
The Common Core Mathematics

Standards: Implications for

Administrators

Crystal Mountain Resort, MI

June 22, 2011

H. Wu



Many sets of state and national math standards have come and

gone in the past twenty years.

By 2014, the Common Core Mathematics Standards (CCMS)

will be phased in. Will it be just more of the same?

No.



At least among the better standards, change usually means

reshuffling or wordsmithing the same collection of statements.

If some standards are moved up to an earlier grade, then many

would consider the new set of standards to be more rigorous.

In this metric, a set of rigorous standards is one in which each

topic is taught as early as possible.

The underlying assumption is that the mathematics of the

school curriculum is set and done, and is beyond reproach,

so that all that remains for a set of standards to do is to package

its many components judiciously.



The reality is different.

CCMS seems to be the first set of standards to be aware of this

difference and address it head-on.

To some people, since the mathematics of the school curriculum

is already in good shape, the main concerns of a new set of

standards should be how to make it more rigorous and how to

jazz up the mathematics so that students acquire “21st century

skills”. CCMS concentrates instead on righting the wrongs in

the mathematics of the existing curriculum.

There has not been any similar effort within memory.



Instead of engaging in the senseless game of acceleration—

teaching each topic as early as possible—CCMS asks if we are

properly preparing our students to learn the mathematics they

need to learn.

It does not cram all of Algebra I into grade 8 in order to teach

students the geometry they need for algebra. It mandates con-

tinuity in students’ learning going from grade to grade.

Students can no longer forget what they learned the year before.



Getting the math right wins few stylistic points, but it is crucial

for educational progress. If we don’t get it right, our students

cannot learn. Garbage in, garbage out.

You may have heard of the problem with proofs in geometry.

You may have heard of algebra being the unattained civil right.

You may have heard of fraction-phobia. All that because of

garbage in, garbage out.

We as a nation have been suffering from this educational malaise

for decades.



I want to give you some examples to illustrate the reality of

what is going on in the school mathematics classroom.

(1) If a fraction is a piece of pie, how can we make students

understand multiplying two pieces of pie?

?X =

2

7
×

3

5
= ?



(2) Solve: Ann walks briskly and covers 3 miles the first hour.

How many miles does she cover in 84 minutes?

Set up proportion: Let Ann cover x miles in 84 minutes. Then

60 minutes is to 3 miles as 84 minutes is to x miles. So

60

3
=

84

x

Answer: x = 41
5 miles.



Using the same reasoning, we do the following problem:

A stone is dropped from 144 ft. It drops 16 ft the first second.

How much does it drop in 3 seconds?

If it drops x feet in 3 seconds, then 1 second is to 16 ft as 3

seconds is to x ft.

1

16
=

3

x
Ans: 48 feet.

(Correct answer: 144 ft. It reaches the ground after 3 seconds.)



(3) Adding fractions.

To add 7
8 + 5

6 , take the LCD of 8 and 6, which is 24. Note

that 24 = 3 × 8 and 24 = 4 × 6. Therefore

7

8
+

5

6
=

(3 × 7) + (4 × 5)

24
=

41

24

Adding is supposed to “combine things”. The concept of “com-

bining” is so basic that it is always taught at the beginning of

arithmetic.

But did you see any “combining” in this addition?



(4) What is a parabola?

According to one algebra textbook book: A parabola is the

general shape of the graph of a quadratic function.

According to another algebra textbook: The graphs of quadratic

functions all curve in a similar way. Such a graph is called a

parabola.



Now, do the following graphs “curve in a similar way”?

O−70 70 O−70 70



They may not look like it, but they are both graphs of quadratic

functions. The left curve is the graph of

x2 + 10

while the right curve is the graph of

1

360
x2 + 10

On the other hand, does the following curve “have the general

shape of the graph of a quadratic function”?



-4 -2 0 2 4

2

4

6

You may think so, but this is not the graph of a quadratic func-

tion because it is the graph of 1
4 x4 +x2 + 1, which is definitely

not quadratic.

So if you are trying to learn about parabolas from existing text-

books, what do you think is a “parabola”?



These examples serve to illustrate the quality of the mathematics

that is encoded in our textbooks (there is not much difference

between them). A perennial problem in school mathematics ed-

ucation has been this:

The mathematics defined by school textbooks is too of-

ten inscrutable and beyond the reach of human reason.

Call this Textbook School Mathematics (TSM). TSM has

been the de facto national school curriculum for a long time.



What may not be obvious is the fact that:

Every topic in school mathematics can be made trans-

parent and reasonable.

Let us go back to the previous examples and give a brief indica-

tion of how this can be done.



(1)
2

7
×

3

5
= ?

We define a fraction such as 3
5 as the length of a certain seg-

ment on the number line. Thus:

0
3
5 1

Then 2
7×

3
5 is defined to be the total length of 2 parts when the

segment of length 3
5 is partitioned into 7 parts of equal length.

We now explain why

2

7
×

3

5
=

2 × 3

7 × 5



Here is the reason. How to divide a segment of length 3
5 into 7

equal segments?

If we have to divide a segment of length 7
5 into 7 equal segments,

it is easy:

7

5
=

1

5
+

1

5
+

1

5
+

1

5
+

1

5
+

1

5
+

1

5
.

so each segment has length 1
5.



If we write 3
5 as 7×3

7×5 (equivalent fractions), then again

7 × 3

7 × 5
=

3

7 × 5
+

3

7 × 5
+

3

7 × 5
+

3

7 × 5
+

3

7 × 5
+

3

7 × 5
+

3

7 × 5

So each part has length 3
7×5. Two of them therefore have length

2×3
7×5.

Thus, by definition of multiplication,

2

7
×

3

5
=

2 × 3

7 × 5

(CCMS does this correctly in grades 4-5.)



(2) Solve: Ann walks briskly and covers 3 miles the first hour.

How many miles does she cover in 84 minutes?

Here one has to explicitly assume that Ann walks at a constant

speed. This concept of “constant speed” or “constant rate”

requires very careful explanation.

Textbooks often give problems such as Ann’s walk without men-

tioning constant speed.



Knowing that the preceding strategy only works for motions of

constant speed, we now understand why the following cannot be

done the same way:

A stone is dropped from 144 ft. It drops 16 ft the first second.

How much does it drop in 3 seconds?

Physics tells us that the stone does not fall at constant speed,

so this is a different problem altogether.

(CCMS does constant speed somewhat better than the average

in grade 6, though not as well as could be.)



(3) Adding fractions. 7
8 + 5

6

We are now combining the two segments of lengths 7
8 and 5

6,

and want to find the total length.

7
8

5
6︸ ︷︷ ︸

?

Briefly: the first is 6×7 segments of length 1
6×8, and the second

is 8 × 5 segments of length 1
8×6. So the total length is

(6 × 7) + (8 × 5) segments of length 1
48.

Thus the answer: (6×7)+(8×5)
48 .

(CCMS does this correctly in grades 3-5.)



(4) What is a parabola?

A parabola is a curve that is similar (in the sense of “similar

triangles”) to the graph of x2.

One then proves the fact that the graph of every quadratic func-

tion is similar the graph of x2 (hence a parabola).

(CCMS mandates a correct definition of a parabola in High

School Geometry.)



Pre-service teachers have to learn how to transform TSM into

something transparent and reasonable in order to properly carry

out their duties as classroom teachers, but so far, institutions of

higher learning have not done their job.

Consequently, most of our teachers—who were taught TSM in

K-12—are left with no choice but to teach their own students

TSM when they go back to teach.

This is how TSM gets recycled from generation to generation.



CCMS is taking a first step to break down TSM and make school

mathematics transparent and reasonable again.

CCMS is very possibly our last hope to break the vicious cycle

of TSM for a long time to come.



Let us look ahead and ask what next?

The first requirement is do no harm.

An example of doing harm: in the 90’s, LA Unified (LAUSD)

once promulgated a Pacing Guide for teachers of Algebra 1 that

required them to teach the quadratic formula in May and the

concept of a square root in June.



K-12 mathematics education involves serious mathematics. Many

instructional decisions, such as the LAUSD Pacing Guide, should

take into account input from content experts.

In the Common Core era, involvement of very competent math-

ematicians is essential.

Why “very competent”?

A common misconception is that any mathematics professor is

a content expert. Here is my thinking on the issue: I was given

tenure at UC Berkeley in 1968, but I certainly would not have

recommended anyone to consult me about K-12 math education

back in 1968. I didn’t know enough mathematics.



A deeper answer to “what next” will have to be professional

development, professional development, and professional devel-

opment (PD).

This is not the place to discuss pre-service PD (it must improve).

A more pertinent question on this occasion is what you can do

for your teachers in the district.

In order to implement CCMS, you will have to provide in-service

PD that is content-based and sustained over a long period

of time.



Most teachers need a replacement of their knowledge of TSM,

because TSM is incompatible with CCMS and universities have

not provided them with this replacement.

This kind of content-knowledge cannot be acquired in two or

three fun-filled, half-day PD sessions each semester; it requires

effort as well as sustained immersion in the mathematics.



PD means different things to different people at the moment.

To some, it means games, fun activities, new manipulatives,

pedagogical strategies, and projects that you can directly bring

back to your classroom.

To others, it means making teachers feel good about themselves,

making them feel that that already know mathematics, and mak-

ing them believe that mathematics can be learned without hard

work.



The better kind of PD talks about children’s mathematical think-

ing, skillful use of technology, teacher-student communication,

and refined teaching practices.

While these are important issues for teaching, the kind of PD

that is most urgently needed is the kind that provides content

knowledge.

Most teachers need content knowledge about the basic mathe-

matical topics of the school curriculum. They have to be able

to teach these topics with precision, reasoning, and coherence,

and in a way that is grade-level appropriate.



It is not high quality mathematics per se that they need to know,

but high-quality mathematics done from the vantage point

of the school classroom.

Effective PD must combine the best of both worlds.



This kind of PD cannot materialize without the contributions of

all parties concerned: district supervisors, teachers, and univer-

sity mathematicians.

For the teachers who need this kind of PD, they have to be

willing to unlearn a lot of things picked up from TSM before

they can pick up the requisite new knowledge. Will the school

district encourage them to put in the sustained effort? Are they

willing to put in the sustained effort?



Are district supervisors willing to do a serious re-thinking about

PD: put content first, and find the funding for long-term PD?

There is a serious issue of finding professional developers who

can provide such content knowledge.

Broadly speaking, only competent mathematicians possess this

knowledge, but most of them know little about schools or are too

involved in their own abstract world to be willing to do PD. The

right peron can be found, but good administrative judgement

will be critical.



Mathematicians can contribute in another way. They can serve

as district consultants on hiring decisions.

Many professional developers claim to provide “content-based”

PD. Informed administrative decisions that separate the wheat

from the chaff will depend on getting good advice from mathe-

maticians.

When all is said and done, the burden falls on the district super-

visors. There is no substitute for great leadership.



The fate of CCMS is hanging in the balance: Can we get teachers

who can makes sense of the mathematics they teach? Can we

get teachers to teach mathematics in a way that is clear, precise,

and supported by reasoning every step of the way?

Can we all contribute our share to make this happen?

Our children are waiting for an affirmative answer.


