in (4).
(Both equal 2

3
.)
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Example 3. 84
119

and 228
323

are equal, because 84×323 = 27132 = 119×228.
In fact, both fractions turn out to be equal to 12

17
. It would be fair to say

that without the cross-multiplication algorithm, it would be difficult to do
this problem.

Example 4. I have a whole number x with the property that when 39
is divided by x (see the definition in §4), it equals 63

105
. What is x ?

Solution: We are given 39
x

= 63
105

. By the second assertion of (5), 39×105 =
63x, so that 63x = 4095. By (48) of §4 in Chapter 1, x = 4095

63
= 65.

Example 5. Which is greater: 23
24

or 24
25

? Do it both with and without
computation.

Using the cross-multiplication algorithm, we see that 23
24

< 24
25

because
23 × 25 = 575 < 576 = 24 × 24. However, this result could also be done by
inspection: Both fractions are points on the unit segment [0, 1]:

0 1?

23
24

6
24
25

It suffices therefore to decide which of the two is the longer segment: the
one between 23

24
and 1, or the one between 24

25
and 1. But the first segment

has length 1
24

while the latter has length 1
25

; clearly the latter is shorter. So

again 23
24

< 24
25

.

Example 6. Prove that

if
a

b
<

c

d
, then

b

a
>

d

c
,

assuming that a, b, c, and d are all nonzero.
This must be done carefully. By (4a), a

b
< c

d
implies ad < bc, which may

be rewritten as da < cb. By (4b), the latter implies d
c

< b
a
, which is the same

as b
a

> d
c
.

Remark. Given a fraction a
b

(both a and b nonzero), the fraction b
a

is
called its reciprocal. What Example 6 says is that taking reciprocals reverses
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an inequality between fractions. This would be more intuitive if we look at
the simplest case of whole numbers. Start with 3 < 5. Then because 3 = 3

1

(by (1)), the reciprocal of 3 is 1
3
. Similarly, the reciprocal of 5 is 1

5
. But

clearly 1
3

> 1
5

(if this is not “clear” to you, please review the definition of
a fraction in §1), so inequality-reversal is understandable in this case. You
may also observe that 1

7
< 1

3
implies 7 > 3. And so on.

Example 7. We want to make some red liquid. One proposal is to mix
18 fluid ounces of liquid red dye in a pail of 230 fluid ounces of water, and
the other proposal is to mix 12 fluid ounces of red dye in a smaller pail of 160
fluid ounces of water. The question: which would produce a redder liquid?

In the first method, we have 18 parts of red dye out of 230 + 18 = 248
parts of liquid. In the second method, we have 12 parts of red dye out of
160 + 12 = 172 fluid ounces of liquid. Which of 18

248
and 12

172
is greater should

produce — if common sense prevails — the redder liquid. Now 18 × 172 =
3096 and 12×248 = 2976. Thus 12×248 < 18×172, and by (4b), 12

172
< 18

248
.

So we know that the first method gives a redder liquid.
We can also think about the problem in a different way. In the first

method, we distribute 18 parts of red dye among 230 parts of water. By the
partitive interpretation of division, each part of water gets 18

230
parts of red

dye. Similarly, in the second method, each part of water gets 12
160

parts of
red dye. We now compare 18

230
and 12

160
. We have 12× 230 = 2760 < 2880 =

18 × 160. By (4b) again, 12
160

< 18
230

, and so by common sense we expect the
first method to provide a redder liquid.

We pause to note that both ways of doing the problem end up with the
same conclusion. Is this just luck, or is something deeper involved here? How
are the two inequalities

12

172
<

18

248
and

12

160
<

18

230

related? Two obvious relationships stand out:

12

172
=

12

160 + 12
and

18

248
=

18

230 + 18
.

The following theorem then shows that the two ways of thinking about this
problem are mathematically the same. (So no luck was involved!)
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Theorem The following say the same thing about any four whole num-
bers a, b, c, and d, with b 6= 0 and d 6= 0:

(a)
a

b
<

c

d
.

(b)
a

a + b
<

c

c + d
.

(c)
a + b

b
<

c + d

d
.

Proof Because we are mainly interested in (a) and (b) being the same,
we will only prove this part. The rest of the proof we leave to an exercise.

Why (a) implies (b): If (a) is true, then by (4a), ad < bc. Adding ac to
both sides gives ac + ad < ac + bc (by (11) in §2 of Chapter 1), which is the
same as a(c + d) < (a + b)c. By (5b), this implies a

a+b
< c

c+d
.

Why (b) implies (a): If (b) is true, then by (4a), a(c + d) < c(a + b),
which is the same as ac+ad < ac+ bc, which is the same as ad < bc (by (11)
of §2 in Chapter 1). Now (4b) says a

b
< c

d
. Q.E.D.

Exercise 5.1 Compare the following pairs of fractions.

4

9
and

3

7
,

9

29
and

4

13
,

13

17
and

19

25
,

12

23
and

53

102
.

(You may use a calculator to do the multiplications of the last item.)
Exercise 5.2 (a) Compare the fractions 94

95
and 311

314
both ways, with and

without using the cross-multiplication algorithm. (b) Do the same for 83
119

and 227
328

(compare Example 3).
Exercise 5.3 Use calculator to do the whole number computations (and

only the whole number computations) if necessary to see which is greater:
112
234

and 213
435

, 577
267

and 863
403

Exercise 5.4 How would you explain to a student that the reason the
inequality 4

9
> 3

7
is true is because 4× 7 > 3× 9 ?

Exercise 5.5 Write down a fraction that is between 31
63

and 32
63

, and one
between 5

8
and 8

13
.

Exercise 5.6 If a and b are nonzero whole numbers such that a < b, is
it true that 1

a
< 1

b
? If so, explain. If not, what is the right conclusion, and

why?
Exercise 5.7 Let a

b
be a nonzero fraction. Compare successively a+1

b+1
, a+2

b+2
,

a+3
b+3

, . . . with a
b
. Generalize. (Hint: try a

b
= 2

3
, and then try a

b
= 3

2
.)
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Exercise 5.8 Show that (a) and (c) of the preceding theorem are the
same.

Exercise 5.9 Formulate and prove the analogue of the preceding theorem
with “<” replaced by “=”.

Exercise 5.10 (a) Which is the better buy: 3 pencils for 59 cents or 10
pencils for $1.99 ? (b) Which is the better buy: 12 candles for $1.75 or 3
candles for 45 cents?

Exercise 5.11 An alcohol solution mixes 5 parts water with 23 parts al-
cohol. Then 3 parts water and 14 parts alcohol are added to the solution.
Which has a higher concentration of alcohol, the old solution or the new?

6 Addition and Subtraction of Fractions

We are now in a position to deal with the addition of fractions. For whole
numbers, addition is calculated by combining two groups of objects and just
count. For fractions, we do not have that luxury. It is not possible to
combine two segments, one of length 11

13
and another of length 4

7
and “count”,

or combine 7
8

of a bucket of water and another 5
11

of a bucket of water and
“count”. However, (43) in §4 of Chapter 1 gives the geometric formulation
of the addition of two whole numbers which makes sense verbatim for the
addition of any two fractions. For example, we can concatenate two segments
of lengths 7

8
and 5

11
and then measure how long the resulting segment is. This

is what we shall use as the definition of addition for fractions. (All the work
in §§4–5 will finally pay off, as we shall see.)

Definition. Given fractions k
l

and m
n
, we define

k

l
+

m

n
= the length of two concatenated segments,

one of length
k

l
, followed by one of length

m

n
(5)

It follows directly from this definition that(
k

l
+

m

n

)
+

p

q
=

k

l
+

(
m

n
+

p

q

)
for any fractions k

l
, m

n
and p

q
, as the following picture shows:
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k
l

m
n

p
q

k
l

m
n

p
q

k
l
+ m

n
� -

m
n

+ p
q

� -

This is the associative law of addition for fractions. Comparing with
the discussion after (5) and (6) in §2 of Chapter 1, we see that there is
no conceptual difference between whole numbers and fractions as far as the
associative law is concerned. Similarly, we also have the commutative law
for the addition of fractions:

k

l
+

m

n
=

m

n
+

k

l
.

The corresponding picture is:

k
l

m
n

k
l

m
n

Exactly the same reasoning as in §2 of Chapter 1 leads to the conclusion
that the sum

k

l
+

m

n
+

p

q

makes sense without the use of parenthesis, and that the same holds for an
arbitrary sum of fractions, e.g.,

a

b
+

c

d
+ · · ·+ y

z
.

This said, we now observe that it follows from the definition of addition in
(5) that

k

l
=

1

l
+

1

l
+ · · ·+ 1

l
(k times) (6)
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(the point being that the right side makes sense without parentheses). Also
immediate from the definition (5) is the fact that

m

l
+

k

l
=

m + k

l

because, using (6), both sides are equal to the length of m + k concatenated
segments each of length 1

l
.

More generally, we have

k1

l
+

k2

l
+ · · ·+ kn

l
=

k1 + k2 + · · ·+ kn

l
(7)

for any whole numbers k1, k2, . . . , kn, l (l > 0), as both sides are equal to
the length of k1 + k2 + · · ·+ kn concatenated segments each of length 1

l
.

We need a formula that explicitly expresses the sum in (5) in terms of k,
l, m, n. This is the counterpart of the addition algorithm for the sum of two
whole numbers. The previous consideration of comparing fractions prepares
us well for this task. First of all, note that in the case of equal denominators
(i.e., the case of l = n in (5)), such a formula is already contained in (7).
However, we want a general formula regardless of whether the denominators
are equal or not. The problem we face can be seen in a concrete case: we
cannot add 2

5
+ 1

3
directly, in the same way that we cannot add the sum

(1 m. + 1 ft.) until we express both meter and foot in terms of a common
unit. One can, for example, express them in terms of centimeters to obtain:
(1 m. + 1 ft.) = 100 cm + (12 × 2.54) cm = 130.48 cm. For the fractions
themselves, we follow the reasoning given above (4) of §5 to express both
fractions in terms of the “new unit” 1

3×5
to arrive at

2

5
+

1

3
=

3× 2

3× 5
+

5× 1

5× 3
=

6

15
+

5

15
=

11

15
,

by virtue of (2) and (7). The general case is just more of the same: given k
l

and m
n
, we use the cancellation law (2) to rewrite

k

l
+

m

n
=

kn

ln
+

lm

ln
=

kn + lm

ln
,

where the last step uses (7). Thus we have the general formula:

k

l
+

m

n
=

kn + lm

ln
(8)
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This formula is different from the usual formula given in textbooks involving
the lcm (least common multiple12) of the denominators l and n, and we shall
comment on the difference below.

We call special attention to the fact that formula (8) was obtained by a
deductive process that is conceptually simple and entirely natural. It should
go a long way towards explaining why the addition of fractions does not take
the form of

k

l
+

m

n
=

k + m

l + n
.

(Try k = m = 1 and l = n = 2, and compare the result with (8).)
The special case of (8) when l = 1 should be singled out: since k

1
= k (by

(1)),

k +
m

n
=

kn + m

n
(9)

Thus, 5 + 3
2

= 13
2

and 7 + 5
6

= 47
6
. Using the notation of a mixed number

introduced at the end of §1, we see that

k
m

n
= k +

m

n
in case m < n. (10)

In terms of the addition of fractions, the notation of a mixed number makes
sense: 31

4
, for example, means the length of the concatenation of a segment of

length 3 and a segment of length 1
4
, and in general, q a

b
means the length of the

concatenation of a segment of length q and one of length a
b
. Operations with

mixed fractions are generally regarded with a sizable amount of trepidation.
The equality (10) serves as a reminder that a mixed fraction is merely a
shorthand notation to denote the sum of a whole number and a fraction.
Since a whole number k is also a fraction k

1
(see (1)), a mixed fraction should

be handled in the same routine manner as any other fraction.
We note in this connection that if a and b are whole numbers and q is the

quotient and r the remainder of a÷ b, then

a

b
= q

r

b
12 A knowledge of the lcm of two whole numbers is not needed here. Any discussion

involving lcm, such as later in this section, is only peripheral to our purpose. For this
reason, we do not even define what lcm means. For the definition and a detailed discussion,
see Chapter 3.
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because a = qb + r so that a
b

= qb+r
b

= qb
b

+ r
b

= q + r
b

= q r
b
. In schools,

students are taught as part of the long division algorithm that “if a divided
by b has quotient q and remainder r, then you can write a÷ b as q r

b
”. This

is the reason why.

Although the tradition in school mathematics is to insist that every im-
proper fraction be automatically converted to a mixed fraction, there is no
mathematical reason why this must be so. This tradition seems to be closely
related to the one which insists that every answer in fractions must be in
reduced form. See the discussion in §3 about reduced fractions.

Formulas (9) and (10) combined give the usual conversion of a mixed num-
ber to an improper fraction. Conversely, the conversion of an improper frac-
tion to a mixed fraction is done by appealing to the division-with-remainder.
Let k

l
be given, where k > l. By the division-with-remainder, k = ql + r for

whole numbers q and r so that 0 ≤ r < l. Thus,

k

l
=

ql + r

l
=

ql

l
+

r

l
= q +

r

l
= q

r

l
,

and r
l

is a proper fraction because r < l.

Activity: Convert each of the following improper fraction to
a mixed number, and vice versa: 75

6
, 45

7
, 61

7
, 134

5
, 32

7
, 148

9
, 166

15
.

Example. Compute 25
9

+ 7
8

and 15 4
17

+ 1612
13

.
Using the associative and commutative laws of addition without comment,

we have:

2
5

9
+

7

8
= 2 + (

5

9
+

7

8
) = 2 +

103

72
= 2 + 1 +

31

72
= 3

31

72
.

15
4

17
+ 16

12

13
= (15 + 16) +

256

221
= 31 + 1 +

35

221
= 32

35

221
.

However, we could have carried out the additions differently:

2
5

9
+

7

8
=

18 + 5

9
+

7

8
=

23

9
+

7

8
=

23× 8 + 7× 9

9× 8
=

247

72
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15
4

17
+ 16

12

13
=

15× 17 + 4

17
+

16× 13 + 12

13

=
259

17
+

220

13
=

259× 13 + 220× 17

17× 13

=
7107

221

The fact that both answers are equally acceptable in each case is something
we already had occasion to emphasize. The fact that the two answers are
actually equal to each other in each case is something for you to verify!

Activity: Verify that the two answers above are indeed the
same.

We should now address some of the fine points of formula (8). The salient
feature of this formula is its simplicity, not only its formal simplicity, but also
the simplicity of the reasoning behind its derivation. Another noteworthy fea-
ture is its generality: it is valid under all circumstances. As a rule, however,
its generality also works against it in special situations where there are usually
cute tricks to provide shortcuts. For example, in the case of fractions with
equal denominators, (7) clearly supersedes (8) because the latter would give
m
l
+ k

l
= kl+ml

l2
, which is more clumsy than (7). It is well to note that, clumsi-

ness notwithstanding, this answer is correct, because kl+ml
l2

= (k+m)l
ll

= k+m
l

,
where the last step uses the cancellation law (2). This in fact illustrates the
value of (8): it provides an easy-to-use formula for the addition of fractions
for all occasions. This is a “security blanket” that is invaluable to many
students.

Another example is when one denominator is a multiple of another. In this
case, instead of appealing to (8), we should just use the bigger denominator:

2

9
+

5

36
=

8

36
+

5

36
=

13

36
.

More generally,
m

nl
+

k

l
=

m

nl
+

nk

nl
=

m + nk

nl
,

whereas by comparison, (8) would give us

m

nl
+

k

l
=

ml + nkl

nl2
.
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We point out again that this answer is correct, because

ml + nkl

nl2
=

(m + nk)l

nl2
=

m + nk

nl
.

The next special case of (8) is worthy of a more elaborate discussion.
Consider the following example.

Example Compute 3
4

+ 5
6
.

3

4
+

5

6
=

18 + 20

24
=

38

24
=

19

12

which could also be written as 1 7
12

. However, in this case one sees that it is
not necessary to go to 1

24
as common unit of measurement of the fractions 1

4

and 1
6
, because we could use 1

12
instead: 1

4
= 3

12
and 1

6
= 2

12
. Hence we could

have computed this way:

3

4
+

5

6
=

3× 3

12
+

2× 5

12
=

19

12
= 1

7

12
,

as before.

This example brings us to the consideration of the usual formula for
adding fractions. So suppose k

l
and m

n
are given. Suppose we know that

there is a whole number A which could be different from ln but which is
nevertheless a multiple of both n and l. (In terms of the preceding example,
if we let k

l
= 3

4
and m

n
= 5

6
, then l = 4, n = 6 and we may let A = 12.

Note that A 6= 4 × 6 = ln.) Then we have A = nN = lL for some whole
numbers L and N . Letting A = nl would always work, of course. Another
candidate for A is the lcm13 of n and l, which is generally different from nl.
For example, the lcm of 4 and 6 is 12, not 24. In any case, given such an A,
k
l

= kL
lL

= kL
A

and m
n

= mN
nN

= mN
A

, so that

k

l
+

m

n
=

kL + mN

A
where A = nN = lL (11)

As remarked earlier, if A is taken to be the lcm of n and l, then this is the
formula used in most textbooks to teach students how to add fractions.

13 This concept will be defined in §5 of Chapter 3, but we merely use it here for illustra-
tion.
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Formula (11) is a useful skill that all students of fractions should learn,
as we shall see presently. We should add a strong word of caution, however,
against its abuse in the school curriculum. The worst possible abuse is the
use of (11) — with A as the lcm of n and l — as the definition of the addition
of the two fractions k

l
and m

n
. There are reasons from advanced mathematics

as to why this is the wrong way to define the addition of fractions14, but
for our purpose, it is enough to point out that formula (11) is a pedagogical
disaster when used as the definition of adding fractions. Often (11) is offered
as the definition without any explanation. But even when an explanation is
given, one would have to start with the concept of the lcm of two numbers,
which is usually preceded by the concept of the gcd15 (greatest common divi-
sor) of two numbers. Students tend to confuse gcd with lcm, unfortunately,
so an unnecessary roadblock is inserted in their learning path. Moreover,
the consideration of lcm renders the simple concept of adding fractions too
complicated to understand and too clumsy to use. The difficulty task of
teaching fractions is therefore made even more difficult. There is also one
more argument against the use of lcm to define the addition of fractions,
which is how to prove that the distributive law holds ofr fractions? (See (15)
of §7.) Of course a proof can be given, but it is made unnecessarily difficult
by having to consider lcm.

All these objections have to be understood in the context of the alterna-
tive, namely, the definition of addition using (5) or (8). We have seen how
simple and natural it is to explain (see also the proof of (15) in §7), and
especially how easy it is to use. Therefore there is no contest: one should
never teach fractions using (11) as the definition of addition.

We now give an example to illustrate the difference between (9) and (12)
as definitions.

Example. Compute
2

323
+

3

493
.

Solution. According to (8):

2

323
+

3

493
=

(2× 493) + (3× 323)

323× 493
=

1955

159239

Now suppose a sixth grader is taught to add fractions only by using (11) with
A as the lcm of l and n, she would have a difficult time finding the lcm of 323

14 This would imply that addition cannot be defined in the quotient field of an integral
domain unless the domain is an UFD.

15 See §3 of Chapter 3.
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and 493 and may therefore give up doing the problem altogether. But we have
just seen that there is nothing at all difficult with such a routine problem:
1955/159239 is the answer (with the help of a four-function calculator).

We may add that the lcm of 323 and 493 is in fact 17×19×29. Moreover,
323 = 17× 19 and 493 = 17× 29, so that according to (11),

2

323
+

3

493
=

2× 29 + 3× 19

17× 19× 29
=

115

9367
.

It also goes without saying that 1955/159239 = 115/9367. In both practical
and theoretical terms, however, there is little advantage in having 115/9367
as the answer instead of 1955/159239.

We mentioned that as a special skill, (11) is important. Here is one
reason.

Example. If n is a whole number, we define n! (read: n factorial)
to be the product of all the whole numbers from 1 through n. Thus 5! =

1 × 2 × 3 × 4 × 5. We also define the so-called binomial coefficients
(

n
k

)
for any whole number k satisfying 0 < k < n as(

n
k

)
=

n!
(n− k)! k!

Then a very useful formula says:(
n
k

)
=

(
n− 1

k

)
+

(
n− 1
k − 1

)
We now use (11) to prove this formula. We shall start from the right side
and show that the addition of these two fractions gives the left side. Thus(

n− 1
k

)
+

(
n− 1
k − 1

)
=

(n− 1)!
(n− 1− k)! k!

+
(n− 1)!

((n− 1)− (k − 1))! (k − 1)!

=
(n− 1)!

(n− k − 1)! k!
+

(n− 1)!
(n− k)! (k − 1)!

Observe now:

(n− k)! k! = [(n− k − 1)! k!] · (n− k)
(n− k)! k! = [(n− k)! (k − 1)!] · k

So using (11) with A as (n− k)! k!, we have:

(n− 1)!
(n− k − 1)! k!

+
(n− 1)!

(n− k)! (k − 1)!
=

(n− 1)! (n− k) + (n− 1)! k

(n− k)! k!
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By the distributive law, the numerator can be simplified as follows:

(n− 1)! (n− k) + (n− 1)! k = (n− 1)! {(n− k) + k} = (n− 1)! n = n!

Thus,

(n− 1)!
(n− k − 1)! k!

+
(n− 1)!

(n− k)! (k − 1)!
=

n!
(n− k)! k!

=
(

n
k

)
So the formula is proved.

Pedagogical Comments: Because of the important role of the ad-
dition of fractions in the context of elementary mathematics education, we
now make an excursion into pedagogy. The point is that in an average fifth
grade classroom, adding fractions by concatenating line segments — while
desirable — may not be the most popular move one can make. Is there per-
haps an alternative that may be more palatable to students? We wish to
make a suggestion. The key idea behind the use of segments — and indeed
the use of the number line — is really that in any discussion of fractions, one
must refer to a fixed unit. This suggests that, if necessary, we may forego the
formality of the number line and simply fix the unit 1 as the area of a given
unit square and go on from there (not forgetting, of course, to remind the
students periodically that they must refer to this fixed unit square anytime
they use a fraction). Instead of concatenating squares, we now combine parts
of unit squares. Let us illustrate with the addition of 2

3
+ 1

2
.

We begin by fixing a unit square whose area is our reference unit 1:

Then the following shaded area represents 2
3
:

�
�

�
�

�
�

�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

and the following shaded area represents 1
2
:
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�
�

�

�
�
�

�
�

�
�

�
�

�
�

�
�

��

To compute 2
3
+ 1

2
, one has to compute the area of the combined shaded area:

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

��

However, suppose we divide both squares into 6 (= 2 × 3) equal parts in
the following way: introduce a horizontal division of the left square into two
equal halves, and introduce a horizontal division of the right square into three
equal thirds:

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

��

The net effect of these divisions is that each of the two squares is now divided
into 6 (mutually congruent) “small rectangles”, and we may now use one of
these small rectangles as “yardsticks” to measure the combined shaded area.
The shaded area of the left square is paved by four small rectangles, and that
of the right square is paved by three of them. The combined shaded area
therefore contains 3 + 4 = 7 small rectangles. But each small rectangle is 1

6

of the unit square, and the unit square has area equal to 1. Thus the area of
the small rectangle is also 1

6
, and by the definition of a fraction (see §1), the

combined shaded area has area 7
6
.

We now express this symbolically. The fact that 2
3

= 2×2
2×3

expresses the
further division of the left unit square into two horizontal halves so that the
original 3 vertical thirds are now split into 2 × 3 small rectangles, and the
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original 2 vertical thirds of the shaded area are now split into 2 × 2 small
rectangles. Similarly, for the right unit square, 1

2
= 3×1

3×2
. Hence,

2

3
+

1

2
=

2× 2

2× 3
+

3× 1

3× 2
=

2× 2 + 3× 2

3× 2
,

which is the special case of (9) for k
l

= 2
3

and m
n

= 1
2
.

By working out a few examples like this, students would get the main
idea of the reasoning behind (8). End of Pedagogical Comments.

Now we show how to use the addition of fractions to re-prove the in-
terpretation (3) of a fraction as a division of whole numbers (in the sense
of the definition in the latter part of §4). The idea of this proof is an
important one and will be used again on several other occasions.
We begin with a general observation . Suppose A is a fraction such that

A + A + · · ·+ A︸ ︷︷ ︸
l

= k

for some whole number k and l. By the definition of the addition of fractions
in (5), we know that by concatenating l segments each of length A, we obtain
a segment of length k. Looked at another way, this says that the segment
[0, k] can be divided into l equal parts and each part has length A. By the
extended definition of division between whole numbers in §4, we have that
k ÷ l = A.

Now suppose k
l

is given. Let us consider the sum

k

l
+

k

l
+ · · ·+ k

l︸ ︷︷ ︸
l

.

By (7), this equals

l︷ ︸︸ ︷
k + k + · · ·+ k

l
= lk

l
= k, where we have used (1). Thus

k

l
+

k

l
+ · · ·+ k

l︸ ︷︷ ︸
l

= k.

The previous observation then implies that k ÷ l = k
l
, as desired.
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We now say a few words about the subtraction of fractions; the brevity
of our comments is warranted by the similarity of subtraction to addition.
Suppose as usual that k

l
and m

n
are given and that k

l
≥ m

n
. Imitating the case

of whole numbers in (44) in §4 of Chapter 1, we define the difference k
l
− m

n

as

k

l
− m

n
= the length of the remaining segment when

a segment of length
m

n
is removed from one end of

a segment of length
k

l

Now k
l
≥ m

n
means, by virtue of (4), that kn ≥ lm so that one can subtract

lm from kn. Hence the following makes sense:

k

l
− m

n
=

kn

ln
− lm

ln
= the length of the remaining segment when lm copies

of
1

ln
are removed from kn copies of

1

ln

= the length of (kn− lm) copies of
1

ln

=
kn− lm

ln
,

where the last equally is by definition of the fraction kn−lm
ln

. This yields the
formula:

k

l
− m

n
=

kn− lm

ln
(12)

when k
l
≥ m

n
.

The subtraction formula (12) is in particular applicable to mixed fractions
and, in that contenxt, brings out a special feature which is not particularly
important but which is interesting nonetheless. As usual, instead of explain-
ing this feature using symbolic notation, we shall illustrate it with an exam-
ple. Consider the subtraction of 172

5
− 73

4
. There is an obvious way to make

(12) directly applicable to this case regardless of what the relevant numbers
may be, which is to convert the mixed numbers into improper fractions:

17
2

5
− 7

3

4
=

85 + 2

5
− 28 + 3

4
=

87

5
− 31

4
=

87× 4− 31× 5

5× 4
=

193

20
.
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(We emphasize again that there is no need to convert this back to a mixed
fraction unless of course there is an explicit instruction to do so.) However,
there is another way to do the computation:

17
2

5
− 7

3

4
= (17 +

2

5
)− (7 +

3

4
).

Now we use the analog of identity (23) in §3.2 of Chapter 1 for fractions.
As explained in §3.2 of Chapter 1, we shall give a full explanation of this
identity for fractions in Chapter 5. Such being the case, we get:

17
2

5
− 7

3

4
= (17− 7) + (

2

5
− 3

4
) = 10 + (

2

5
− 3

4
),

and we note that (12) is not applicable as it stands to 2
5
− 3

4
because 2

5
< 3

4
.

(Can you prove this inequality?) We now recall the subtraction algorithm
in §3.2: if in doing the subtraction (for example) 82 − 57 we find that the
subtraction in the ones digit (i.e., 2 − 7) cannot be done using whole num-
bers, then we trade a 1 from the tens digit to the ones digit to make it work.
Similarly, we are going to trade a 1 from the whole number 17 in this situa-
tion. Formally, what we are doing is to appeal to the associative law of the
addition of fractions, so that

17
2

5
− 7

3

4
= (16 + 1

2

5
− (7 +

3

4
)

= (16 +
7

5
)− (7 +

3

4
)

= (16− 7) + (
7

5
− 3

4
)

= 9 + (
28− 15

20
)

= 9 +
13

20
= 9

13

20

The whole computation looks longer than it actually is because we inter-
rupted it with explanations. Normally, we would have done it the following
way:

17
2

5
− 7

3

4
= (16 +

7

5
)− (7 +

3

4
) = (16− 7) + (

7

5
− 3

4
) = 9

13

20
.

Incidentally, 913
20

= 193
20

, exactly the same as before.
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We conclude this section with some remarks on inequalities among frac-
tions. With the avaailbility of the concept of addition among fractions, the
direct extensions of some of the assertions in §2 of Chapter 1 are straightfor-
ward: let A, B, C, D be fractions, then

(A) the statement A < B is the same as A+C = B for a nonzero
fraction C;

(B) the statement A < B is the same as A+C < B +C for some
C;

(C) A < B and C < D imply A + C < B + D.

Because in terms of the number line, there is no conceptual difference be-
tween the addition of whole numbers and the addition of fractions, we can
safely leave the proofs of these statements to the exercises.

Pedagogical Comments on the Use of Calculators in the Learn-
ing of Fractions: The increasing use of large numbers in both the main
text as well as the exercises is because we consider it important to get ev-
eryone out of the habit of working only with single-digit numerators and
denominators. This habit seems to be linked to several bad practices which
obstruct both the teaching and learning of fractions:

(1) The over-reliance on drawing pictures of pies in every phase
of the learning of fractions. Students see no need to acquire a
more abstract understanding of what a fraction is, thereby re-
tarding their acquisition of the basic disposition towards algebra.
If however fractions such as 159

68
and 21

825
appear often, then the

pressing need of coming to grips with the fraction concept and
all its associated operations would be self-evident.
(2) The exclusive reliance on (11) as a way of adding fractions.
The minute large numbers are used, the silliness of (11) as the
definition of the addition of fractions is exposed.
(3) The failure to acquire the needed computational fluency with
fractions. So long as fractions are equated with fractions-with-
one-digit-numbers, there is no need to remember — or indeed, to
understand — the formulas for adding, subtracting, and divid-
ing fractions. For these simple fractions, it is a common practice
to draw pictures of pies to do fraction computations, and this



6 Addition and Subtraction of Fractions 61

practice unfortunately has even been accorded the dignified sta-
tus of being the bearer of “increased conceptual understanding”.
To us, it is rather a symptom of the breakdown in mathematics
education.

This monograph therfore strongly advocates the frequent use of a
four-function calculator to alleviate the tedium of computing with
large numbers.

There is an additional pragmatic issue to address. When calculator use
is explictly allowed, the teacher should make sure that all intermediate steps
of a computation are clearly displayed so that the calculator may not short-
circuit students’ need to remember the computational algorithms. We recall
an earlier calculation as an example:

2

323
+

3

493
=

(2× 493) + (3× 323)

323× 493
=

1955

159239

In this instance, the calculator enters only in the last step, but in a way that
is invisible. There is no way of telling whether the arithmetic computations
are done by hand or the calculator. At the level of grades 4-6, it may be
a good rule of thumb that if the presence of the calculator is invisible in
students’ work, then the calculator is not a distraction in students’ learning.
End of Pedagogical Comments.

Exercise 6.1 17
50
− 1

3
=? 4− 2

7
=? 6

17
+ 4

3
=? 8

5
+ 16

11
=? 31

5
− 27

8
=?

Exercise 6.2 Large numbers are used in (a) and (b) below on purpose.
You may use a four-function calculator to do the calculations with whole
numbers (and only for that purpose.) (a) 81 25

311
+ 145 11

102
= ? (b) 310 22

117
−

167 3
181

= ? (c) 78 3
54
− 67

14
= ?

Exercise 6.3 (a) Find a fraction A so that 17 5
62

= A + 8 4
25

. (b) Find a
fraction B so that 42

5
−B = 13

4
.

Exercise 6.4 Without computing the exact answer, estimate which of the
following is bigger: ( 91

624
+ 8

9
) and 1. Explain how you did it.

Exercise 6.5 Explain to a sixth grader why every fraction can be ex-
pressed as a mixed number. (Don’t forget: 0 is a whole number.)

Exercise 6.6 Let A and B be two fractions such that A < B. Show
that there is always a fraction C so that A < C < B. (After finding what
you think is a good candidate for C, don’t forget to actually prove that
A < C < B.)
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Exercise 6.7 Prove assertions (A)–(C) about inequalities among fractions.
Exercise 6.8 Let A, B, C be fractions. (a) Prove that A + B < C is the

same as A < C −B. (b) Suppose C < A and C < B. Prove that A < B
is the same as A− C < B − C. (Cf. Exercise 3.14 in Chapter 1.)

7 Multiplication of Fractions

Before we can discuss the multiplication of fractions, we must first understand
what it means to multiply two fractions. The usual meaning of multiplication
as repeated addition among whole numbers (e.g., 3× 5 = 5 + 5 + 5) cannot
be used for fractions because 2

5
× 1

4
is neither adding 1

4
to itself 2

5
times, nor

adding 2
5

to itself 1
4

times. Most textbooks simply duck the issue of what it
means to multiply two fractions but assume instead students are ready and
willing to mutiply everything in sight with no questions asked. The following
is a typical introduction to fraction multiplication in grade 5.

In this lesson we will multiply fractions. Consider this multipli-
cation problem: How much is one half of one half? Using our
fraction manipulatives, we show one half of a circle. To find
one half of one half, we divide the half in half. We see that the
answer is one fourth. Written out, the problem looks like this.

1

2
× 1

2
=

1

4

We find the answer to a fraction multiplication prob-
lem by multiplying the numerators to get the new
numerator and multiplying the denominators to get
the new denominator.

So the attitude here is pretty much that students already know that they must
learn to multiply fractions, and are ready to just follow the rule of multiplying
the numerators and denominators without asking why. The reminder of the
text goes on to give numerous examples of how to use fraction multiplication
to obtain answers.

We have to approach this topic differently. There are at least three ways
to do this, the first is geometric and the other two are algebraic. We do the
geometric one first.
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We saw in §2 of Chapter 1 that there is another interpretation of the mul-
tiplication of whole numbers in terms of area: m×n is the area of a rectangle
of sides m and n (more precisely, of “vertical” side m and “horizontal” side
n), where m and n are whole numbers. Of course the area of a rectangle
does make sense even when its sides are fractions. Defining the unit 1 to be
the area of the unit square (recall: this is the square whose side has length
1), the argument in §1 using the basic properties (a)–(c) of area then shows
that any rectangle contained in the unit square with sides of length 1 and 1

n

will have area 1
n
. This is because n such rectangles provide a division of the

unit (i.e., the area of the unit square in this case) into n equal parts.

n = 7

�
�
�
�
�
�
�

It follows that the rectangle contained in the unit square with sides 1 and m
n

will have area m
n
, because this rectangle is paved by m congruent rectangles

with sides 1 and 1
n

(whose area is 1
n
, as we have just seen). This prompts the

following extension of the meaning of multiplication: we define for any two
fractions:

k

l
× m

n
= the area of a rectangle with sides

k

l
and

m

n

k
l

m
n

If l = n = 1, then this coincides with the interpretation given in §2 of
Chapter 1 of the product of the whole numbers k and m. (Recall that we
already did this kind of extension with regard to the concept of division at
the end of §4 in this chapter.)
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We are treating fractions conceptually the same way as we treat whole
numbers, so it is important to see the similarity between the definition of the
multiplication of whole numbers and that of fractions.

In subsequent discussions of multiplication, the unit 1 will be understood
to be the area of unit square. You may wish to review the relevant discus-
sions in §§2 and 4 of Chapter 1 and §1 of this chapter.

7.1 Formula for the product, and first consequences

As in the case of adding fractions, we want a formula that expresses k
l
× m

n

directly in terms k, l, m, n. We first establish the formula in a special case,
but this case will turn out to be the kernel of the main argument.

1

l
× 1

n
=

1

ln
(13)

Before explaining (13) in general, let us begin by looking at a concrete
example: why is 1

2
× 1

3
= 1

6
? Take a unit square and divide one side into 2

equal parts and the other into 3 equal parts. Joining corresponding points
of the division then partitions the square into 6 identical rectangles:

1
3

1
2

By construction, each of the 2× 3 (= 6) rectangles has sides 1
2

and 1
3

and
its area is by definition 1

2
× 1

3
. However, the total area of these 6 rectangle is

the area of the unit square, which is 1, so the shaded rectangle is one part in
a partition of the unit square into 2 × 3 parts of equal area. Therefore the
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area of the shaded rectangle is 1
2×3

by the definition of a fraction in §1. Thus
1
2
× 1

3
= 1

2×3
.

Let us look at another concrete example. We will show: 1
3
× 1

6
= 1

18
.

Again we divide one side of a unit square into 3 equal parts and the other
side 6 equal parts. Joining the corresponding points leads to a partition of
the unit square into 3× 6 (= 18) congruent rectangles:

1
6

1
3

By construction, each rectangle has sides of lengths 1
3

and 1
6
, so its area

is 1
3
× 1

6
, by definition. By since these 18 rectangles are identical and they

partition the unit square which has area equal to 1, the area of each rectan-
gles is 1

18
.

The general case in (13) can be handled in a similar way. Divide the two
sides of a unit square into ` equal parts and n equal parts, respectively. Join-
ing the corresponding division points creates a partition of the unit square
into `n identical rectangles.
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1
n

1
`

6

?

` divisions

� -n divisions

Because each of these rectangles has sides 1
`

and 1
n

by construction, its
area is 1

`
× 1

n
by definition. Moreover, these `n congruent rectangles partition

a square of area equal to 1, so each of them has area 1
`n

, in the same way that
the length of a part when the unit segment is divided into `n equal parts is
1
`n

(see §1). Thus 1
`
× 1

n
= 1

`n
, which proves (13).

Before attacking the general case of k
l
×m

n
, let us again consider a concrete

example: 2
7
× 3

4
. This is by definition the area of a rectangle with the width

2
7

and length 3
4
. By definition of 2

7
, the width consists of two concatenated

segments each of length 1
7
. Similarly, the length consists of three concatenated

segments each of length 1
4
. Joining the obvious corresponding points on

opposite sides yields a partition of the original rectangle into 2× 3 identical
small rectangles.

1
4

1
7
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Now each of the small rectangles has sides 1
7

and 1
4

and therefore, by (13),
has area 1

7×4
. Since the big rectangle contains exactly 2 × 3 such identical

rectangles, its area (as a fraction) in terms of the unit area 1 is 2×3
7×4

, by the

definition given in §1 of the fraction 2×3
7×4

. So at least in this case, we have
2
7
× 3

4
= 2×3

7×4
.

Finally we prove in general:

k

l
× m

n
=

km

ln
(14)

We construct a rectangle with width k
l

and length m
n
, so that its area

is k
l
× m

n
, by definition. Our task is to show that its area is also equal to

km
ln

, so that we would have k
l
× m

n
= km

ln
. By definition, its width consists

of k concatenated segments each of length 1
l

and its length m concatenated
segments each of length 1

n
. Joining corresponding division points on opposite

sides leads to a partition of the big rectangle into km small rectangles.

1
n

1
l

6

?

k divisions

� -m divisions

Since each of these small rectangles has sides equal to 1
l

and 1
n
, its area is

1
ln

by virtue of (13). But the original rectangle is paved by exactly km such
small rectangles, so its area is km

ln
, thereby proving (14).

Observe that if we let l = 1 in (14), we would have

k × m

n
=

k

1
× m

n
=

km

n
= (

m

n
+

m

n
+ · · ·+ m

n
) (k times)
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where the last is because of (7). In particular,

1× m

n
=

m

n
.

We therfore see that our definition of the multiplication of fractions is con-
sistent with the usual intuitive understanding of what “multiplication by a
whole number” means, namely, repeated addition. It is instructive to see a
direct explanation of this fact. We present it for the special case where k = 3
and m

n
= 1

4
. In that case, 3× 1

4
is the area of the shaded rectangle below.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

6

?

1

� -1 � -1 � -1

The part of the shaded rectangle in each unit square has area 1
4
. So the

area of the original 1
4

by 3 shaded rectangle is 1
4
+ 1

4
+ 1

4
, by the definition of

the addition of fractions. So 3 × 1
4

= 1
4

+ 1
4

+ 1
4
, as desired. The reasoning

clearly applies in general.

This is the right place to note that whereas in the context of whole num-
bers, “multiply by a number” always results in magnification, in the context
of fractions this is no longer true. For example, if we start with 15, then
mutiplying it by 1

75
gets 1

5
, which is far smaller than 15.

We noted in §6 the validity of the commutative law and the associative law
for the addition of fractions. The same laws for multiplication are straight-
forward consequences of (14). However, we should single out the distributive
law for discussion because it has nontrivial computational consequences. It
states that for whole numbers k, l, m1, m2, n1, n2, with l, n1, and n2 being
nonzero:

k

l
×

(
m1

n1

± m2

n2

)
=

(
k

l
× m1

n1

)
±

(
k

l
× m2

n2

)
(15)
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This can be proved in two ways: algebraically and geometrically. The
algebraic proof consists of a straightforward computation using (8) and (14),
and we will leave that as an exercise:

We will give the geometric proof of the case of “+” in (15); the “−” case
can be handled similarly. Consider a rectangle with one side equal to k

l
, and

such that the other side consists of two concatenated segments of lengths m1

n1

and m2

n2
, respectively. This gives rise to a partition of the rectangle into two

smaller rectangles as shown.

� -m1

n1
+ m2

n2

� -m1

n1
� -m2

n2

k
l

Then the distributive law (15) is merely the statement that the area of the
big rectangle (left side of (15)) is equal to the sum of the areas of the two
smaller rectangles (right side of (15)).

As an application of the distributive law, consider 1811
6
× 3

7
. It is equal

to

(181 +
1

6
)× 3

7
=

543

7
+

1

14
=

1086 + 1

14
= 77

9

14
Of course one may also do this calculation without appealing to the distribu-
tive law for fractions:

181
1

6
× 3

7
=

1087

6
× 3

7
=

1087

14
= 77

9

14

At this point, we can bring closure to some of the discussions in §§3 and
4. With formula (14) at our disposal, the proof of the cancellation law (2)
for fractions is now immediate:

km

lm
=

k

l
× m

m

(1)
=

k

l
× 1 =

k

l
.
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Again, we emphasize that while many textbooks employ this argument
to “prove” the equivalence of fractions, there is a marked difference between
what is done there and what we have done here. In those textbooks, the
concept of multiplying fractions is taken as known even when the concept
of a fraction is never defined, and the formula (14) is also just decreed as
true without explanation. Thus their “proof” is based on unproven facts and
undefined concepts. Such “proofs” are likely to corrupt students’ conception
of what mathematical reasoning is about. By contrast, we devoted a great
deal of effort in §§2 and 4 of Chapter 1 and in §1 of this chapter to lay the
necessary groundwork for the precise statement and proof of (14). The su-
perficial similarity does not tell the whole story.

Next we want to give a different interpretation of the multiplication of
fractions that will prove to be useful in many contexts. We begin with a
special case. If k, m, n are nonzero whole numbers, then

1

k
× m

n
= the length of a part when a segment of length

m
n

is divided into k equal parts
(16)

We give two proofs of (16). First, a geometric one. For the ease of drawing
figures below, it would be best if we let k be a concrete number, say 4. It will
be seen that the general reasoning is exactly the same. We begin by letting
the unit 1 be the area of the unit square. Such being the case, 1

4
× m

n
is the

area of the rectangle:

1
4

m
n

Now we stack 4 of these rectangles vertically, obtaining the following:

?

6

1

m
n

�
�

�
�

�
�

�
�

�
�

�
�

�
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The shaded rectangle is the original one whose area is 1
4
× m

n
. Moreover, the

shaded area is also a part of the division of the big rectangle into 4 parts of
equal area. Because the area of the big rectangle is 1 × m

n
= m

n
, this shows

that 1
4
× m

n
is the area of a part when m

n
is divided into 4 parts of equal area.

This proves (16).

The second proof is algebraic, and it makes use of an idea already used
in §6. Let A = 1

k
× m

n
. We are going to add A to itself k times and apply the

distributive law for fractions (15). But first a general observation: Suppose
A is any fraction and for some fraction m

n
, we have

A + A =
m

n
,

then by the definition of the addition of fractions, A is the length of a part
when (a segment of length) m

n
is divided into two equal parts. Next, suppose

A + A + A =
m

n
,

then A is the length of a part when m
n

is divided into three equal parts. More
generally, if

A + A + · · ·+ A︸ ︷︷ ︸
k

=
m

n

for some whole number k, then A is the length of a part when m
n

is divided
into k equal parts.

Now we return to the case at hand, where A = 1
k
× m

n
. By the distributive

law (15):

A + A + · · ·+ A︸ ︷︷ ︸
k

=
1

k
×

(m

n
+

m

n
+ · · ·+ m

n

)
︸ ︷︷ ︸

k

(7)
=

1

k
× km

n
(14)
=

1

k
×

(
k × m

n

)
= (

1

k
× k)× m

n
= 1× m

n

=
m

n
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This exhibits m
n

as k copies of A, so that A is length of a part when a seg-
ment of length m

n
is divided into k equal parts. But by definition, A = 1

k
× m

n
,

so (16) is proved.

We remark once again that although the associative law for fraction
multiplication was not explicitly mentioned in the preceding proof, it was
nevertheless used in the step: 1

k × (k × m
n ) = ( 1

k × k) × m
n . It should be

taken for granted by now that the basic laws of operations that we discussed
in §2 of Chapter 1 indeed play a crucial role in almost all our computations,
whether concrete or symbolic. This role will be in fact dominant in the next
subsection, §7.2.

Finally, we point out a connection between (3) and fraction multiplication.
We have:

l

k
=

1

k
× l

By (16), the right side is the length of a part when [0, l] is divided into k
equal parts. Thus this equality says precissely the same thing as (3).

A noteworthy consequence of (16) is the fact that if B is a fraction (and
not just a whole number), then 1

k
×B is — in the partitive sense of division

described in §3.4 — what “B divided by k” ought to mean. In other words,
what (16) says is that

“divide by a whole number k” in the intuitive sense of division is
correctly expressed by “multiply by 1

k
”.

We now give an interpretation of fraction multiplication that will be useful
in §7.3. Let k, `, m, n by nonzero whole numbers. Then by (16),

k

`
× m

n
= k ×

(
1

`
× m

n

)
= the length of k concatenated segments

when [0,
m

n
] is divided into ` segments

of equal length (17)
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We can go further. Suppose we use m
n as a unit on the number line.

Then we get a new number line where the unit 1 is m
n , 2 is m

n + m
n = 2m

n , 3
is m

n + m
n + m

n = 3m
n , etc. To avoid confusion, we shall refer to this new 1

as the new unit. In terms of the new unit, 1
` is the length of a part when a

segment of length m
n is divided into ` equal parts. By (16), such a part has

length 1
` ×

m
n . Consequently, k

` in terms of the new unit is k
` ×

m
n , by (17).

We therefore have:

Given m
n , let a new unit be chosen to be m

n . Then with respect
to the new unit, a fraction k

` is exactly the length of k
` ×

m
n

We conclude with the fraction analogues of the inequalities in (11) at the
end of §2 in Chapter 1. First, recall that if A and B are fractions, then
A < B means A is to the left of B on the number line (see §5).

0 A B

But this means the line segment [0, B] is the concatenation of the segment
[0, A] and the segment [A, B] from A to B. In terms of the definition of the
addition of fractions, this means A+C = B, where C is the length of [A, B].
Therefore, for two fractions A and B,

A < B is the same as B = A + C for some nonzero fraction C.

Now let the numbering be a continuation of that in §6. Again, let A, B,
C, D be fractions.

(D) If A 6= 0, AB < AC is the same as B < C.

(E) A < B and C < D imply AC < BD.

The proofs are left as exercises.

Exercise 7.1 Verify (15) directly by expanding both sides using (8) and
(14).

Exercise 7.2 Use a calculator to do the whole number computations
if necessary (and only for that purpose), compute: (a) 42

9
× 611

13
= ? (b)

15 4
17
× 23 9

25
− 16 8

19
× 15 4

17
= ? (c) 27

8
× 144

5
× 31

6
= ?

Exercise 7.3 Prove the inequalities (D) and (E) for fractions.
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Exercise 7.4 Without using (14), explain directly to a sixth grader why
3
7
× 4

5
= 12

35
.

Exercise 7.5 A small rectangle with sides 12
3

and 21
7

is contained in a
larger rectangle with sides 121

3
and 62

5
. Find the area of the region between

these rectangles. (Use a four-function calculator.)
Exercise 7.6 (a) A rectangle has area 6 and a side of length 1

3
. What is

the length of the other side? (b) A rectangle has area 31
3

and one side of
length 2

3
. What is the length of the other side? (c) A rectangle has area 7

8

and one side of length 11
3
. What is the length of the other side?

Exercise 7.7 Prove the inequalities in (D) and (E) above Exercise 7.1.
Exercise 7.8 [This is Exercise 4.7 in §4. Now do it again using the con-

cept of fraction multiplication.] James gave a riddle to his friends: “I was on
a hiking trail, and after walking 7

12
of a mile, I was 5

9
of the way to the end.

How long is the trail?” Help his friends solve the riddle.

7.2 The first alternative approach

[The content of this section will not be needed until
Chapter 5.]

We will now sketch a purely algebraic approach to the multiplication of
fractions. In reading this subsection, you are asked to pretend that you have
never heard of what is in §7.1, and you would start all over again assuming
only what we have done in §§1–6.

Let us first reflect on what we have done in regard to the multiplication of
fractions: we have given a precise definition of multiplying two fractions by
extending, in a geometric setting, what we have come to understand about
the multiplication of two whole numbers. Then we derived formula (14) on
the basis of this definition. What we propose to do next is to imitate this
procedure, except that we replace the geometry with algebra. We look at
what we usually do in the context of the multiplication of whole numbers,
and ask what would happen if we insist that the laws of operations in §2 of
Chapter 1 continue to hold not only for whole numbers but also for fractions.
It turns out that by pursuing this line of thinking, we manage to deduce for-
mula (14). This then gives us assurance that, far from a random congregation
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of symbols, formula (14) is in fact dictated a priori by the general reasoning
of algebra. So we adopt it as the definition of fraction multiplication.

Let k be a whole number and let m
n

be a fraction. We first consider the
question of what a reasonable definition of k × m

n
should be. We know that

if p is a whole number, then

kp = p + p + · · ·+ p (k times)

i.e., multiplication of p by k is just repeated addition k times. Suppose we
believe that this should be true even when p is a fraction, then we would
define:

k × m

n
=

m

n
+

m

n
+ · · ·+ m

n
(k times).

Since
m + m + · · ·+ m

n
=

km

n
.

we have:

k × m

n
=

km

n
(18)

Note in particular that (18) implies

1× m

n
=

m

n
.

Next, consider what should be a reasonable definition of 1
`
× m

n
for a

nonzero whole number `. In order for this discussion to go forward, it will
be necessary to assume that 1

`
× m

n
is also a fraction, and furthermore that,

just as with multiplication among whole numbers,

multiplication of fractions obeys the associative law.

There should be no misunderstanding of what we are doing: we don’t
know what it means to multiply fractions yet, but as a matter of faith and
habit, we are going to assume that it must be associative. This is one reason
why we saw fit to discuss the associative law back in §2 of Chapter 1, be-
cause at this point, this law dictates how our mathematical thinking should
proceed. In any case, we can now assert that

`× (
1

`
× m

n
) = (`× 1

`
)× m

n
=

`

`
× m

n
= 1× m

n
=

m

n
.
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We have made use of (18) to conclude that `× 1
`

= `
`
. Therefore we have:

`×
{

1

`
× m

n

}
=

m

n
(19)

for any nonzero whole number ` and for any fraction m
n
. On the other hand,

by (18),

`× m

`n
=

`m

`n
=

m

n
,

by the cancellation law of fractions (2). Thus, we have:

`×
{ m

`n

}
=

m

n
(20)

again for any nonzero whole number ` and for any fraction m
n
.

Comparing (19) and (20), we conclude that the only reasonable way to
define 1

`
× m

n
in general is to say

1

`
× m

n
=

m

`n
(21)

We now make one more assumption:

multiplication of fractions obeys the commutative law.

As with associativity, this assumption is also purely an article of faith.
Then (18) can now be rewritten as:

m

n
× k =

mk

n
(22)

for any whole number k and for any fraction m
n
.

We can now put everything together and deduce how fractions should be
multiplied in general:

k

`
× m

n
= (

1

`
× k)× m

n
(by (22))

=
1

`
× (k × m

n
) (associcative law)

=
1

`
× km

n
(by (18))

=
km

`n
(by (21))
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That is:
k

`
× m

n
=

km

`n
.

To summarize, what we have shown is that if we believe that

(i) multiplication of a fraction by a whole number k should behave
as in the case of whole numbers, i.e., adding the fraction to itself
k times, and
(ii) mutiplication of fractions is associative, and
(iii) mutiplication of fractions is commutative,

then fractions k
`

and m
n

can only be multiplied in the following way:

k

`
× m

n
=

km

`n
,

and we are back to (14) again.
From our experience with whole numbers, there is no reason not to be-

lieve that (i)–(iii) above are totally reasonable. On this basis, we adopt this
formula (i.e., (14)) as our definition of fraction multiplication.

So the grand conclusion is that there are good reasons to adopt (14) as
our definition of the multiplication of fractions. Where then do we stand
at this point? We must start from the beginning and use (14) to rederive
all the usual properties of multiplication: commutativity, associativity, and
ditributivity. All this is entirely mechanical and will be left as an exercise.

We further note that the following obviously holds for all fractions m
n

and
all whole numbers k and `:

1× m

n
=

m

n

k × m

n
=

km

n
= (

m

n
+

m

n
+ · · ·+ m

n
) (k times)

1

`
×m =

m

`

The mathematical discussion of the multiplication of fractions can now
proceed as before.

To recapitulate: We have arrived at the usual formula of fraction mul-
tiplication by a fairly elaborate algebraic process. It is well to repeat that



7 Multiplication of Fractions 78

one should never use (14) as a definition of fraction multiplication without
some prior discussion of what fraction multiplication means. Either of the
preceding two approaches, or the next one in §7.3, is acceptable. They all
make it abundantly clear that what we do in fractions is nothing but a nat-
ural extension of what we do in whole numbers. One cannot exaggerate the
importance of explaining to students that, conceptually, there is no differ-
ence between whole numbers and fractions.

Exercise 7.9 Using (14) as the definition of multiplying fractions, show
that fraction multiplication is commutative, associative, and distributive.

Exercise 7.10 Use (14) to derive the preceding formulas for 1× m
n
, k× m

n
,

and 1
`
×m.

7.3 The second alternative approach

This section may be skipped on first reading.

What we are going to do is to make use of the interpretation (17) at
the end of §7.1 as a starting point to introduce the definition of fraction
mulriplication. We are trying to make sense of fraction multiplication. Fix a
fraction m

n
, what could k

l
× m

n
mean for any fraction k

l
? Conceptually, what

we are going to do is to introduce a new unit 1 on the number line so that

1 =
m

n
.

Denoting the corresponding numbers on the number line by a bar, e.g., k
l
,

then k
l
× m

n
will turn out to be exactly k

l
. See the discussion in §4 of chapter

1 above (48). However, a presentation along this line turns out to be a nota-
tional nightmare. So we will adopt a more down-to-earth approach instead
and just stay with the original number line. So we define:

k

l
× m

n
= the length of k parts of a division

when [0, m
n
] is divided into l equal parts. (23)
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We reiterate that this definition is completely modeled on (17). Let us denote
the length of a part of the division of [0, m

n
] into l equal parts by p

q
. Then by

definition,
k

l
× m

n
=

kp

q
. (24)

By the definition of p
q
, we have

p

q
+ · · ·+ p

q︸ ︷︷ ︸
l

=
m

n
.

But the sum on the left side is just lp/q. So we have

lp

q
=

m

n
.

But we can see by inspection that letting p = m and q = ln, we would have

lp

q
=

lm

ln
=

m

n
,

by virtue of the cancellation law for fractions. Therefore

p

q
=

m

ln
.

It follows from (24) that
k

l
× m

n
=

km

ln
.

We have therefore derived formula (14) from the definition of what the
product of fractions should be as given in (23).

The one advantage of this approach is that the interpretation (23) of
k
`
× m

n
is built into the definition. This meaning of a product of fractions cor-

responds directly to the usual meaning of the usuage of “a fraction of”, as in
“two thirds of the audience booed, while the other third cheered wildly,” or
“two-fifths of a class of n students”. For this reason, some people would find
this definition to be the most appealing approach among the three presented
here.
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8 Division of Fractions

In order to understand the division of fractions, we have to understand an
important feature which distinguishes fractions from whole numbers. Having
put them on the same conceptual footing, we are now looking for differences.
In terms of addition, subtraction, and multiplication, we have observed no
differences between the two, at least operationally. But of course they are
different, and we are going to showcase the critical difference by exhibiting
a multiplication problem which is always solvable in fractions but rarely in
whole numbers. It is the following

Given any two fractions A and B, B 6= 0, then
there is a unique fractions C so that A = BC.

(25)

The truth of (25) is easy to demonstrate: If A = k
l

and B = m
n
, we can

simply write down a C that satisfies A = BC, namely, C = nk
ml

. In so doing,
we have made use of the assumption that B 6= 0 because B 6= 0 implies
m 6= 0 so that the denominator of C is indeed nonzero. As to the uniqueness
of C, we have to show that if D is another fraction that satisfies A = BD,
then necessarily D = C. But from A = BD we get k

l
= m

n
×D. Multiplying

both sides by n
m

shows immediately that nk
ml

= n
m
× k

l
= n

m
× (m

n
× D) =

( n
m
× m

n
)×D = D so that D = nk

ml
= C. (Notice that we made use of B 6= 0

a second time to be able to write the fraction n
m

.)
A passing remark about the uniqueness part of (25) may be appropriate.

In view of the cancellation law of fractions (§3), it must be understood that
the assertion of the equality of C and D in the preceding paragraph means
only that C and D are the same point on the number line, but not that
they have equal numerators and denominators. For example, if C = 2

5
and

D = 36
90

, then C = D.
A few additional comments may also shed some light on both (25) and

its solution. The fact that we can write down the fraction C = nk
ml

is due to
the assumption of B 6= 0, as already noted above. It is standard terminlogy
to call n

m
the (multiplicative) inverse of B = m

n
, and denote it by B−1. Thus

BB−1 = B−1B = 1 and

the solution C of A = BC in (25) is given by C = AB−1.

(In §5, we also introduced the terminolgy that n
m

is the reciprocal of m
n
. Thus

for a fraction, its inverse happens to be its reciprocal.) Second, (25) is false
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if B = 0. For if we chose a nonzero A, then we would get a contradiction
because A = BC = 0× C = 0. Finally, and this is the most important, the
anlogue of (25) for whole numbers is almost always false. Let us begin by
giving a precise statement of this analogue:

Given any two whole numbers A and B, B 6= 0, then
there is a unique whole number C so that A = BC.

(26)

This would be a true statement if A happens to be a multiple of B, but false
otherwise. To see the latter, take for instance A = 5 and B = 2, or A = 27
and B = 4.

One interpretation of the failure of (26) is that it poses the following
mathematical problem: Given any two whole numbers A and B, B 6= 0,
when is there a “number” C so that A = BC? From this point of view,
fractions are the “numbers” we must add to whole numbers in order to secure
an affirmative answer to this question. Indeed, we can get all fractions whose
denominators are 2 by letting B = 2 and letting A be successively 1, 2, 3,
. . . . Because then the requisite C’s are exactly 1

2
, 2

2
, 3

2
, . . . Next, if B = 3

and A is successively 1, 2, 3, . . . then we get C = 1
3
, 2

3
, 3

3
. . . In this way we

get all the fractions.

Now we return to the consideration of the division of two fractions. Recall
from §4 (especially (49)) of Chapter 1 that if A, B are two whole numbers,
B 6= 0, then A

B
is the other side of a rectangle whose area is A and one of

whose sides is B.16

AA
B

B

Notice that we have now allowed A
B

to be a fraction, so that it is no longer
necessary to require, as we did in §4 of Chapter 1, that the whole number
A divides the whole numnber B. In any case, in our quest to put whole
numbers and fractions on an equal footing, we are naturally led to define the
division of fractions in exactly the same manner:

16 Recall that we agreed henceforth to denote A÷B by A/B.
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Given two fractions A and B, with B 6= 0, the quo-
tient A

B
(or A/B) is the length of the other side of a

rectangle whose area is A and one of whose sides is
B.

Because the area of a rectangle is the product of its sides, we see that by
definition, A

B
satisfies:

A =
A

B
×B

There is a subtle point here: We have defined A
B

as the fraction with the
preceding property. How do we know that there is such a fraction, and why
is it unique? Fortunately, (25) answers both questions simultaneously in the
affirmative, so we know the division A

B
is always possible provided B 6= 0.

We can be more explicit about the division of fractions: Given A = k
l

and B = m
n

with m 6= 0, the reasoning leading to (25) tells us that A
B

= nk
ml

.
Hence, our definition of the division of fractions may be presented in an
essentially equivalent formulation:

k
l
m
n

=
kn

lm
(27)

The right side is more easily remembered as k
l
× (m

n
)−1. This is of course

the famous “invert and multiply” rule, but to us, this is not a rule we adopt
blindly, but rather one that is logically deduced from understanding what
“division” means.

Note an interesting side-light: the notation A = B × A
B

“suggests” that
we obtain A by “cancelling” B on the right side. It is a virtue of the no-
tation that it would suggest the correct answer, but let it be noted that no
cancellation ever took place because the only cancellation we know about at
this point applies only to the case where A and B are whole numbers (see
§§3 and 7). Here, A and B are fractions, and the cancellation law applicable
to this situation has yet to be formally proved (see (b) of §9 below).

The special case of (27) where k = l = m = 1 is of particular interest: it
says

1

1/n
= n
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It can be interpreted as follows: Suppose we have a water tank with capacity
T gallons and a bucket with capacity b gallons. Then naturally the number
of buckets of water needed to fill the tank is T/b. Now suppose the tank
capacity is 1 gallon, i.e., T = 1, and the bucket capacity is 1

n
of a gallon, i.e.,

b = 1
n
. Then the number of buckets of water needed to fill the tank is

1

1/n
.

However, this number can be computed directly: if n = 2 (bucket holds half
a gallon of water), it takes 2 buckets to fill the tank, if n = 3 (bucket holds
a third of a gallon of water), it takes 3 buckets to fill the tank, etc,. and
for a general n the same reasoning shows that it takes n buckets to fill the

tank. Thus,
1

1/n
= n, exactly as predicted by our elaborate definition of the

division of fractions.
Note that the preceding is a very limited interpretation of the division

of fractions in the measurement sense (see §3.4 of Chapter 1). We now
proceed to broaden this discussion. But first, let us take note of the fact that
currently there is a fascination with the drawing of pictures to “make sense”
of the measurement interpretation of the division of fractions. The following
is a typical example:

A rod 75
6

meters long is cut into pieces which are 4
3

meters long.
How many short pieces are there?

The denominators are usually rigged so that they can be easily brought to
be the same, in this case, 75

6
= 47

6
while 4

3
= 8

6
, then pictures can be drawn

to show directly that because 47 = 5× 8 + 7, there are 5 short pieces with 7
8

of a piece left over. Now, given all the work we have done, how do we handle
problems of this nature? Indeed, while pictures are always useful, we can do
much harder problems of this type quite effortlessly. For example:

A rod 155
7

meters long is cut into pieces which are 21
8

meters long.
How many short pieces are there?

We recognize roughly that this is a division problem, because if 155
7

and 21
8

are replaced by whole numbers 15 and 3 (say), then this would indeed be a
division problem in the measurement sense of division. We shall presently
explain precisely why division gives the correct answer. We have

155
7

21
8

=
110
7
17
8

(27)
=

880

119
= 7

47

119
.
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Our answer is that there are 7 short pieces with 47
119

of a short piece left over.
The reason is simple. We understand the meaning of division: the fact that

155
7

21
8

= 7
47

119

means exactly that

15
5

7
= 7

47

119
× 2

1

8

=

(
7 +

47

119
× 2

1

8

)
=

(
7× 2

1

8

)
+

(
47

119
× 2

1

8

)
.

That is,

15
5

7
=

(
7× 2

1

8

)
+

(
47

119
× 2

1

8

)
.

But this is precisely the statement that the rod (155
7
) is the sum (concate-

nation) of 7 copies of the short piece (i.e., 7× 21
8
), and the remaining piece

which is only 47
119

of the short piece (i.e., the last term 47
119

× 21
8
).

Remark: As in the case of multiplications, it is good to remind students
that dividing one fraction by another does not necessarily make the first frac-
tion smaller, e.g., 2/1

5
= 10.

In §3.4 of Chapter 1, we discussed the partitive and measurement inter-
pretations of the division of whole numbers. Let us recast that discussion
in the broader context of the division of fractions. The preceding example
concerning rods illustrates very well how the division of fractions can be in-
terpreted in the measurement sense. In general, the division of fractions, as
defined here, can also be given a partitive interpretation. To see this, let us
revisit the motion problem first discussed at the end of §3.4 of Chapter 1.

Recall that for simplicity, we assume the constancy of speed throughout
the subsequent discussion. So suppose we embark on a full-day hike to the
beach starting from some park headquarters. The Bear Valley Trail is 121

3

miles. When we start off in the morning, we count on the ability to maintain
a brisk pace of 31

2
miles an hour, and we want to compute how long it would



8 Division of Fractions 85

take us to get to the beach. As discussed in §3.4 of Chapter 1, this is a
measurement division problem because we want to know how many 31

2
’s

there are in 121
3
. What we claim is that the way the division of fraction is

defined here automatically gives us a measurement interpretation. To see
this, we invert and multiply according to (27) to get:

121
3

31
2

=
37
3
7
2

=
37

3
× 2

7
= 3

11

12
.

Now, recall that this division fact is by definition equivalent to

12
1

3
= 3

11

21
× 3

1

2
,

which may be rewritten as:

12
1

3
= 3

11

21
× 3

1

2
=

(
3 +

11

21

)
× 3

1

2
= 3×

(
3
1

2

)
+

11

21
×

(
3
1

2

)
.

This is an explicit statement that 121
3

contains 3 of 31
2
’s plus a leftover of

11
21

of 31
2
. Therefore the hike to the beach will take 3 and 11

21
of an hour, or

roughly 3 hours and 31 minutes.
On the way back from the beach to the park headquarters, we take it

easy. We leave at 4 pm and get back at 8:45 pm. What is our speed? So
we want the speed of a hike that takes 43

4
hours to cover 121

3
miles, i.e., the

number of miles covered in any one hour interval. This is a partitive division
problem because: if the speed is M miles per hour, then in 4 hours we cover
4M miles, and in 3

4
hours we cover an additional 3

4
M miles, and 4M and

3
4
M fit into 121

3
in the sense that 121

3
= 4M + 3

4
M . However, this implies

121
3

= (4 + 3
4
)M = 43

4
×M . By the definition of fraction division,

M =
121

3

43
4

.

So again we can obtain the speed M by invert-and-multiply:

M =
37

3
× 4

19
= 2

34

57
.

The speed of hike back is therefore 234
57

miles an hour, which is not quite 3
miles an hour.
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For this particular case, there is another way to look at the partitive
division that is equally interesting. Observe that 43

4
hours is the same as 19

quarter-hours (15 minutes). Thus we may think of the speed of walking 121
3

miles in 43
4

hours as that of walking 121
3

miles in 19 quarter-hours. Assuming
the constancy of the speed, we want to know how many miles are covered per
quarter-hour, i.e., what is 121

3
/19 ? Thus we have a straightforward partitive

division problem of dividing 121
3

into 19 equal parts. By invert-and-multiply,

121
3

19
=

37
3

19
=

37

57
.

Thus we walked a steady 37
57

miles per quarter-hour. The speed per hour is
therefore

4× 37

57
=

148

57
= 2

34

57
.

It is of some interest to look at another approach to the division of frac-
tions that is commonly offered. It goes as follows. Given k/l

m/n
, we use the

equivalence of fractions to get

k
l
m
n

=
k
l
× ln

m
n
× ln

=
kln
l

mln
n

=
kn

lm
,

and therefore (so the argument goes) it is a valid mathematical fact that

k
l
m
n

=
kn

lm
.

Now the conclusion is superficially consistent with (27) as both conclude
that the invert-and-multiply rule is correct, but the flaws in this approach
are subtle. Consider the first step:

k
l
m
n

=
k
l
× ln

m
n
× ln

(28)

Does it make sense? Not at all, because recall that we are trying to find out
what k/l

m/n
means. If we don’t know what it is, how can we compute with it?

By the same token, we also do not know what k/l×ln
m/n×ln

means. Therefore, to
assert the equality of two things we know not the meaning of is fantasy and
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not mathematics. This is the mathematical equivalent of the statement that
“we saw two angels, one in a red garb and the other in blue, and we measured
their heights and found them to be the same”. Moreover, the reason for the
equality in (28) is usually given as “using equivalent fractions”, but all we
know about equivalent fractions in §3 is that K

L
= KM

LM
where K, L, M are

whole numbers, not fractions. Therefore this approach heaps logical difficulty
upon logical difficulty. It is by virtue of ignoring these difficulties that the
preceding reasoning succeeds in presenting (27) as a mathematically proven
fact rather than as a definition.

The preceding approach can be amended to make it valid. One should
not present the preceding reasoning as a sequence of logical deductions based
on known facts, but rather (along the line of reasoning of the algebraic ap-
proach to the multiplication of fractions in §7.2) as speculations based on
certain hypotheses. For example, one of these hypotheses must be that the
cancellation law K

L = KM
LM has meaning and is valid even when K, L, and

M are fractions. The hypothesis is plausible. Thus the argument should be
rephrased as one that shows that, under reasonable assumptions on the be-
havior of fractions, (27) is the only possible definition to use for the division
of fractions.

Of course, once the division of fractions has been precisely defined, then
(b) of the next section (§9) would give an after-the-fact justification of this
way of thinking about division.

There is a variant of the preceding approach, and it goes as follows:

k
l
m
n

=
k
l
× 1

m
n
× 1

=
k
l
× n

n
m
n
× l

l

=
kn
ln
lm
ln

=
kn× 1

ln

lm× 1
ln

,

and thus the division k/l
m/n

becomes the division of kn new units (where the

new unit is 1
ln

) divided by lm of the same new unit. Naturally, the result is
kn
lm

. Therefore,
k
l
m
n

=
kn

lm
.

Exercise 8.1 Let a, b be whole numbers, and let q and r be the quotient
and remainder of a÷b. Let also Q be the fraction so that a = Qb. Determine
the relationship among Q, q, and r.
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Exercise 8.2 Analyze the preceding approach to the definition of the
division of fractions, describe what the difficulties are, and make suggestions
on how to make it into a a valid plausibility argument. (Keep in mind §7.2.)

Exercise 8.3 Recall that whole numbers are fractions. Now express the
following as ordinary fractions for nonzero whole numbers a, b, and c: a/ b

c
,

a
b
/c, 12/4

5
, 4

5
/8, 5/1

7
, 1

7
/5.

Exercise 8.4 Shawna used to spend 2
3

of an hour driving to work. Now
that her firm has moved 12 miles farther from her home, she spends 5

6
of an

hour driving to work at the same speed. How far is her firm from her home?
Exercise 8.5 I drove from Town A to Town B at a constant speed of 50

mph, and I drove back from Town B to Town A at a faster speed of 60 mph.
The roundtrip took 142

3
hours. How far apart are the towns.

Exercise 8.6 Find a fraction q so that 281
2

= q × 53
4
. Do the same for

2181
7

= q × 201
2
. Make up a word problem for each situation.

Exercise 8.7 It takes 2 tablespoonfuls of a chemical to de-chlorinate 120
gallons of water. Given that 3 teaspoonfuls make up a tablespoonful, how
many teaspoonfuls of this chemical are needed to de-chorinate 43 gallons?

9 Complex Fractions

We now come to a central topic in the study of fractions: the arithmetic
operations with complex fractions, i.e., quotients of the form a

b
/ c

d
, where

a
b

and c
d

are fractions with c
d
6= 0. If truth be told, this topic is generally

not regarded as being central in the study of fractions. In fact, most school
textbooks on fractions hardly mention complex fractions, and even profes-
sional development materials hardly pause to make sense of them. But if you
suspend your disbelief for a few moments and read through this section first,
you will be able to verify for yourself that, indeed, complex fractions are of
central importance.

Writing A for a
b

and B for c
d
, we can abbreviate the complex fraction

a
b
/ c

d
to A

B
. There is a reason for this notation. First of all, let a and

b be nonzero whole numbers and let A and B be the fractions A = a
1

and
B = b

1
. Because we know that A = a and B = b as fractions (cf. (1)), we

expect the complex fraction A
B

to be equal to the ordinary fraction a
b
. And

indeed it is, according to the invert-and-multiply rule (27). So the notation
is at least consistent with the existing notation. Moreover, recall that at the
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beginning of this chapter, our objective was to give meaning to the symbol
A
B

when A and B were whole numbers. Now we have progressed to the point
of being able to extend the meaning of the symbol to the case where A and
B are not just whole numbers but fractions. Naturally, we wish to know
how much of the knowledge accumulated for A

B
when A and B are whole

numbers carries over to the case where A and B are fractions. The answer:
virtually everything. This will therefore be a stunning display of the power
of the symbolic notation, in that it makes possible a tremendous saving of
mental energy by encoding two parallel developments using only one set of
formualas. Make no mistake about it: this is good mathematics.

Now we proceed to list the basic rules concerning complex fractions ad-
umbrated in the preceding paragraph. Let A, B, . . .F be fractions (which
will be assumed to be nonzero in the event any of them appears in the de-
nominator). In the following, we shall omit the multiplication symbol “×”
between letters, as usual. Thus A × B will be simply written as AB. With
this understood, then the following are valid:

(a) A× B

C
=

AB

C
.

(b) Cancellation law: if C 6= 0, then

AC

BC
=

A

B

(c)
A

B
>

C

D
(resp.,

A

B
=

C

D
) exactly when AD > BC (resp., AD = BC).

(d)
A

B
± C

D
=

(AD)± (BC)

BD

(e)
A

B
× C

D
=

AC

BD

(f) Distributive law :

A

B
×

(
C

D
± E

F

)
=

(
A

B
× C

D

)
±

(
A

B
× E

F

)

Here is the correspondence between the items on this list and their cognate
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facts in ordinary fractions:

(a) ↔ (14), (b) ↔ (2), (c) ↔ (4)
(d) ↔ (8) and (12), (e) ↔ (14), (f) ↔ (15).

The algebraic proofs of (a)–(f) are entirely mechanical and somewhat te-
dious, and are based on (14), (2), (4), (8), (12), and (15) (which will be used
without comment in the following). For this reason, only the proofs of (a),
(d) and (f) will be given for the purpose of illustration, and the proofs of
the rest will be left as exercises. In a sixth grade classroom, one or two such
proofs ought to be presented, but perhaps no more than that.

Proof of (a). Let A = k
l
, B = m

n
, and C = p

q
. Then B

C
= mq

np
, so that

A× B

C
=

kmq

lnp
.

But
AB

C
=

km
ln
p
q

=
kmq

lnp
= A× B

C
,

so (a) is proved.

Proof of (d). With A, B, C as above and D = r
s
, we have:

A

B
± C

D
=

k
l
m
n

±
p
q
r
s

=
kn

lm
± ps

qr
=

knqr ± lmps

lmqr
,

and

(AD)± (BC)

BD
=

kr
ls
± mp

nq
mr
ns

=

(krnq)±(lsmp)
lsnq
mr
ns

=
ns[(krnq)± (lsmp)]

mr(lsnq)
=

krnq ± lsmp

mrlq
=

A

B
± C

D
.

Proof of (f). An algebraic proof can be given in a routine fashion as with
(15), but it will be left as an exercise. However, a geometric proof is far more
enlightening. For a change, we will handle the “−” case of (f) and leave
the “+” case to the reader. Let R be a rectangle with one side equal to A

B

and the other side C
D
− E

F
. From the definition of C

D
− E

F
(given above (12)),

the other side of R is the remaining segment when a segment of length E
F

is
removed from one of length C

D
. See the figure below.
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R R′

� -C
D

A
B

� -C
D
− E

F
� -E

F

Let R1 be the rectangle with one side A
B

and the other side C
D

(the big
rectangle), and R′ the rectangle with one side A

B
and the other side E

F
(the

smaller rectangle on the right). Then

A

B
×

(
C

D
− E

F

)
= area of R = area of R1− area of R′

=

(
A

B
× C

D

)
−

(
A

B
× E

F

)
.

Example 1. If A, B, C are fractions and B 6= 0, then

A

B
+

C

B
=

A + C

B

(Compare (7) of §6.)
We can see this directly: let A = k

l
, B = m

n
, and C = p

q
. Then,

A

B
+

C

B
=

kn

lm
+

pn

qm
=

(kn)q + (pn)l

lqm
=

n(kq + lp)

lqm
,

and
A + C

B
=

kq+lp
lq
m
n

=
n(kq + lp)

lqm
=

A

B
+

C

B
.

We can also make use of (a) and (f):

A
B

+ C
B

(a)
= ( 1

B
× A) + ( 1

B
× C)

(f)
= 1

B
× (A + C)

(a)
= A+C

B
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Or, we can use (d) and (b):

A

B
+

C

B

(d)
=

AB + CB

BB
=

(A + C)B

BB

(b)
=

A + C

B
.

Example 2. Let A and B be fractions and B 6= 0. Then

A

B
+ · · ·+ A

B︸ ︷︷ ︸
j

=
jA

B
.

We can prove this directly, of course, but we choose to use Example 1 re-
peatedly:

A

B
+ · · ·+ A

B︸ ︷︷ ︸
j

=
2A

B
+

A

B
+ · · ·+ A

B︸ ︷︷ ︸
j−2

=
3A

B
+

A

B
+ · · ·+ A

B︸ ︷︷ ︸
j−3

= · · · = jA

B
.

The importance of the algebraic operations of complex fractions has not
been properly recognized in the K–12 mathematics curriculum. Let us illus-
trate in a simple way why the statements (a)–(f) are useful by considering
the approximate size of 671

2
% (here we anticipate the discussion of the next

section on percentage; if neceesary, read the next section before reading the
remainder of the this section). We recognize that 2

3
is 662

3
%, and therefore

by common sense, 671
2
% should be roughly 2

3
. What we want to do is to re-

place “common sense” by correct reasoning to render our conclusion beyond
reproach. We have

67
1

2
= 66

2

3
+

(
67

1

2
− 66

2

3

)
= 66

2

3
+

5

6
.

Therefore,

67
1

2
% =

671
2

100

=
662

3
+ 5

6

100

=
662

3

100
+

5
6

100
(by (d))

=
2

3
+

5
6

100
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Moreover, 5
6

< 1. By (c),
5
6

100
<

1

100
.

Together, we see that 671
2
% differs from 2

3
by at most 1%. We have just seen,

in a very superficial way perhaps, how (c) and (d) are put to work.
Complex fractions appear routinely in all kinds of situations, either in

mathematics or in everyday life, and one needs to be able to compute with
them with total ease. For example, again anticipating the discussion of per-
cent in the next section and decimals in Chapter 4, we see immediately that
a common statement such as “The Federal Reserve has announced that it
would raise the prime interest rate from 7.2% to 7.7%” makes use of complex
fractions, because 7.2% and 7.7% are nothing but shorthand notations for
the complex fractions

7 2
10

100
and

7 7
10

100
.

Furthermore, complex fractions are important from a a purely mathemat-
ical point of view because they are the bridge between ordinary fractions
and general quotients such as π√

2
. It will be seen that the assertions (a)–(f)

above are crucial for an understanding of the algebraic operations with real
numbers; see §11 following.

Exercise 9.1 Give algebraic proofs of (b), (c), (e) and (f).
Exercise 9.2 If A = 11

5
, B = 2

7
, C = 22

21
, D = 24

5
, E = 11

7
, and F = 5

2
,

directly verify (a)–(e) above.
Exercise 9.3 If A, B, . . .E are fractions, then A

BC
+ E

BD
= AD+CE

BCD
. (This

is the analogue of equation (11) in §6.)

10 “Of” and Percent

We are now in a position to explain two everyday expressions in terms of
the precise language of fractions. What does it mean, for example, when
someone says “two-fifths of the people” or “65% of the students” ?

Let us take up the first sentence first. There is universal agreement that,
when someone refers to “two-fifths of the people in a room”, she means :
“the total number of people in 2 of the parts when the people in the room
are divided into 5 equal parts”. There is no reason to lose sleep over why
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this is so, any more than to do the same over why red was chosen as the
color of stop lights. After all, language is nothing more than a collection
of commonly adopted conventions. Our goal is not to probe the linguistic
subtleties but to translate this phrase into precise mathematics instead. Let
us say that there there are n people in the room. According to interpretation
(26) (or alternatively the combination of (18) and (19)), the meaning of the
product k

`
× n is the total number of people in k of the parts when the n

people are divided into ` equal parts. Therefore we see that

“two-fifths of n people” means “

(
2

5
× n

)
people ”

Similarly, “two-thirds of k cars” means “(2
3
× k) cars”, etc.

The discerning reader would have noticed that, in most cases, such a state-
ment as “two-fifths of the people” does not make strict sense because the
total number of people is unlikely to be divisible by 5. For example, “two-
fifths of 72 people” would mean 28.8 people. The purpose of this remark
is therefore to serve notice that common expressions have to be interpreted
liberally, even as we try to make mathematical sense of them.

It should be noted that this attitude towards everyday expressions is
not shared by all educators. Whereas we have tried to achieve a coherent
presentation of fractions and then, using precise arguments, interpret the
mathematical facts we have proved in terms of ordinary language, it is often
thought that for school mathematics a better way to teach it is to reverse the
roles of mathematics and everyday language. In this view, everyday language
is the primary source, and mathematics — especially fractions — is no more
than a symbolic reflection of the language. So doing mathematics becomes
a kind of guessing game: how well we can do mathematics depends on how
well we understand the hidden meanings of everyday language. A good
illustration of this point of view is given by the article on “Of-ing fractions”
by J. Moynahan in What is Happening in Math Class?, (Deborah Schifter,
editor, Teachers College Press, 1996), in which the author describes a class
discussion in a sixth-grade classroom about what students did to “solve the
following problems”:

1. The Davis family attended a picnic. Their family made up
1/3 of the 15 people at the picnic. How many Davises were at
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the picnic?
2. John ate 1/8 of the 16 hot dogs . How many hot dogs did
John eat?
3. One-fourth of the hot dogs were served without relish. How
many were served without relish?

Apparently, the students solved the problems in groups and then were chal-
lenged by the teacher to explain what mathematical operation should take
the place of the preposition “of”: is it + or ×? According to the teacher,
knowing that “of” means multiply was important, because “If the algorithm
for multiplying fractions was to make sense, they need to understand that
‘of’ means multiply” and “understanding had to come first”.

This is a case of an attempt to improve the teaching of fractions, specif-
ically the multiplication of fractions, not by trying to attach precise mathe-
matical meaning to the relevant concepts — which is a fundamental require-
ment of mathematics — but by appealing to students’ a priori understanding
of everyday language (in this case, the meaning of “of”). It should be a mat-
ter of concern in mathematics education when a sixth-grade class does not
show interest in a clear explanation of what it means to “multiply” two frac-
tions and why this way of multiplying fractions should be interpreted as in
(26). Instead, the formula a

b
× c

d
= ac

bd
was taken as preordained, and all that

remained was for children to fathom its mysteries. Would the teacher or
those sixth graders feel the same way if fraction multiplication were defined
as a

b
× c

d
= a2c2

bd
instead? There is no indication at all that a mathematical

understanding of this formula was considered a necessity for the students,
only a linguistic one. This is hardly a good way to promote the learning of
mathematics.

By contrast, we took great pains to carefully define the meaning of the
multiplication of fractions, and to argue on mathematical grounds why the
interpretation (26) of the multiplication is correct. We did not probe the psy-
chology behind the linguistic usage of the preposition of, because linguistic
usage may not be exactly the same for everyone. Insofar as we believe that
mathematics is a discipline of precision, it is best not to let the correctness
of a mathematical statement rest on the vagaries of everyday language. We
also believe that it is essential for students to learn that the correctness of
mathematical statements can be ascertained by purely mathematical reason-
ing alone without extra-mathematical considerations.
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We next turn to percent. Suppose you go to a supermarket to buy beef
and you want as little fat as possible. One package says “ 3

28
of this package

is fat”17 and the other says “Fat content: 2
15

”. Of course in real life, such
oddball labelings do not occur, but the point of this story is to explain why
they do not occur. So let us go on. Which of the two has less fat per unit
weight? You know your fractions by now, so mentally you compute by using
the cross-multiplication algorithm: 3 × 15 = 45 < 56 = 2 × 28, therefore
3
28

< 2
15

and you pick the first package.
This kind of labeling is unacceptable, of course, because important infor-

mation should be clear at a glance without requiring mental computations.
One way to resolve this difficulty would be for the first meat packing com-
pany to also measure fat by dividing each unit weight into 15 instead of 28
equal parts. Had it done that, it would have found that 117

28
parts out of 15

consist of fat and would have therefore labelled the package as “117
28

/15 of
this package is fat”. (Notice how complex fractions appear naturally.) Then
it would indeed be clear at a glance that the second package contains more
fat inasmuch as 2 > 117

28
. This then give rise to the idea that if all meat

packing companies agree to use the same denominator for their fat-content
declarations, all shoppers would be able to make comparisons at a glance.
In fact, the same goes for all kinds of quantitative comparisons: why not use
the same denominator across the board?

Activity: Verify that the preceding statement about
3

28
=

117
28

15
is correct.

Quite miraculously, such a general agreement was reached at some point
in the past, and people seemed happy to use 100 as the standard denominator.
They even devised a new notation and created a new word in the process:
instead of 15

100
, they agreed to write 15% and call it fifteen percent (Latin: per

centum, meaning “by the hundred”), and instead of
51

2

100
, they agreed to write

51
2
% and call it five-and-a-half percent, etc. Thus instead of 3

28
, we want to

express it as C%, where C is some fraction, i.e., we want 3
28

= C% = C× 1
100

,
where the last equality uses (a) of §9. By (25) in §8, we are guaranteed that

17 Such measurements are understood to be by weight.
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there is such a C, and in fact,

C = 100× 3

28
= 10

5

7
.

The first package of beef would then be labeled: “105
7
% of this package is

fat”. Similarly, the second package would be labeled: “Fat content: 131
3
%”,

because if 2
15

= y
100

, we get as before that

y =
100× 2

15
= 13

1

3
.

Now every shopper can tell without a moment of hesitation that the second
package has more fat per unit weight because 131

3
> 13 > 11 > 10 5

14
,

It remains to point out that there is an element of unreality in this story:
ordinary labeling of percentages in a commercial context usually rounds off
to the nearest digit. Instead of 131

3
and 10 5

14
, it would be respectively, 13%

and 10%. The rounding-off notwithstanding, the method of computation of
percentages illustrated above is essential knowledge. It makes plain the im-
portance of the assertions in §9.

We have so far intepreted the notation of “%” as the denominator of a
complex fraction or fraction, e.g., 13% means 13

100
. In ordinary language, how-

ever, “percent” is often used as an adjective, as in “I am getting 5 percent
interest from my bank”. There are educators and mathematicians alike who
would argue that “5%” is not a number but an “action” or an “operator”.
Either way, once you understand the underlying mathematics, you are not
likely to get confused no matter how “percent” is used.

Example 1. Express 5
16

as a percent.
Solution. If 5

16
= C%, then 5

16
= C × 1

100
. By the discussion following

(25) of §8,

C = 100× 5

16
= 31

1

4
.

So 5
16

= 311
4
%.

Example 2. The price of the stocks of a diapers company went down
by 12%, and then went back up by 12% the next day. Did it get back to its
original price?
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Solution. Say the price of the stocks is D dollars. If it went down by
12%, then the low price is D− 12%×D = 88%×D dollars. If the low price
went up by 12%, then the new price is

(88%×D) + 12%× (88%×D) = 1× (88%×D) + 12%× (88%×D)

= [1 + 12%](88%×D)

= 112%× 88%×D

=
9856

10000
×D

Because 9856
10000

< 1, the new price is less than D dollars and therefore not as
high as the original price.

It may be of interest to find out by how many precent this stock had to
go up the next day in order to climb back to the original price. Suppose it
went up by x% the next day, then the new price would be computed exactly
as above, except that 12 would be replaced by x everywhere:

(88%×D) + x%× (88%×D) = 1× (88%×D) + x%× (88%×D)

= [1 + x%](88%×D)

= (100 + x)%× 88%×D

=
(100 + x)× 88

10000
×D

Thus the new price will be D dollars exactly when (100+x)×88 = 10000, or
when 8800 + 88x = 10000, which means 88x = 1200. Therefore x = 1200

88
=

150
11

= 13 7
11

. In other words, the price of the stock would have to go up by
13 7

11
% in order to equal its original price.

Before leaving the subject of percents, let us pursue an idea by way of
a concrete example. Suppose we try to convert 3

8
to percent. As usual, if

3
8

= C%, then

C = 100× 3

8
= 37

1

2
.

Thus 3
8

= 371
2
%. Now the complex fraction is somewhat unsightly, and we

can use Example 1 of §9 to rewrite 371
2
% as

3

8
= 37% +

1

2
% =

37

100
+

50
100

100
=

37

100
+

50

1002
.
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This then allows us to avoid complex fractions at the expense of adding an
extra term 50

1002 , which is also a kind of “super-percent”. Or we can use
powers of 10 as denominator and rewrite:

3

8
=

30

100
+

7

100
+

5

1000
=

3

10
+

7

102
+

5

103
.

You recognize the last expression as a “decimal”. Thus from the expression
of a fraction as a percent, we easily get to decimal expansion of the fraction.
This is a topic we will discuss at length in the Chapter 4, but the connec-
tion of decimals with percents deserves to be singled out right from the start.

Exercise 10.1 What percent is 18 of 84? 72 of 120? What is 15 percent
of 75? And 16 percent of what number is 24?

Exercise 10.2 Express the following as percents: (a) 1
4
, 7

5
, 3

16
, 17

32
, 34

25
, 24

125
,

18
125

. (b) 5
12

, 24
7
, 8

15
, 7

3
, 5

6
, 7

48
. Do you notice a difference between the answers

to the two groups in terms of the considerations immediately preceding these
exercises? Can you guess an explanation?

Exercise 10.3 A shop plans to have a sale. One suggestion is to give
all customers a 15% discount after sales tax has been computed. Another
suggestion is to give a 20% discount before sales tax. If the sales tax is 5%,
which suggestion would give the customer a greater saving?

Exercise 10.4 A bike is priced at $469.80 including an 8 percent sales
tax. How much is the price of the bike before sales tax and how much is the
sales tax?

11 Ratio, Rates, and the Fundamental Assumption of
School Mathematics (FASM)

The concept of a “ratio” is almost never defined in textbooks or professional
development materials.18 Let us therefore begin with this provisional defi-
nition: the ratio of two numbers A and B is just the division of A by B.
We have been working extensively on the concept of division in this chapter

18 Some textbooks define a ratio as a “quotient”, which would seem to be in complete
accord with this monograph. Unfortunately, it is also true that in these books the concept
of a “quotient” is left undefined.
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(cf. §§4, 8, and 10), so that this definition would seem to be rock solid. Sup-
pose however we consider the ratio of the circumference of a circle of radius
1 and the diagonal of the unit square: as is well-known, this ratio is 2π√

2
,

which is unfortunately not the quotient of a fraction by a fraction because
neither π nor

√
2 is a fraction.19 This then calls for more work before we can

give a legitimate definition of a ratio.
We will begin with some general comments about fractions and complex

fractions. We do so informally, so that we would on occasion invoke con-
cepts and results not yet developed in this monograph. On the whole, the
discussion is kept on an intuitive level, so that even if you encounter a phrase
or two that seem unfamiliar, you should just ignore them and forge ahead.

By Chapter 5, we will have treated both positive and negative fractions
in some detail, and will in particular extend the validity of all the identities
in §9 to allow A, B, . . .F to be negative fractions as well. Now, the positive
and negative fractions together are called rational numbers. In real life, these
are the only numbers one encounters. For example, although we know the
diagonal of the unit square is

√
2, which as mentioned above is irrational

(i.e., not a rational number), this diagonal in an everyday context would
usually be taken to be 1.414 or similar approximations to the real value
of
√

2 (= 1.4142135623730950488 . . .). Therefore, rational numbers occupy
a position of singular importance among numbers. Nevertheless, we must
acknowledge that there are many real numbers — they are by tradition the
name given to all the points on the number line — which are irrational.
Those points which correspond to rational numbers as prescribed in §1 of
this chapter do not comprise the whole number line. Put another way, there
are many lengths which cannot be represented by a segment with fractions
as endpoints. In addition to

√
2, the square root of any whole number which

is not a perfect square is irrational, as is the length of a semicircular arc of a
circle with radius 1, which is π of course. (We will prove in §5 of Chapter 3
that

√
2 is irrational.) There are other irrationals that can be manufactured

at will (again, see §5 of Chapter 3). We should also note that other roots of

whole numbers such as 5
√

11, or
√

3
√

5 +
√

8 are all irrational. The irrational
numbers and rational numbers together form the real number system, the
understanding of which took human beings more than two thousand years
to achieve.

19 Neither fact is obvious, especially the one about π.
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It is a fact that school mathematics is essentially the mathematics of ra-
tional numbers and that the real number system is almost never discussed in
the K–12 curriculum. One cannot avoid irrational numbers entirely, however.
Numbers such as

√
2 or 3

√
5 and π naturally come up, for example, in the

solutions of quadratic or cubic equations and discussions of area and circum-
ference of a circle, so that computations with these numbers are unavoidable.
Such being the case, how does the school mathematics curriculum cope with
this situation? It does so by implicitly invoking what we propose to call
The Fundamental Assumption in School Mathematics (FASM):

All the information about the arithmetic operations
on fractions can be extrapolated to all real num-
bers.

This is a profound assumption. For example, school students are supposed
to know what it means to multiply

√
2 with π or divide one by the other.

This is clearly a very big assumption considering the effort we had to spend
merely to understand the multiplication and division of fractions. Moreover,
school students are also expected to manipulate these irrational numbers as
if they were integers. Thus a typical student would write down the following
without a moment’s thought:

π

7
+

√
2

3
√

5
=

3π
√

5 + 7
√

2

21
√

5
,

or, √
2(
√

3 + π) =
√

2
√

3 +
√

2 π,

or,
37× π = π × 37.

If pressed as to how these can be justified, they would likely answer that for
the first equality, they assume that (d) of §9 would hold for all real numbers,
for the second, that the distributive law would hold for all real numbers,
and for the last equality, the commutative law of multiplication is valid for
arbitrary numbers as well. In other words, FASM is implicitly at work.

We comment in passing that the second equality reveals why it is impor-
tant to have a general formula for the addition of two fractions as in (8) of
§6, and why the common way to define the addition of fractions by seeking
the lcm of the denominators distorts what fraction addition means.
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Now FASM is in fact correct, but the explanation is a bit subtle. Here,
we will attempt only the barest outline of such an explanation. Take the
case of the product

√
2 π: we know this is a point on the number line, but

which point? Instead of giving a one-sentence answer, we describe a step-
by-step procedure to get as close to this point as we please, or as we will
say from now on: to approximate this point. First, a general comment. One
of the basic facts about the real numbers is that every real number can
be approximated by a sequence of rational numbers. In the case of√

2, we can explicitly write down such a sequence. Using the infinite decimal
expansion of

√
2, which is 1.4142135623730950488 . . ., we define the sequence

{an} to be:
a1 = 1
a2 = 1.4
a3 = 1.41
a4 = 1.414
a5 = 1.4142

...
a15 = 1.41421356237309
a16 = 1.414213562373095, etc.

Note that each an is in fact a fraction, because for example, a5 = 14142
10000 . For

π = 3.14159265358979323846 . . ., we produce a similar sequence of fractions
{bn}, so that

b1 = 3
b2 = 3.1
b3 = 3.14
b4 = 3.141
b5 = 3.1415

...
b15 = 3.14159265358979
b16 = 3.141592653589793, etc.

Then it is plausible, and in fact provable, that the sequence of points {a1b1, a2b2, a3b3, . . .}
would approximate some point on the number line, and this point is what is
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usually denoted by
√

2 π. In greater detail:

a1b1 = 1× 3 = 3
a2b2 = 1.4× 3.1 = 4.34
a3b3 = 1.41× 3.14 = 4.4274
a4b4 = 1.414× 3.141 = 4.441374
a5b5 = 1.4142× 3.1415 = 4.4427093
a6b6 = 1.41421× 3.14159 = 4.4428679939

...
a15b15 = 1.41421356237309× 3.14159265358979

= 4.4428829381583458058597947511
a16b16 = 1.414213562373095× 3.141592653589793

= 4.442882938158365756463749819335
a17b17 = 1.4142135623730950× 3.1415926535897932

= 4.44288293815836603930646229395400

Even without considering anbn for n > 17, it is reasonably clear that this
sequence of products will be 4.44288293815836±10−14. In terms of everyday
usage, we can say with confidence that we know what this point

√
2 π is

because the approximation 4.443 usually suffices. In addition, we also know
that we can get as close to this point as we want, provided we are willing to
multiply out anbn for n large.

Let us now briefly indicate why the following equation is valid:

π

7
+

√
2

3
√

5
=

3π
√

5 + 7
√

2
21
√

5
.

Let
√

5 be approximated by a sequence of fractions {cn}, and let {an} and
{bn} be the preceding sequences of fractions which approximate

√
2 and π,

respectively. Then from (d) of §9, we know that for each n:

bn

7
+

an

3cn
=

3bncn + 7an

21cn

Here we see clearly why we need validity of the identities in §9 not just for
fractions A, B, . . . F but for complex fractions as well. We now let n get
arbitrarily large. As it does so, the left side (by arguments similar to those
already encountered above) approximates

π

7
+

√
2

3
√

5

while the right side approximates

3π
√

5 + 7
√

2
21
√

5
.
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So these two points must be the same point on the number line.

We hardly need to add that the underlying principle of the preceding argu-
ment applies to any irrational number and not just π,

√
2, or

√
5. Moreover,

the analogs of identities (a)–(f) in §9 can be proved in this manner for arbi-
trary real numbers A, B, . . .F .

The complexity of the preceding discussion, incomplete as it is, gives a good
reason for the mathematics curriculum in K–12 not to discuss the real num-
bers in any details. Having said this, we must also profess total puzzlement
as to how the school mathematics curriculum could pretend that the problem
with the transition from rational numbers to real numbers does not exist.
This is an inexcusable neglect of the logitudinal mathematical coherence in
school mathematics. Until better textbooks are written, you should be aware
of overall presence of FASM as an unspoken assumption.

The most important consequence of FASM for our present purpose
is that we can now extend the scope of the division of fractions
(as in §9) to include the division of any two real numbers.

Henceforth, given two real numbers A and B (rational or irrational), we can
talk about the division of A by B, namely, A

B
(assuming B 6= 0). Recall

that this is quite a complicated concept, namely, it is approximated by An

Bn
,

where {An}, {Bn} are sequences of rational numbers which approximate A
and B, respectively, and the meaning of An

Bn
is given by (27) of §8. What is

important for school mathematics is however the fact that, on a formal level,
FASM together with the identities of §9 allow us to treat the division of real
numbers operationally as the division of two whole numbers. Therefore, the
division of real numbers can hardly be simpler from a computational point
of view. With this understood, we are now in a position to give precise
meanings to four concepts that cause a great deal of anxiety among students
and teachers. The word “number” in the following will mean real numbers
in general.

Percent. Given a division of two numbers k
`
, which typically

expresses parts of a whole, we can write it as k
`

= A × 1
100

for
some number A, by the real-number counterpart of (27). Then
“k-`th of something” is sometimes also expressed as “A-percent
of something” (cf. §10 ). For example, because 2

5
= 40 × 1

100
,

two-fifths is often expressed as 40 percent.
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Ratio. The ratio of two quantities A and B is the division of A
by B in the sense we have just described, A

B
. Intuitively, the ratio

of A and B is the multiplicative way of comparing the two num-
bers A and B (in contrast with the additive way of comparing,
which would ask for A − B instead). By tradition, this ratio is
also written as A : B, and this strange notation may have been
responsible for most of the misunderstanding connected with this
concept (but see the historical discussion below).

Rate. The ratio of two quantities of “different types”, in one sense
or another, is usually singled out and given a separate name called
a rate. For example, the ratio of the total number of miles trav-
eled by the total number of hours of the trip is called the average
speed, and because miles and hours are considered “different”,
average speed is usually cited as the prototypical example of a
rate.

Proportion. The equality of two or more ratios.

It is possible to make this discussion appear more profound by more ver-
biage — and the public agonizing over these terms by teachers and educators
alike almost invites this kind of verbal extravagance. But we have spent the
effort to explain the meaning of division, and once that is done, there is
nothing left to agonize over. Perhaps we can compare this situation with
our treatment of fractions. Our main effort was spent in constructing a clear
definition of a fraction as a point on the number line obtained in a prescribed
manner. Once done, such a definition obviates any further need for a prolix
discussion of the supposed profundity of the fraction concept.

The following two problems would further clarify the situation regarding
ratios and rates.

Problem. A school district has a teacher-student ratio of 1 : 24. If the
number of students stay constant, how many more teachers does the district
need to hire in order improve the ratio to 1 : 18 ?

Problem. Paul rode his motorbike to Lanterntown 40 miles away from
home. He maintained a steady speed of 15 miles per hour. On the way back,
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he decided to increase his speed to 18 miles an hour. What is the average
speed of his roundtrip in the sense of total distance divided by total travel
time?

These two problems will be discussed and solved in the next section. The
reason for bringing them up now is that the first problem is regarded as a
typical ratio problem and the second a rate problem. Because “teachers” and
“students” are considered to be of the same type, comparing them is then a
ratio. On the other hand, average speed is a comparison of miles and hours
which are of “different types”, and so the second problem is one about rate.
In the education literature as well as school texts, the terms “ratio” and
“rate” are flaunted as key concepts but almost never explained, and students
are asked to know the difference. This may be the reason why these terms
produce anxiety, and this is the problem we try to address here.

As the definitions given above of ratio and rate make it abundantly ob-
vious, a rate or a ratio is just a division of two numbers, and because we
have made the extra effort to explain what division means, these definitions
at least have the merit of being correct. Armed with a correct definition for
each, we can hope to be able to probe more deeply into their interpretations
by the use of mathematical reasoning. Now a division is a division (just as a
rose is a rose), and it is not necessary to indulge in hairsplitting discussions
as to why some divisions are different from others unless such discussions
are called for. But so far, we see no mathematical merit in differentiating
rate from ratio. For example, we discussed speed extensively in §8 as a par-
titive division (between fractions), and the need for the definition of “rates”
certainly never arosed in that discussion. You will have further evidence of
this point of view when the two preceding problems (on teacher-student ratio
and traveling to Lanterntown) are analyzed and solved in the next section
in terms of precise definitions, mathematical reasoning, and common sense,
but without once mentioning the difference between rate and ratio.

It should be stressed once more that the concept of a ratio is unam-
biguously defined in this monograph as a division of two numbers, whereas
elsewhere it is usually shrouded in mysticism. Here are a random selection
of the definitions that can be found in the literature:

A ratio is a comparative index; it always makes a statement about
one measurement in relation to another.

A ratio is a comparison of any two quantities. A ratio may be used
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to convey an idea that cannot be expressed as a single number.

A ratio is a comparison of two quantities that tells the scale be-
tween them. Ratios may be expressed as quotients, fractions,
decimals, percent, or given in the form of a : b.

A ratio is a way to describe a relationship between numbers. If
there are 13 boys and 15 girls in a classroom, then the ratio of
boys to girls is 13 to 15.

From a historical perspective, one can see why the concept of a ratio has
this mystical character. The word ratio appears in Euclid’s Elements (The
Thirteen Books of the Elements, Volumes 1-3, Dover Publications, 1956). At
the beginning of Book V, we find the following:

A ratio is a sort of relation in respect of size between two mag-
nitudes of the same kind.

Magnitudes are said to be in the same ratio, the first to the
second and the third to the fourth, when, if any equimultiples
whatever be taken of the first and the third, and any equimultiples
whatever of the second and the fourth, the former equimultiples
alike exceed , are alike equal to, or alike fall short of the latter
equimultiples respectively taken in corresponding order.

Let magnitudes which have the same ratio be called propor-
tional.

If we are willing to accept what Euclid says about ratio and the equality
of ratios (i.e., “be in the same ratio”), then his definition of “proportional” is
perfectly understandable because it is exactly the modern definition. How-
ever, his definition of a ratio as “a sort of relation in respect of size” sounds
exactly like any of the contemporary versions quoted above in terms of its
lack of information. This is no accident, because what happened in the more
than two thousand years after Euclid (c. 300 B.C.E.) was that everybody
copied Euclid, including our own textbooks. We see, for instance, that the
insistence that ratios be comparisons of magnitudes of the same type is noth-
ing but an echo of Euclid’s definition. Now, the reason Euclid had to express
himself in such strange fashion (e.g., “. . . exceed , are alike equal to, or alike
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fall short of the latter equimultiples respectively taken in corresponding or-
der”) is because the concept of a “real number” did not exist in Euclid’s
times. Not only did he not have the algebraic notation to express his math-
ematical thoughts, but he also had no inkling that all numbers, rational or
irrational, could be added, subtracted, multiplied and divided like fractions.
Examine, for example, the way Euclid made use of ratios in arguments with
similar triangles, clearly if he had felt comfortable with the concept of divi-
sion between numbers, he would have defined ratio as a division. In other
words, Euclid’s cryptic definition of a ratio was the inevitable consequence of
the mathematical limitations of his time. Nevertheless, we continue to copy
him.

The conductor Arturo Toscanini (1867-1957) suffered from extreme my-
opia all his life and he had to hold music scores an inch or two from his face
before he could read them. As a result, he had to conduct without a score
(but which his phenomenal memory allowed him to do with ease). Because of
his fame, however, soon every conductor was forced to imitate him and con-
duct without a score. Toscanini was once caught making the biting remark:
“They copy my weakness.”

We can say likewise that, twenty-three centuries after Euclid, our school
mathematics textbooks continue to copy Euclid’s weakness. But mathemat-
ics in the past hundred years has progressed far beyond the mathematics
of Euclid’s time. We now have a robust understanding of real numbers, we
have excellent symbolic notations, and mathematics is done by starting with
clearly defined concepts and each step is logically explained. It is no longer
necessary to copy Euclid’s weakness anymore.

Let us lay to rest the obscurantism surrounding the concept of a
ratio once and for all and steer our children away from the un-
knowable and the incomprehensible. A ratio is a division, no
less and no more.

12 Word Problems

In this section, we discuss several word problems to illustrate the applications
of fractions. Notice that in Problems 3 and 6, FASM is implicitly invoked.
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Problem 1.20 Suppose a high school math class can only make
use of 60% of its class time for teaching mathematics, but an
8th grade math class is even less productive pedagogically and
can use only 40%. Assuming that both kinds of math classes
cover the same number of pages of a 360-page Algebra I text-
book for each hour of actual mathematics instruction, and
that high school math classes cover the whole book in a year,
how many pages of the same book will be covered by 8th grade
math classes in a year?

Suppose there are a total of H hours in each math class per year, then a
high school math class has ( 60

100
× H) hours devoted to the actual teaching

of mathematics per year. (see §10 for the interpretation of percent). Thus
in 60H

100
hours, it covers the whole 360-page book. Therefore, the number of

pages covered per hour of mathematics instruction is [300/(60H
100

)] pages.21

By hypothesis, the number of pages which a 8th grade math class can cover
per hour of actual mathematics instruction is also [300/(60H

100
)]. However, the

latter class has only ( 40
100

× H) hours which can be used for the teaching of
mathematics per year, so the total number of pages covered in one year in
the 8th grade math class is:

(
40H

100
)× 360

(60H
100

)
=

40H

100
× 360× 100

60H

=
(40× 360)× (100H)

60× (100H)
= 240 pages.

Discussion. The usual approach taught in schools is to use so-called
proportional reasoning: if the total number of pages covered in the 8th grade
math class is x, then

60
100
40
100

=
360

x
(29)

so that

x =
40
100
60
100

× 360 = 240 ,

20 This problem is due to Jerome Dancis.
21 Observe the natural appearance of complex fractions and the partitive interpretation

of the division of fractions.
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which is the same as before. However, the setting up of (29) is a mystery to
beginners unless the underlying reasoning is carefully explained, as follows.
We wish to compute the number of pages covered per hour of actual mathe-
matics instruction in both the high school and 8th grade classes. Let us say
that there are a total of H hours of class time per year. The high school
class devotes ( 60

100
×H) hours to cover 360 pages, and so the number of pages

covered per instruction hour is [360/60H
100

]. The eighth grade class devotes
( 40

100
× H) hours to cover x pages, and so the number of pages covered per

per mathematics instruction hour is [x/40H
100

]. By assumption, the number of
pages covered per mathematics instruction hour is the same for both classes.
Therefore,

360
60H
100

=
x

40H
100

.

By the cross-multiplication algorithm (5) of §5, this is the same as

360

x
=

60
100

×H
40
100

×H
=

60
100
40
100

,

which is the same as (29).

Problem 2. Paul rode his motorbike to Lanterntown 40
miles away from home. He maintained a steady speed of 15 miles
per hour. On the way back, he decided to increase his speed to
18 miles an hour. What is the average speed of his roundtrip in
the sense of total distance divided by total travel time?

According to the definition of average speed, we need to compute the
total distance traveled in the roundtrip and the amount of travel time. Since
each way is 40 miles, the distance of the round trip is 40 + 40 = 80 miles.
We have to find the total travel time. On the way out to Lanterntown, Paul
covered 15 miles each hour. The number of hours needed to cover 40 miles is
therefore (see the discussion of motion in §8) is 40

15
hours. On the way back,

Paul’s speed is 18 miles per hour, and so the travel times by similar reasoning
is 40

18
hours. The roundtrip therefore took 40

15
+ 40

18
hours altogether. Hence

average speed =
80

40
15

+ 40
18

=
80

12×40+10×40
180

=
80
880
180

=
80× 180

880
=

180

11
= 16

4

11
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miles per hour.
Discussion. A common mistake of students is to say that the average

speed is the “average of the two speeds” and therefore equal to 15+18
2

= 33
2

=
161

2
miles per hour. This may be the right place to remind students of the

importance of precise definitions in mathematics. The fact that “average
speed” tends to suggest “the average of two speeds” is of course confusing,
but such confusion in no way lessens students’ basic obligation to get to
know the precise meaning of each term. A related example is that, although
“complex fraction” vaguely suggests “a fraction of complex numbers”, its
precise meaning (§9) is different. One cannot overemphasize the importance
of learning precise definitions.

Problem 3. A train goes between two towns in constant
speed. By increasing the speed by a third, the travel time is
shortened by how many percent?

Again, we just have to systematically worked through the definitions
(compare the discussion of motion near the end of §8). There are two sets
of travel times: the initial travel time (I) and the subsequent faster travel
time (F). The amount of time shortened as a result of the increase in speed
is I − F . We want in percent the quotient

I − F
I

.

Let us proceed to compute each item involved. We do not know the distance
between the two towns, so for the sake of discussion, let us call it D. For the
same reason, let call the initial speed s. Then

I =
D

s
.

In order to get some intuitive feeling for the problem, let us try something
simple like D = 120 miles and s = 60 mph. The original travel time is then
120
60

= 2 hours. If the speed is increased by a third, then the new speed is
60+(1

3
×60) = 80 mph, so that the new travel time would be 120

80
= 11

2
hours.

The amount of time saved is 2 − 11
2

= 1
2

hour which (by inspection) is 25%
of the original travel time of 2 hours. Next we try D = 200 miles and s = 30
mph. The the two travel times are 62

3
hours and 200

40
= 5 hours. The time
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saved is then 62
3
− 5 = 12

3
hours. Because

12
3

62
3

=
5
3
20
3

=
1

4
,

again the time saved is 25% of the original travel time. One should do many
such special cases until one detects a certain pattern. In this case, it is 25%
over and over again, so that it becomes a matter of verifying this answer in
general.

We now do the general case. The increased speed is a third greater than
s, hence it is s + 1

3
s = 4

3
s. The shorter travel time is then

F =
D
4
3
s

=
3

4

D

s
.

Therefore, we have

I − F
I

=
D
s
− 3

4
D
s

D
s

=
1
4

D
s

D
s

=
1

4
,

by (b) of §9. In terms of percent, it is easily seen to be 25%. So the traveled
time is shortened by 25 percent.

Problem 4. A school district has a teacher-student ratio
of 1 : 24. If the number of students stay constant, how many
more teachers does the district need to hire in order improve
the ratio to 1 : 18?

As before, we have to work through the definitions patiently. We are not
given how many teachers or students there are, so we just give them names,
say, there are T teachers and S students. We are given that

T

S
=

1

24
.

Note that we are using the definition of ratio as a division (and of course
the interpretation of a fraction as division in §4). We want to increase the
number of teachers so that the new teacher-student ratio would be 1

18
. Let

us try to do this problem using some concrete numbers, say S = 360. Then
from T

360
= 1

24
, we conclude T = 15, i.e., there are 15 teachers. How many
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more than 15 would increase the teacher-student ratio to 1
18

? We can find
out by trial and error:

16

360
=

2

45
,

17

360
,

18

360
=

1

20
,

19

360
,

20

360
=

1

18
.

So 20 is the answer, which is to say, 5 new teachers should be hired. Now we
strive for understanding: why 5? Suppose N new teachers should be added
in order to bring the techer-student ratio up to 1

18
. Then

15 + N

360
=

1

18
.

We can use the cross-multiplication algorithm to get 18 × (15 + N) = 360.
By the distributive law, 18 × 15 + 18N = 360, or 270 + 18N = 360. So
18N = 360 − 270 = 90, and N = 5. So that was why 5 was the correct
answer.

We have just given a convincing argument of why it is important that the
distributive law ((10) of §2 in Chapter 1) must be valid for any three numbers.
Otherwise the above expansion of 18× (15 + N) = 18× 15 + 18N could not
have been performed for the simple reason that we did not know (until we
solved for N) what N was going to be. But because this law is true for any
three numbers regardless of what they are, the above expansion was valid.
Thus the generality of this and other laws — the fact that they are valid for
all numbers — arises from a real mathematical need and is not an empty
gesture.

We can next try S = 500, S = 600, etc. Now you will not get T to be a
whole number each time, and neither would N come out as a whole number.
See the indented fine-print comment at the beginning of §10. However, the
idea is to get comfortable with the problem itself through the use of concrete
numbers and os we should not be distracted by these peripheral issues.

Next we do the general case. Suppose N new teachers are hired, then the
number of teachers is now T + N . We want N to satisfy

T + N

S
=

1

18
. (30)

It looks hopeless to solve for N until we remember that T+N
S

= T
S

+ N
S
, by

(8) of §6. Thus we can rewrite (30) as

N

S
=

1

18
− T

S
=

1

18
− 1

24
=

1

72
,
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Note that in computing the subtraction, we used 72 as the common denom-
inator instead of 18× 24 because 72 happens to be a multiple of 18 and 24.
If 18×24 is used, the answer would be 6

432
, and the answer would still be the

same. In any case, we have an answer in the form of N = S× N
S

= 1
72

S, which
means that the number of new teacher that must be hired is 1

72
of the whole

student body (see (17) in §7.1). Can we get an answer more explicit than
this? A little reflection would reveal that with so little information given,
this is all one can expect.

The next two problems are from Russia.

Problem 5. Fresh cucumbers contain 99% water by weight.
300 lbs. of cucumbers are placed in storage, but by the time
they are brought to market, it is found that they contain only
98% of water by weight. How much do these cucumbers weigh?

Since 99% of 300 lbs. is just water, there are 99
100
×300 = 297 lbs. of water

(§10) and hence only 300− 297 = 3 lbs. of solid. By the time the cucumbers
are brought to market, some water has evaporated but the 3 lbs. of solid
remain unchanged, of course. Since 98% is water, the solid is now 2% of the
total weight. Hence if the total weight at market time is w lbs., we see that
3 = 2

100
× w. Using (27), we see that

w =
100× 3

2
= 150 lbs.

Discussion. A mindless application of proportional reasoning would have
produced the following: Let w be the weight of the cucumbers when they are
brought to market. Then,

99/100

300
=

98/100

w
.

Of course this gives w = 98
99
× 300 = 296.97 . . .. This is one reason why

proportional reasoning should be taught only after its underlying reasoning
has been clearly explained.

Problem 6. There is a bottle of wine and a kettle of tea. A
spoon of tea is taken from the kettle and poured into the bot-
tle of wine. The mixture is thoroughly stirred and a spoonful
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of the mixture is taken from the bottle and poured into the
kettle. Is there more tea in the bottle or more wine in the
kettle? Do the same problem again, but without assuming that
the mixture has been stirred.

Let us do the stirred version first. Let the amount of wine in the bottle,
the amount of tea in the kettle, and the capacity of the spoon be b cc, k
cc, and s cc, respectively (“cc” means “cubic centimeter). Using b, k and
s, we can compute the amount of tea in the bottle and the amount of wine
in the kettle. If you are uncomfortable with the operation with symbols, we
can start off with some concrete numbers to get a feel for the problem. So
let us say, b = 1000 cc, k = 2500 cc, and s = 5 cc. After a spoonful of tea
has been added to the bottle of wine, the amount of liquid in the bottle is
1000 + 5 = 1005 cc. The fraction of tea in the mixture is therefore 5

1005
, and

the fraction of wine in the mixture is 1000
1005

. A spoonful of of the thoroughly
stirred mixture would therefore contain 5× 5

1005
= 25

1005
cc of tea and 5× 1000

1005

cc of wine (see §10). When this spoonful is poured into the kettle of tea,
there would be 5× 1000

1005
= 5000

1005
cc of wine in the bottle. On the other hand,

the mixture in the bottle originally had 5 cc of tea, but since (5× 5
1005

) = 25
1005

cc have been taken away, the amount of tea left in the bottle is

5− 25

1005
=

5000

1005
cc,

which is the same as the amount of wine in the kettle. If necessary, do this
all over again with different choices of values for b, k, and s.

By the way, the number 2500 never appeared in the above solution.
Now we can begin the general argument. After a spoonful of tea has

been added to the bottle of wine, the amount of liquid in the bottle is (b+ s)
cc. The fraction of tea in the mixture is s

b+s
, and the fraction of wine in

the mixture is b
b+s

. A spoonful of of the thoroughly stirred mixture would

therefore contain [( s
b+s

)s] cc of tea and [( b
b+s

)s] cc of wine (see §10). When
this spoonful is poured into the kettle of tea, there would be

(
b

b + s
)s =

bs

b + s
cc of wine in the bottle.

On the other hand, the mixture in the bottle originally had s cc (1 spoonful)
of tea, but since [( s

b+s
)s] cc has been taken away, the amount of tea left in
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the bottle is

s− (
s

b + s
)s = s− s2

b + s
=

s(b + s)

b + s
− s2

b + s
=

sb + s2 − s2

b + s
=

sb

b + s
cc,

which is the same as the amount of wine in the kettle.
We also notice that k did not figure in the solution of the problem.
Now the “unstirred” case. Suppose the spoonful of mixture contains α

cc of tea and β cc of wine. The α + β = s, where as before s denotes the
capacity of the spoon. Therefore when the spoonful of mixture is poured
into the kettle, the amount of wine in the bottle is β cc. On the other hand,
the bottle of mixture originally had s cc of tea. But with α cc of the tea
taken away by the spoon, only (s − α) cc of tea is left in the bottle. Since
(s− α) = β, the amount of tea in the bottle is equal to the amount of wine
in the kettle, as before.

The surprising aspect of the second solution is that, since it does not de-
pend on any assumption about whether or not the mixture has been stirred,
it supersedes the first solution. Thus the precise calculations of the first
solution were completely unnecessary! Nevertheless, the first solution is a
valuable exercise in thinking about fractions and should not be thought of
as a waste of time.

Exercise 12.1 Colin and Brynn saw a CD set that they wanted to buy,
but neither had enough money. Brynn could pay for 70% of the cost, and if
Colin would contribute 2

3
of what he had, they could take home the set and

Colin would have $9 left. How much is the CD set, and how much money
did Colin and Brynn have individually?

Exercise 12.2 A law firm has a men to women ratio of 5 : 1. The firm
wants to reduce it to 4 : 1. What percentage increase in women would make
this increase possible?

Exercise 12.3 Because of drought, each faucet is fitted with a water-
saving device to reduce the rate of water flow by 35%. How long does it take
to fill a tank if it used to take 15 minutes (assuming the faucet is fully open
in either case)?

Exercise 12.4 For alcoholic beverage, “200% proof” means “100%” by
volume, so that “120%” proof means “60% by volume”. Suppose 150 bottles
of 120%-proof vodka was left in the vault without the lid on, and by the time
the mistake was discovered, 90% of the alcohol had evaporated. Assuming
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for simplicity that there was no evaporation of the remaining fluid, what is
the proof of the vodka now, and how many bottles’ worth is there?

Exercise 12.5 A water tank contains 271 gallons of water when it is 19
23

of its full capacity. What is its full capacity?
Exercise 12.6 Mr. Dennis took his students to a concert and he was

disconcerted by the fact that only 2
5

of the students showed up. If 52 students
showed up, how many students did Mr. Dennis have?

Exercise 12.7 Given two bottles of liquor (of different sizes), one is 50
proof and the other 140 proof. Suppose the two bottles contain the same
amount of non-alcoholic fluid, say 2 cups, what is the amount of alcohol in
each bottle in terms of cups?

Exercise 12.8 There are two recipes for making banana bread. One calls
for 5

8
cups of sugar for 4 cups of flour, and another calls for 9

10
cups of sugar

for 6 cups of flour. All other things being equal, which banana bread would
taste sweeter?

If you ever write a recipe like this, you should not get into the culinary busi-
ness!! Learn to use easier fractions, such as 3

4 or 2
3 , but certainly not 9

10 .
On the other hand, if you decide that you do not want to do this problem
because the numbers are not “real-world”, then (1) you do not know much
about fractions, and (2) unless you are willing to learn more about fractions,
you should think twice before pursuing a career as a teacher. By the way,
there are actually two ways to think about which banana bread is sweeter:
which has more sugar in each cup of the sugar-flour mixture, or which sugar-
flour ratio is bigger. See the Theorem in §5.

13 APPENDIX: Some Remarks on the Teaching of
Fractions in Elementary School

The following is an abbreviated version of an article written in
October of 1999.

It is widely recognized that there are at least two major bottlenecks in
the mathematics education of grades K–8: the teaching of fractions and the
introduction of algebra. Both are in need of an overhaul. I hope to make
a contribution to the former problem by devising a new approach to elevate
teachers’ understanding of fractions. The need for a better knowledge of
fractions among teachers has no better illustration than the the following
story related by Herbert Clemens (1995):
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Last August, I began a week of fractions classes at a workshop
for elementary teachers with a graph paper explanation of why
2
7
÷ 1

9
= 24

7
. The reaction of my audience astounded me. Several

of the teachers present were simply terrified. None of my protes-
tations about this being a preview, none of my “Don’t worry”
statements had any effect.

This situation cries out for improvement.
Through the years, there has been no want of attempts from the mathe-

matics education community to improve on the teaching of fractions (Lamon
1999, Bezuk-Cramer 1989, Lappan Bouck 1989, among others), but much
work remains to be done. In analyzing these attempts and the existing
school texts on fractions, one detects certain persistent problematic areas in
both the theory and practice, and they can be briefly described as follows:

(1) The concept of a fraction is never clearly defined and its affin-
ity with the whole numbers is not sufficiently stressed, if at all.

(2) The conceptual complexities associated with the common us-
age of fractions are emphasized from the beginning at the expense
of the underlying mathematical simplicity of the concept.

(3) The rules of the four arithmetic operations seem to be made
up on an ad hoc basis, unrelated to the usual four operations on
positive integers with which students are familiar.

(4) In general, mathematical explanations of essentially all aspects
of fractions are lacking.

These four problems are interrelated and are all fundamentally mathe-
matical in nature. For example, if one never gives a clearcut definition of a
fraction, one is forced to “talk around” every possible interpretation of the
many guises of fractions in daily life in an effort to overcompensate. A good
example is the over-stretching of a common expression such as “a third of a
group of fifteen people” into a main theme in the teaching of fractions (Moy-
nahan 1996). Or, instead of offering mathematical explanations to children
of why the usual algorithms are logically valid—a simple task if one starts
from a precise definition of a fraction,—algorithms are justified through “con-
nections among real-world experiences, concrete models and diagrams, oral
language, and symbols (p. 181 of Huinker 1998; see also Lappan & Bouck
1998 and Sharp 1998). Why not do the obvious thing by offering a bona fide
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explanation? It is almost as if one makes the concession from the start: “We
will offer everything but the real thing”.

Let us look more closely at the way fractions are introduced in the class-
room. Children are told that a fraction c

d
, with positive integers c and d, is

simultaneously at least five different objects (cf. Lamon 1999 and Reys et al.
1998):

(a) parts of a whole: when an object is equally divided into d
parts, then c

d
denotes c of those d parts.

(b) the size of a portion when an object of size c is divided into
d equal portions.

(c) the quotient of the integer c divided by d.

(d) the ratio of c to d.

(e) an operator: an instruction that carries out a process, such
as “2

3
of”.

It is quite mystifying to me how this glaring “crisis of confidence” in fractions
among children could have been been consistently overlooked. Clearly, even
those children endowed with an overabundance of faith would find it hard to
believe that a concept could be so versatile as to fit all these descriptions.
More importantly, such an introduction to a new topic in mathematics is
contrary to every mode of mathematical exposition that is deemed accept-
able by modern standards. Yet, even Hans Freudenthal, a good mathemati-
cian before he switched over to mathematics education, made no mention
of this central credibility problem in his Olympian ruminations on fractions
(Freudenthal 1983). Of the existence of such crisis of confidence there is no
doubt. In 1996, a newsletter for teachers from the mathematics department
of the University of Rhode Island devoted five pages of its January issue to
“Ratios and Rational Numbers” ([3]). The editor writes:

This is a collection of reactions and responses to the following note
from a newly appointed teacher who wishes to remain anonymous:

“On the first day of my teaching career, I defined a rational num-
ber to my eighth grade class as a number that can be expressed
as a ratio of integers. A student asked me: What exactly are
ratios? How do ratios differ from fractions? I gave some answers
that I was not satisfied with. So I consulted some other teachers
and texts. The result was confusion . . . ”
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This is followed by three pages worth of input from teachers as well as the
editor on this topic, each detailing his or her inconclusive findings after con-
sulting existing texts and dictionaries (!). In a similar vein, Lamon (1999)
writes: “As one moves from whole number into fraction, the variety and
complexity of the siutation that give meaning to the symbols increases dra-
matically. Understanding of rational numbers involves the coordination of
many different but interconnected ideas and interpretations. There are many
different meanings that end up looking alike when they are written in fraction
symbol” (pp. 30–31). All the while, students are told that no one single idea
or interpretation is sufficiently clear to explain the “meaning” of a fraction.
This is akin to telling someone how to get to a small town by car by offering
fifty suggestions on what to watch for each time a fork in the road comes up
and how to interpret the road signs along the way, when a single clearly
drawn road map would have gotten the job done. Given these facts,
is it any wonder that Lappan-Bouck (1998) and Lamon (1999) would lament
that students “do” fractions without any idea of what they are doing? If we
do not give our students correct information, it is a foregone conclusion that
they will not learn. For example, it is certainly difficult for children to learn
how to add two “operators” in the sense of (e) when all they know up to that
point is how to add two numbers.

Sometimes one could “get by” a mathematical concept without a pre-
cise definition if its rules of operation are clearly explained. Conjecturally,
that was how Europeans in the 14th and 15th centuries dealt with negative
numbers. In the case of fractions, however, this is not true even when inter-
pretation (b) of fractions is used. The worst case is the rule of adding two
fractions. In book after book (with very few exceptions, such as Lang (1988)),
a
b
+ c

d
is defined as (pa+ cq)/m, where m = lcm{b, d} and m = bp = cq. Now

at least two things are wrong with this definition. First, it turns off many
students because they cannot differentiate between lcm and gcd. This def-
inition therefore sets up an entirely unnecesary roadblock in students’ path
of learning. Second, from a mathematical point of view, this definition is se-
riously flawed because it tacitly implies that without the concept of the lcm
of two integers, fractions cannot be added. If we push this reasoning another
step, we would arrive at the absurd conclusion that unless an integral domain
has the unique factorization property, its quotient field cannot be defined.

Informal surveys among teachers consistently reveal that many of their
students simply give up learning fractions at the point of the introduction
of addition. It is probably not just a matter of being confused by gcd and
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lcm, but more likely a feeling of bewilderment and disgust at being forced
to learn a new way of doing addition that seems to bear no relation to what
they already know about addition, namely, the addition of whole numbers.
This then brings us to the problem area (3) at the beginning of this article.
We see, for example, that Bezuk and Cramer (1989) willingly concede that
“Children must adopt new rules for fractions that often conflict with well-
established ideas about whole number” (p.156). In mathematics, one of the
ultimate goals is to achieve simplicity. In the context of learning, it is highly
desirable, perhaps even mandatory, that we convey this message of simplicity
to students. However, when we tell students that a concept as simple as the
addition of whole numbers must be different for fractions, we are certainly
misleading them in the worst way. Even when students are willing to suspend
disbelief and go along on such a weird journey, they pay a dear price. Indeed,
there are recurrent reports of students at the University of California at
Berkeley and at Stanford University who claim in their homework and exam
papers that a

b
+ a

c
= a

b+c
and a

b
+ c

d
= a+c

b+d
.

All in all, a mathematician approaching the subject of fractions in school
mathematics cannot help but be struck by the total absence of the charac-
teristic features of mathematics: precise definitions as starting point, logical
progression from topic to topic, and most importantly, explanations that
accompany each step. This is not to say that the teaching of fractions in
elementary school should be rigidly formal from the beginning. Fractions
should be informally introduced as early as the second grade (because even
second graders need to worry about drinking “half a glass” of orange juice!),
and there is no harm done in allowing children to get acquainted with frac-
tions in an intuitive manner up to, say, the fourth grade. An analogy may be
helpful here. The initial exploration of fractions may be taken as the “data-
collecting phase” of a working scientist: just take it all in and worry about
the meaning later. In time, however, the point will be reached when the said
scientist must sit down to organize and theorize about his or her data. So
it is that when students reach the fifth grade ([2]) or the sixth grade ([1]),
their mathematical development cannot go forward unless “miracles” such
as having one object c

d
enjoying the five different properties of (a)–(e) above

are fully explained, and rules such as a
b
/ c

d
= ad

bc
justified. And it at this

critical juncture of students’ mathematical education that I hope to make a
contribution.

The work done on the teaching of fractions thus far has come mainly
from the education community. Perhaps because of the recent emphasis on
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situated learning, fractions tend to be discussed at the source, in the sense
that attention is invariably focussed on the interpretation of fractions in a
“real world” setting. Since fractions are used in many contexts in many
ways, students are led through myriad interpretations of a fraction from the
beginning in order to get some idea of what a fraction is. At the end, a
fraction is never defined and so the complexities tend to confuse rather than
clarify (cf. (2) at the beginning of the article). More to the point, such an
approach deprives students the opportunity to learn about an essential aspect
of doing mathematics, namely, when confronted with complications,
try to abstract in order to achieve understanding. Students’ first
serious encounter with the computation of fractions — generally in the fifth
and sixth grades — would be the right moment in the school curriculum
to begin emphasizing the abstract component of mathematics and make the
abstraction a key point of classroom instruction. By so doing, one would also
be giving students a head start in their quest for learning algebra. The ability
to abstract, so essential in algebra, should be taught as early as possible in the
school curriculum, which would mean during the teaching of fractions. By
giving abstraction its due in teaching fractions, we would be easing students’
passage to algebra as well.

It takes no insight to conclude that two things have to happen if mathe-
matics education in K-8 is to improve: there must be textbooks that treats
fractions logically, and teachers must have the requisite mathematical knowl-
edge to guide their students through this rather sophisticated subject. I
propose to take up the latter problem by writing a monograph to improve
teachers’ understanding of fractions.

The first and main objective of this monograph is to give a treatment
of fractions and decimals for teachers of grades 5–8 which is mathematically
correct in the sense that everything is explained and the explanations are
sufficiently elementary to be understood by elementary school teachers. In
view of what has already been said above, an analogy may further explain
what this monograph hopes to accomplish. Imagine that we are mounting an
exhibit of Rembrandt’s paintings, and a vigorous discussion is taking place
about the proper lighting to use and the kind of frames that would show off
the paintings to best advantage. Good ideas are also being offered on the
printing of a handsome catalogue for the exhibit and the proper way to pub-
licize the exhibit in order to attract a wider audience. Then someone takes a
closer look at the paintings and realizes that all these good ideas might go to
waste because some of the paintings are fakes. So finally people see the need
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to focus on the most basic part of the exhibit—the paintings—before allow-
ing the exhibit to go public. In like manner, what this monograph would try
to do is to call attention to the need of putting the mathematics of fractions
in proper order before lavishing the pedagogical strategies and classroom ac-
tivities on the actual teaching.
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